Transformative Effect of Li Salt for Proactively Mitigating Interfacial Side Reactions in Sodium-Ion Batteries
Corresponding Author: Hyun‑seung Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 226
Abstract
The robust respective formations of a solid electrolyte interphase (SEI) and pillar at the surfaces of hard carbon and O3-type positive electrodes are the consequences of integrating LiPF6 salt into a sodium-ion battery electrolyte that considerably strengthens both interfaces of positive and negative electrodes. The improvement of cycle performances due to the formation of highly passivating SEI on the hard carbon electrode is induced by the alternated solvation structure following the addition of Li salt, which inhibits sodium-ion and electron leakage from further electrolyte decomposition. The SEI with incorporated Li is less soluble than Na-based SEI, and the passivation ability of the initially formed SEI can thus be well preserved. Conversely, the gas evolution caused by oxygen release is reduced considerably by the marginal surface intercalation of Li ions at the surface of the O3-positive electrode. Additionally, the LiF layer that forms on the O3 surface diminishes additional deterioration of the electrolyte after formation. Compared with the fluoroethylene carbonate additive that is typically applied, a simultaneously strengthened interface yields major improvements in capacity retention.
Highlights:
1 LiPF6 integration into sodium-ion battery electrolytes strengthens solid electrolyte interphase (SEI) film and stabilizes O3 electrode surfaces, enhancing cycleability with 92.7% at 400 cycles.
2 Li-based SEI exhibits reduced solubility, effectively suppressing sodium-ion and electron leakage, and mitigating electrolyte decomposition on hard carbon electrode.
3 The formation of Li-ion pillars on O3-type electrode surfaces significantly reduces oxygen release and electrolyte degradation, resulting in improved capacity retention.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
- H. Rostami, J. Valio, P. Suominen, P. Tynjälä, U. Lassi, Advancements in cathode technology, recycling strategies, and market dynamics: a comprehensive review of sodium ion batteries. Chem. Eng. J. 495, 153471 (2024). https://doi.org/10.1016/j.cej.2024.153471
- K. Sada, J. Darga, A. Manthiram, Challenges and prospects of sodium-ion and potassium-ion batteries for mass production. Adv. Energy Mater. 13(39), 2302321 (2023). https://doi.org/10.1002/aenm.202302321
- Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35(31), e2212186 (2023). https://doi.org/10.1002/adma.202212186
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- Y. Wan, B. Huang, W. Liu, D. Chao, Y. Wang et al., Fast-charging anode materials for sodium-ion batteries. Adv. Mater. 36(35), e2404574 (2024). https://doi.org/10.1002/adma.202404574
- C. Che, F. Wu, Y. Li, Y. Li, S. Li et al., Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries. Adv. Mater. 36(28), e2402291 (2024). https://doi.org/10.1002/adma.202402291
- Y. Lin, Q. Peng, L. Chen, Q. Zuo, Q. Long et al., Organic liquid electrolytes in sodium-based batteries: actualities and perspectives. Energy Storage Mater. 67, 103211 (2024). https://doi.org/10.1016/j.ensm.2024.103211
- X. Chang, Z. Yang, Y. Liu, J. Chen, M. Wu et al., The guarantee of large-scale energy storage: non-flammable organic liquid electrolytes for high-safety sodium ion batteries. Energy Storage Mater. 69, 103407 (2024). https://doi.org/10.1016/j.ensm.2024.103407
- Q. Pan, D. Gong, Y. Tang, Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 31, 328–343 (2020). https://doi.org/10.1016/j.ensm.2020.06.025
- X. He, J. Peng, Q. Lin, M. Li, W. Chen et al., Sulfolane-based flame-retardant electrolyte for high-voltage sodium-ion batteries. Nano-Micro Lett. 17, 45 (2024). https://doi.org/10.1007/s40820-024-01546-7
- J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/ low-temperature sodium-ion storage. Nano-Micro Lett. 13(1), 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
- Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13(1), 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
- X. Zhao, L. Zhang, X. Wang, J. Li, L. Zhang et al., Deciphering cycling voltage-dependent failures of O3-layered cathode for sodium ion battery. J. Mater. Chem. A 12(19), 11681–11690 (2024). https://doi.org/10.1039/D3TA07967H
- Y. Niu, Z. Hu, H. Mao, L. Zhou, L. Wang et al., A “seat-squatting” strategy via lithium substitution to suppress Fe-migration in Na layered oxide cathodes. Energy Environ. Sci. 17(20), 7958–7968 (2024). https://doi.org/10.1039/d4ee01867b
- Y.-J. Guo, R.-X. Jin, M. Fan, W.-P. Wang, S. Xin et al., Sodium layered oxide cathodes: properties, practicality and prospects. Chem. Soc. Rev. 53(15), 7828–7874 (2024). https://doi.org/10.1039/d4cs00415a
- S.-M. Oh, S.-T. Myung, J.-Y. Hwang, B. Scrosati, K. Amine et al., High capacity O3-Type Na [Li0.05(Ni0.25Fe0.25Mn0.5)0.95] O2 cathode for sodium ion batteries. Chem. Mater. 26(21), 6165–6171 (2014). https://doi.org/10.1021/cm502481b
- Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9(2), 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
- L. Kitsu Iglesias, E.N. Antonio, T.D. Martinez, L. Zhang, Z. Zhuo et al., Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 13(44), 2302171 (2023). https://doi.org/10.1002/aenm.202302171
- Z. Chen, Y. Deng, J. Kong, W. Fu, C. Liu et al., Toward the high-voltage stability of layered oxide cathodes for sodium-ion batteries: challenges, progress, and perspectives. Adv. Mater. 36(26), e2402008 (2024). https://doi.org/10.1002/adma.202402008
- W. Kuang, X. Zhou, Z. Fan, X. Chen, Z. Yang et al., Sulfur-containing inorganic-rich interfacial chemistry empowers advanced sodium-ion full batteries. ACS Energy Lett. 9(8), 4111–4118 (2024). https://doi.org/10.1021/acsenergylett.4c01445
- X. Hou, T. Li, Y. Qiu, M. Jiang, H. Lin et al., Interfacial chemistry of perfluorinated-anion additives deciphering ether-based electrolytes for sodium-ion batteries. ACS Energy Lett. 9(2), 461–467 (2024). https://doi.org/10.1021/acsenergylett.3c02811
- C. Li, H. Xu, L. Ni, B. Qin, Y. Ma et al., Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives. Adv. Energy Mater. 13(40), 2301758 (2023). https://doi.org/10.1002/aenm.202301758
- E. Wang, J. Wan, Y.-J. Guo, Q. Zhang, W.-H. He et al., Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 62(4), e202216354 (2023). https://doi.org/10.1002/anie.202216354
- M.Á. Muñoz-Márquez, M. Zarrabeitia, S. Passerini, T. Rojo, Structure, composition, transport properties, and electrochemical performance of the electrode-electrolyte interphase in non-aqueous Na-ion batteries. Adv. Mater. Interfaces 9(8), 2101773 (2022). https://doi.org/10.1002/admi.202101773
- B. Wang, Z. Fang, Q. Jiang, D. Tang, S. Fan et al., Interlayer confined water enabled pseudocapacitive sodium-ion storage in nonaqueous electrolyte. ACS Nano 18(1), 798–808 (2024). https://doi.org/10.1021/acsnano.3c09189
- F. Cheng, M. Cao, Q. Li, C. Fang, J. Han et al., Electrolyte salts for sodium-ion batteries: NaPF6 or NaClO4? ACS Nano 17(18), 18608–18615 (2023). https://doi.org/10.1021/acsnano.3c07474
- Y. Jiang, G. Zou, H. Hou, J. Li, C. Liu et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
- C.R. Lee, J. Byun, M. Kim, M.A. Lee, C. Hwang et al., Vulnerable solid electrolyte interphase deposition in sodium-ion batteries from insufficient overpotential development during formation. ACS Mater. Lett. 6(3), 772–779 (2024). https://doi.org/10.1021/acsmaterialslett.3c01616
- T.A. Pham, K.E. Kweon, A. Samanta, V. Lordi, J.E. Pask, Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations. J. Phys. Chem. C 121(40), 21913–21920 (2017). https://doi.org/10.1021/acs.jpcc.7b06457
- M. Fei, L. Qi, S. Han, Y. Li, H. Xi et al., Preformation of insoluble solid-electrolyte interphase for highly reversible Na-ion batteries. Angew. Chem. Int. Ed. 63(42), e202409719 (2024). https://doi.org/10.1002/anie.202409719
- R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 1(6), 1173–1178 (2016). https://doi.org/10.1021/acsenergylett.6b00491
- L.A. Ma, A.J. Naylor, L. Nyholm, R. Younesi, Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 60(9), 4855–4863 (2021). https://doi.org/10.1002/anie.202013803
- J. Cai, W. Fan, X. Li, S. Li, W. Wang et al., A dual-functional electrolyte additive for stabilizing the solid electrolyte interphase and solvation structure to enable pouch sodium ion batteries with high performance at a wide temperature range from − 30 °C to 60 °C. Chem. Eng. J. 491, 151949 (2024). https://doi.org/10.1016/j.cej.2024.151949
- P. Dai, C.-G. Shi, Z. Huang, X.-H. Wu, Y.-P. Deng et al., A new film-forming electrolyte additive in enhancing the interface of layered cathode and cycling life of sodium ion batteries. Energy Storage Mater. 56, 551–561 (2023). https://doi.org/10.1016/j.ensm.2023.01.046
- X. Song, T. Meng, Y. Deng, A. Gao, J. Nan et al., The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries. Electrochim. Acta 281, 370–377 (2018). https://doi.org/10.1016/j.electacta.2018.05.185
- M. Dahbi, T. Nakano, N. Yabuuchi, S. Fujimura, K. Chihara et al., Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 3(11), 1856–1867 (2016). https://doi.org/10.1002/celc.201600365
- J.J. Fan, P. Dai, C.G. Shi, Y. Wen, C.X. Luo et al., Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 31(17), 2010500 (2021). https://doi.org/10.1002/adfm.202010500
- S. Lin, Z. Yang, J. Chen, Y. Qiao, L. Li et al., Functional electrolyte additives for sodium-ion and sodium-metal batteries: progress and perspectives. Adv. Funct. Mater. 34(34), 2400731 (2024). https://doi.org/10.1002/adfm.202400731
- D. Wang, T. He, A. Wang, K. Guo, M. Avdeev et al., A thermodynamic cycle-based electrochemical windows database of 308 electrolyte solvents for rechargeable batteries. Adv. Funct. Mater. 33(11), 2212342 (2023). https://doi.org/10.1002/adfm.202212342
- C.R. Lee, H.Y. Jang, H.J. Leem, M.A. Lee, W. Kim et al., Surface work function-induced thermally vulnerable solid electrolyte interphase formation on the negative electrode for lithium-ion batteries. Adv. Energy Mater. 14(6), 2302906 (2024). https://doi.org/10.1002/aenm.202302906
- J. Byun, C.R. Lee, W. Kim, M.A. Lee, H.Y. Jang et al., Surface work function modifier to modulate electrolyte decomposition on negative electrode in lithium-ion batteries. Adv. Funct. Mater. 34(32), 2401620 (2024). https://doi.org/10.1002/adfm.202401620
- M.A. Lee, H.Y. Jang, J. Lee, J. Byun, Y. Jung et al., Underlying mechanism of electrolyte compositional engineering based on additive solvation-structure governing solid electrolyte interphase formation in lithium-ion batteries. Small 21(2), e2407910 (2025). https://doi.org/10.1002/smll.202407910
- J. Byun, W. Kim, M.A. Lee, J.-S. Yu, J. Choi et al., Osteoporosis failure of aluminum current collector induced crosstalk degradation at the imide-type lithium salt comprised practical-level lithium-ion batteries. J. Electrochem. Soc. 171(6), 060536 (2024). https://doi.org/10.1149/1945-7111/ad5a3e
- M. Kalapsazova, R. Stoyanova, E. Zhecheva, G. Tyuliev, D. Nihtianova, Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries. J. Mater. Chem. A 2(45), 19383–19395 (2014). https://doi.org/10.1039/C4TA04094E
- H. Yan, D. Chai, X. Li, Y. Fu, Full exploitation of charge compensation of O3-type cathode toward high energy sodium-ion batteries by high entropy strategy. Small 20(46), e2404039 (2024). https://doi.org/10.1002/smll.202404039
- L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo et al., Deciphering the cathode–electrolyte interfacial chemistry in sodium layered cathode materials. Adv. Energy Mater. 8(34), 1801975 (2018). https://doi.org/10.1002/aenm.201801975
- K.M. Shaju, K.V. Ramanujachary, S.E. Lofland, G.V. Subba Rao, B.V.R. Chowdari, Spectral, magnetic and electrochemical studies of layered manganese oxides with P2 and O2 structure. J. Mater. Chem. 13(10), 2633 (2003). https://doi.org/10.1039/b301043k
References
J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
H. Rostami, J. Valio, P. Suominen, P. Tynjälä, U. Lassi, Advancements in cathode technology, recycling strategies, and market dynamics: a comprehensive review of sodium ion batteries. Chem. Eng. J. 495, 153471 (2024). https://doi.org/10.1016/j.cej.2024.153471
K. Sada, J. Darga, A. Manthiram, Challenges and prospects of sodium-ion and potassium-ion batteries for mass production. Adv. Energy Mater. 13(39), 2302321 (2023). https://doi.org/10.1002/aenm.202302321
Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35(31), e2212186 (2023). https://doi.org/10.1002/adma.202212186
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
Y. Wan, B. Huang, W. Liu, D. Chao, Y. Wang et al., Fast-charging anode materials for sodium-ion batteries. Adv. Mater. 36(35), e2404574 (2024). https://doi.org/10.1002/adma.202404574
C. Che, F. Wu, Y. Li, Y. Li, S. Li et al., Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries. Adv. Mater. 36(28), e2402291 (2024). https://doi.org/10.1002/adma.202402291
Y. Lin, Q. Peng, L. Chen, Q. Zuo, Q. Long et al., Organic liquid electrolytes in sodium-based batteries: actualities and perspectives. Energy Storage Mater. 67, 103211 (2024). https://doi.org/10.1016/j.ensm.2024.103211
X. Chang, Z. Yang, Y. Liu, J. Chen, M. Wu et al., The guarantee of large-scale energy storage: non-flammable organic liquid electrolytes for high-safety sodium ion batteries. Energy Storage Mater. 69, 103407 (2024). https://doi.org/10.1016/j.ensm.2024.103407
Q. Pan, D. Gong, Y. Tang, Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 31, 328–343 (2020). https://doi.org/10.1016/j.ensm.2020.06.025
X. He, J. Peng, Q. Lin, M. Li, W. Chen et al., Sulfolane-based flame-retardant electrolyte for high-voltage sodium-ion batteries. Nano-Micro Lett. 17, 45 (2024). https://doi.org/10.1007/s40820-024-01546-7
J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/ low-temperature sodium-ion storage. Nano-Micro Lett. 13(1), 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13(1), 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
X. Zhao, L. Zhang, X. Wang, J. Li, L. Zhang et al., Deciphering cycling voltage-dependent failures of O3-layered cathode for sodium ion battery. J. Mater. Chem. A 12(19), 11681–11690 (2024). https://doi.org/10.1039/D3TA07967H
Y. Niu, Z. Hu, H. Mao, L. Zhou, L. Wang et al., A “seat-squatting” strategy via lithium substitution to suppress Fe-migration in Na layered oxide cathodes. Energy Environ. Sci. 17(20), 7958–7968 (2024). https://doi.org/10.1039/d4ee01867b
Y.-J. Guo, R.-X. Jin, M. Fan, W.-P. Wang, S. Xin et al., Sodium layered oxide cathodes: properties, practicality and prospects. Chem. Soc. Rev. 53(15), 7828–7874 (2024). https://doi.org/10.1039/d4cs00415a
S.-M. Oh, S.-T. Myung, J.-Y. Hwang, B. Scrosati, K. Amine et al., High capacity O3-Type Na [Li0.05(Ni0.25Fe0.25Mn0.5)0.95] O2 cathode for sodium ion batteries. Chem. Mater. 26(21), 6165–6171 (2014). https://doi.org/10.1021/cm502481b
Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9(2), 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
L. Kitsu Iglesias, E.N. Antonio, T.D. Martinez, L. Zhang, Z. Zhuo et al., Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 13(44), 2302171 (2023). https://doi.org/10.1002/aenm.202302171
Z. Chen, Y. Deng, J. Kong, W. Fu, C. Liu et al., Toward the high-voltage stability of layered oxide cathodes for sodium-ion batteries: challenges, progress, and perspectives. Adv. Mater. 36(26), e2402008 (2024). https://doi.org/10.1002/adma.202402008
W. Kuang, X. Zhou, Z. Fan, X. Chen, Z. Yang et al., Sulfur-containing inorganic-rich interfacial chemistry empowers advanced sodium-ion full batteries. ACS Energy Lett. 9(8), 4111–4118 (2024). https://doi.org/10.1021/acsenergylett.4c01445
X. Hou, T. Li, Y. Qiu, M. Jiang, H. Lin et al., Interfacial chemistry of perfluorinated-anion additives deciphering ether-based electrolytes for sodium-ion batteries. ACS Energy Lett. 9(2), 461–467 (2024). https://doi.org/10.1021/acsenergylett.3c02811
C. Li, H. Xu, L. Ni, B. Qin, Y. Ma et al., Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives. Adv. Energy Mater. 13(40), 2301758 (2023). https://doi.org/10.1002/aenm.202301758
E. Wang, J. Wan, Y.-J. Guo, Q. Zhang, W.-H. He et al., Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 62(4), e202216354 (2023). https://doi.org/10.1002/anie.202216354
M.Á. Muñoz-Márquez, M. Zarrabeitia, S. Passerini, T. Rojo, Structure, composition, transport properties, and electrochemical performance of the electrode-electrolyte interphase in non-aqueous Na-ion batteries. Adv. Mater. Interfaces 9(8), 2101773 (2022). https://doi.org/10.1002/admi.202101773
B. Wang, Z. Fang, Q. Jiang, D. Tang, S. Fan et al., Interlayer confined water enabled pseudocapacitive sodium-ion storage in nonaqueous electrolyte. ACS Nano 18(1), 798–808 (2024). https://doi.org/10.1021/acsnano.3c09189
F. Cheng, M. Cao, Q. Li, C. Fang, J. Han et al., Electrolyte salts for sodium-ion batteries: NaPF6 or NaClO4? ACS Nano 17(18), 18608–18615 (2023). https://doi.org/10.1021/acsnano.3c07474
Y. Jiang, G. Zou, H. Hou, J. Li, C. Liu et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
C.R. Lee, J. Byun, M. Kim, M.A. Lee, C. Hwang et al., Vulnerable solid electrolyte interphase deposition in sodium-ion batteries from insufficient overpotential development during formation. ACS Mater. Lett. 6(3), 772–779 (2024). https://doi.org/10.1021/acsmaterialslett.3c01616
T.A. Pham, K.E. Kweon, A. Samanta, V. Lordi, J.E. Pask, Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations. J. Phys. Chem. C 121(40), 21913–21920 (2017). https://doi.org/10.1021/acs.jpcc.7b06457
M. Fei, L. Qi, S. Han, Y. Li, H. Xi et al., Preformation of insoluble solid-electrolyte interphase for highly reversible Na-ion batteries. Angew. Chem. Int. Ed. 63(42), e202409719 (2024). https://doi.org/10.1002/anie.202409719
R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 1(6), 1173–1178 (2016). https://doi.org/10.1021/acsenergylett.6b00491
L.A. Ma, A.J. Naylor, L. Nyholm, R. Younesi, Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 60(9), 4855–4863 (2021). https://doi.org/10.1002/anie.202013803
J. Cai, W. Fan, X. Li, S. Li, W. Wang et al., A dual-functional electrolyte additive for stabilizing the solid electrolyte interphase and solvation structure to enable pouch sodium ion batteries with high performance at a wide temperature range from − 30 °C to 60 °C. Chem. Eng. J. 491, 151949 (2024). https://doi.org/10.1016/j.cej.2024.151949
P. Dai, C.-G. Shi, Z. Huang, X.-H. Wu, Y.-P. Deng et al., A new film-forming electrolyte additive in enhancing the interface of layered cathode and cycling life of sodium ion batteries. Energy Storage Mater. 56, 551–561 (2023). https://doi.org/10.1016/j.ensm.2023.01.046
X. Song, T. Meng, Y. Deng, A. Gao, J. Nan et al., The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries. Electrochim. Acta 281, 370–377 (2018). https://doi.org/10.1016/j.electacta.2018.05.185
M. Dahbi, T. Nakano, N. Yabuuchi, S. Fujimura, K. Chihara et al., Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 3(11), 1856–1867 (2016). https://doi.org/10.1002/celc.201600365
J.J. Fan, P. Dai, C.G. Shi, Y. Wen, C.X. Luo et al., Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 31(17), 2010500 (2021). https://doi.org/10.1002/adfm.202010500
S. Lin, Z. Yang, J. Chen, Y. Qiao, L. Li et al., Functional electrolyte additives for sodium-ion and sodium-metal batteries: progress and perspectives. Adv. Funct. Mater. 34(34), 2400731 (2024). https://doi.org/10.1002/adfm.202400731
D. Wang, T. He, A. Wang, K. Guo, M. Avdeev et al., A thermodynamic cycle-based electrochemical windows database of 308 electrolyte solvents for rechargeable batteries. Adv. Funct. Mater. 33(11), 2212342 (2023). https://doi.org/10.1002/adfm.202212342
C.R. Lee, H.Y. Jang, H.J. Leem, M.A. Lee, W. Kim et al., Surface work function-induced thermally vulnerable solid electrolyte interphase formation on the negative electrode for lithium-ion batteries. Adv. Energy Mater. 14(6), 2302906 (2024). https://doi.org/10.1002/aenm.202302906
J. Byun, C.R. Lee, W. Kim, M.A. Lee, H.Y. Jang et al., Surface work function modifier to modulate electrolyte decomposition on negative electrode in lithium-ion batteries. Adv. Funct. Mater. 34(32), 2401620 (2024). https://doi.org/10.1002/adfm.202401620
M.A. Lee, H.Y. Jang, J. Lee, J. Byun, Y. Jung et al., Underlying mechanism of electrolyte compositional engineering based on additive solvation-structure governing solid electrolyte interphase formation in lithium-ion batteries. Small 21(2), e2407910 (2025). https://doi.org/10.1002/smll.202407910
J. Byun, W. Kim, M.A. Lee, J.-S. Yu, J. Choi et al., Osteoporosis failure of aluminum current collector induced crosstalk degradation at the imide-type lithium salt comprised practical-level lithium-ion batteries. J. Electrochem. Soc. 171(6), 060536 (2024). https://doi.org/10.1149/1945-7111/ad5a3e
M. Kalapsazova, R. Stoyanova, E. Zhecheva, G. Tyuliev, D. Nihtianova, Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries. J. Mater. Chem. A 2(45), 19383–19395 (2014). https://doi.org/10.1039/C4TA04094E
H. Yan, D. Chai, X. Li, Y. Fu, Full exploitation of charge compensation of O3-type cathode toward high energy sodium-ion batteries by high entropy strategy. Small 20(46), e2404039 (2024). https://doi.org/10.1002/smll.202404039
L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo et al., Deciphering the cathode–electrolyte interfacial chemistry in sodium layered cathode materials. Adv. Energy Mater. 8(34), 1801975 (2018). https://doi.org/10.1002/aenm.201801975
K.M. Shaju, K.V. Ramanujachary, S.E. Lofland, G.V. Subba Rao, B.V.R. Chowdari, Spectral, magnetic and electrochemical studies of layered manganese oxides with P2 and O2 structure. J. Mater. Chem. 13(10), 2633 (2003). https://doi.org/10.1039/b301043k