Hydrogel Electrolytes-Based Rechargeable Zinc-Ion Batteries under Harsh Conditions
Corresponding Author: Ning Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 227
Abstract
Rechargeable zinc (Zn)-ion batteries (RZIBs) with hydrogel electrolytes (HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations (e.g., bending, twisting, and straining), and damages (e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
Highlights:
1 The developing history and recent advances of hydrogel electrolytes for rechargeable zinc-ion batteries under harsh conditions are summarized.
2 The fundamentals, species, and mechanisms of the hydrogel electrolytes are discussed.
3 The functional design strategies for advanced hydrogel electrolytes under harsh conditions are discussed.
4 The remaining challenges and future perspectives for the practical application of hydrogel electrolyte-based rechargeable zinc-ion batteries are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Dong, H. Hu, P. Liang, L. Xue, X. Chai et al., Dissolution, solvation and diffusion in low-temperature zinc electrolyte design. Nat. Rev. Chem. 9(2), 102–117 (2025). https://doi.org/10.1038/s41570-024-00670-7
- S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14, 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
- Y. Dai, R. Lu, C. Zhang, J. Li, Y. Yuan et al., Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 7(7), 776–784 (2024). https://doi.org/10.1038/s41929-024-01169-6
- K. Ren, M. Li, Q. Wang, B. Liu, C. Sun et al., Thioacetamide additive homogenizing Zn deposition revealed by in situ digital holography for advanced Zn ion batteries. Nano-Micro Lett. 16(1), 117 (2024). https://doi.org/10.1007/s40820-023-01310-3
- D.G. Mackanic, T.-H. Chang, Z. Huang, Y. Cui, Z. Bao, Stretchable electrochemical energy storage devices. Chem. Soc. Rev. 49(13), 4466–4495 (2020). https://doi.org/10.1039/d0cs00035c
- Y. Li, X. Ma, X. Zhang, F. Zhang, Q. Wang et al., High Zn(002)-preferential orientation enabled by a proton additive for dendrite-free zinc anodes. Energy Environ. Sci. 17(23), 9205–9214 (2024). https://doi.org/10.1039/d4ee03276d
- J. Zhu, Z. Tie, S. Bi, Z. Niu, Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(22), e202403712 (2024). https://doi.org/10.1002/anie.202403712
- Y. Pan, Z. Zuo, Y. Jiao, P. Wu, Constructing lysozyme protective layer via conformational transition for aqueous Zn batteries. Adv. Mater. 36(29), 2314144 (2024). https://doi.org/10.1002/adma.202314144
- Y.-M. Li, W.-H. Li, K. Li, W.-B. Jiang, Y.-Z. Tang et al., Molecular synergistic effects mediate efficient interfacial chemistry: enabling dendrite-free zinc anode for aqueous zinc-ion batteries. J. Am. Chem. Soc. 146(45), 30998–31011 (2024). https://doi.org/10.1021/jacs.4c10337
- Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
- J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
- S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 63(17), e202400045 (2024). https://doi.org/10.1002/anie.202400045
- F. Wang, J. Zhang, H. Lu, H. Zhu, Z. Chen et al., Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 14(1), 4211 (2023). https://doi.org/10.1038/s41467-023-39877-5
- J.L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu et al., Cation-conduction dominated hydrogels for durable zinc-iodine batteries. Adv. Mater. 36(21), e2313610 (2024). https://doi.org/10.1002/adma.202313610
- Z. Yang, Q. Zhang, T. Wu, Q. Li, J. Shi et al., Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem. Int. Ed. 63(9), e202317457 (2024). https://doi.org/10.1002/anie.202317457
- K. Zhu, W. Jiang, Z. Wang, W. Li, W. Xie et al., Hewettite ZnV6 O16·8H2 O with remarkably stable layers and ultralarge interlayer spacing for high-performance aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(1), e202213368 (2023). https://doi.org/10.1002/anie.202213368
- X. Zhao, Z. Fu, X. Zhang, X. Wang, B. Li et al., More is better: high-entropy electrolyte design in rechargeable batteries. Energy Environ. Sci. 17(7), 2406–2430 (2024). https://doi.org/10.1039/d3ee03821a
- Y. Cui, W. Chen, W. Xin, H. Ling, Y. Hu et al., Gradient quasi-solid electrolyte enables selective and fast ion transport for robust aqueous zinc-ion batteries. Adv. Mater. 36(6), e2308639 (2024). https://doi.org/10.1002/adma.202308639
- M. Jiao, L. Dai, H.-R. Ren, M. Zhang, X. Xiao et al., A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. Int. Ed. 62(20), e202301114 (2023). https://doi.org/10.1002/anie.202301114
- J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15(1), 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
- T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), e2101368 (2021). https://doi.org/10.1002/adma.202101368
- C. Li, W. Wang, J. Luo, W. Zhuang, J. Zhou et al., High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery. Adv. Mater. 36(21), e2313772 (2024). https://doi.org/10.1002/adma.202313772
- Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34(20), e2108206 (2022). https://doi.org/10.1002/adma.202108206
- H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35(36), e2301996 (2023). https://doi.org/10.1002/adma.202301996
- H. Dong, X. Hu, R. Liu, M. Ouyang, H. He et al., Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew. Chem. Int. Ed. 62(41), e202311268 (2023). https://doi.org/10.1002/anie.202311268
- K. Zhu, X. Niu, W. Xie, H. Yang, W. Jiang et al., An integrated Janus hydrogel with different hydrophilicities and gradient pore structures for high-performance zinc-ion batteries. Energy Environ. Sci. 17(12), 4126–4136 (2024). https://doi.org/10.1039/D4EE01018C
- T. Sun, J. Pan, W. Zhang, X. Jiang, M. Cheng et al., Intramolecular hydrogen bond improved durability and kinetics for zinc-organic batteries. Nano-Micro Lett. 16(1), 46 (2023). https://doi.org/10.1007/s40820-023-01263-7
- R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/D4EE00942H
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- Q. Zhao, T. Xu, K. Liu, H. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater. 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
- Y. Zhang, Y. Li, Z. Guo, J. Li, X. Ge et al., Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4(1), 100174 (2024). https://doi.org/10.1016/j.esci.2023.100174
- Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou et al., Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 6(45), 23046–23054 (2018). https://doi.org/10.1039/c8ta08314b
- M. Zhu, Z. Wang, H. Li, Y. Xiong, Z. Liu et al., Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy Environ. Sci. 11(9), 2414–2422 (2018). https://doi.org/10.1039/C8EE00590G
- R. Xu, J. Zhou, H. Gong, L. Qiao, Y. Li et al., Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomater. Sci. 10(6), 1476–1485 (2022). https://doi.org/10.1039/d1bm01747k
- K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10(12), 1903977 (2020). https://doi.org/10.1002/aenm.201903977
- Y. Huang, J. Zhang, J. Liu, Z. Li, S. Jin et al., Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349 (2019). https://doi.org/10.1016/j.mtener.2019.100349
- A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
- S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen et al., An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 6(26), 12237–12243 (2018). https://doi.org/10.1039/C8TA04298E
- M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwödiauer, S. Bauer, Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 22(18), 2065–2067 (2010). https://doi.org/10.1002/adma.200904068
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- Y. Wang, L. Zhang, A. Lu, Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl. Mater. Interfaces 11(44), 41710–41716 (2019). https://doi.org/10.1021/acsami.9b15849
- Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 2406620 (2024). https://doi.org/10.1002/adfm.202406620
- L. Ma, S. Chen, Z. Pei, H. Li, Z. Wang et al., Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 12(8), 8597–8605 (2018). https://doi.org/10.1021/acsnano.8b04317
- Y. Zhao, L. Ma, Y. Zhu, P. Qin, H. Li et al., Inhibiting grain pulverization and sulfur dissolution of bismuth sulfide by ionic liquid enhanced poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) for high-performance zinc-ion batteries. ACS Nano 13(6), 7270–7280 (2019). https://doi.org/10.1021/acsnano.9b02986
- H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu et al., Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7(23), 1700890 (2017). https://doi.org/10.1002/aenm.201700890
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
- Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn–MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
- G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), e2408287 (2024). https://doi.org/10.1002/adma.202408287
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
- M. Chen, J. Chen, W. Zhou, J. Xu, C.-P. Wong, High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J. Mater. Chem. A 7(46), 26524–26532 (2019). https://doi.org/10.1039/C9TA10944G
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
- W. Huang, Z. Zhu, L. Wang, S. Wang, H. Li et al., Quasi-solid-state rechargeable lithium-ion batteries with a Calix [4] quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. 52(35), 9162–9166 (2013). https://doi.org/10.1002/anie.201302586
- J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- L. Zhong, Y. Lu, H. Li, Z. Tao, J. Chen, High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustain. Chem. Eng. 6(6), 7761–7768 (2018). https://doi.org/10.1021/acssuschemeng.8b00663
- Y.X. Zeng, X.Y. Zhang, Y. Meng, M.H. Yu, J.N. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
- S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14(1), 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
- G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
- B. Zhang, X. Cai, J. Li, H. Zhang, D. Li, H. Ge, S. Liang, B. Lu, J. Zhao, J. Zhou, Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy Environ. Sci. 17(11), 3878–3887 (2024). https://doi.org/10.1039/d4ee01212g
- H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14(1), 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
- J.L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn–I2 batteries with fast kinetics. Adv. Mater. 35(44), e2306531 (2023). https://doi.org/10.1002/adma.202306531
- S.-J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye et al., Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries. Adv. Mater. 36(35), e2404011 (2024). https://doi.org/10.1002/adma.202404011
- R. Jia, C. Wei, B. Ma, L. Li, C. Yang et al., Biopolymer-based gel electrolytes for advanced zinc ion batteries: progress and perspectives. Adv. Funct. Mater. 35, 2417498 (2024). https://doi.org/10.1002/adfm.202417498
- M. Liu, W. Yuan, X. Qu, X. Ru, X. Li et al., Superhydrophobic and robust hetero-metal-polymer hybrid interphase enables deep-cycling zinc metal anodes. Energy Environ. Sci. 17(24), 9611–9622 (2024). https://doi.org/10.1039/D4EE04122D
- Z. Shen, Z. Tang, C. Li, L. Luo, J. Pu et al., Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries. Adv. Energy Mater. 11(41), 2102055 (2021). https://doi.org/10.1002/aenm.202102055
- Z. Shen, Y. Liu, L. Luo, J. Pu, Y. Ji et al., Interface engineering of aqueous zinc/manganese dioxide batteries with high areal capacity and energy density. Small 18(50), 2204683 (2022). https://doi.org/10.1002/smll.202204683
- W. Xie, K. Zhu, H. Yang, W. Jiang, W. Li et al., Enhancing energy conversion efficiency and durability of alkaline nickel-zinc batteries with air-breathing cathode. Angew. Chem. Int. Ed. 62(22), e202303517 (2023). https://doi.org/10.1002/anie.202303517
- K. Qiu, G. Ma, Y. Wang, M. Liu, M. Zhang et al., Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries. Adv. Funct. Mater. 34(18), 2313358 (2024). https://doi.org/10.1002/adfm.202313358
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
- Z. Chen, W. Zhou, S. Zhao, X. Lou, S. Chen, In-situ construction of solid electrolyte interphases with gradient zincophilicity for wide temperature zinc ion batteries. Adv. Energy Mater. 2404108 (2024). https://doi.org/10.1002/aenm.202404108
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- S. Huang, S. He, S. Huang, X. Zeng, Y. Li et al., Molecular crowding agent modified polyanionic gel electrolyte for zinc ion batteries operating at 100 °C. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202419153
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), e2007559 (2021). https://doi.org/10.1002/adma.202007559
- Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at − 70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
- L. Yao, J. Liu, F. Zhang, B. Wen, X. Chi et al., Reconstruction of zinc-metal battery solvation structures operating from − 50 ~ +100 °C. Nat. Commun. 15(1), 6249 (2024). https://doi.org/10.1038/s41467-024-50219-x
- Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li et al., Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016). https://doi.org/10.1002/adma.201601928
- W. Cui, Y. Zheng, R. Zhu, Q. Mu, X. Wang et al., Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out. Adv. Funct. Mater. 32(39), 2204823 (2022). https://doi.org/10.1002/adfm.202204823
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on Sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
- H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from − 20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
- W. Zhou, J. Chen, M. Chen, A. Wang, A. Huang et al., An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J. Mater. Chem. A 8(17), 8397–8409 (2020). https://doi.org/10.1039/D0TA01033B
- Y. Chen, J. Zhao, Y. Wang, Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications. ACS Appl. Energy Mater. 3(9), 9058–9065 (2020). https://doi.org/10.1021/acsaem.0c01452
- M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at − 35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8(14), 6828–6841 (2020). https://doi.org/10.1039/d0ta01553a
- Y. Quan, M. Chen, W. Zhou, Q. Tian, J. Chen, High-performance anti-freezing flexible Zn–MnO2 battery based on polyacrylamide/graphene oxide/ethylene glycol gel electrolyte. Front. Chem. 8, 603 (2020). https://doi.org/10.3389/fchem.2020.00603
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), e2110140 (2022). https://doi.org/10.1002/adma.202110140
- Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35(18), e2211673 (2023). https://doi.org/10.1002/adma.202211673
- B. Zheng, H. Zhou, Z. Wang, Y. Gao, G. Zhao et al., Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv. Funct. Mater. 33(28), 2213501 (2023). https://doi.org/10.1002/adfm.202213501
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from − 20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
- Y. Li, X. Yang, Y. He, F. Li, K. Ouyang et al., A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries. Adv. Funct. Mater. 34(4), 2307736 (2024). https://doi.org/10.1002/adfm.202307736
- F. Bu, Y. Gao, Q. Wang, Y. Wang, C. Li et al., Ultraviolet-assisted printing of flexible solid-state Zn-ion battery with a heterostructure electrolyte. Small 19(38), e2303108 (2023). https://doi.org/10.1002/smll.202303108
- Z. Chen, T. Wang, Y. Hou, Y. Wang, Z. Huang et al., Polymeric single-ion conductors with enhanced side-chain motion for high-performance solid zinc-ion batteries. Adv. Mater. 34(50), e2207682 (2022). https://doi.org/10.1002/adma.202207682
- Q. Liu, J. Li, D. Xing, Y. Zhou, F. Yan, Ternary eutectic electrolyte for flexible wide-temperature zinc-ion batteries from − 20 °C to 70 °C. Angew. Chem. Int. Ed. 64(2), e202414728 (2025). https://doi.org/10.1002/anie.202414728
- S. Wu, Z. Hu, P. He, L. Ren, J. Huang, J. Luo, Crystallographic engineering of zn anodes for aqueous batteries. eScience 3(3), 100120 (2023). https://doi.org/10.1016/j.esci.2023.100120
- L. Chen, Z. Jin, W. Feng, L. Sun, H. Xu et al., A hyperelastic hydrogel with an ultralarge reversible biaxial strain. Science 383(6690), 1455–1461 (2024). https://doi.org/10.1126/science.adh3632
- J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
- X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), e1903817 (2019). https://doi.org/10.1002/smll.201903817
- X. Yan, Q. Chen, L. Zhu, H. Chen, D. Wei et al., High strength and self-healable gelatin/polyacrylamide double network hydrogels. J. Mater. Chem. B 5(37), 7683–7691 (2017). https://doi.org/10.1039/c7tb01780d
- D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 28(5), 1707147 (2018). https://doi.org/10.1002/adfm.201707147
- Y. Lu, Y. Wen, F. Huang, T. Zhu, S. Sun et al., Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and Para-polybenzimidazole electrolyte membrane. Energy Storage Mater. 27, 418–425 (2020). https://doi.org/10.1016/j.ensm.2020.02.016
- B.J. Blaiszik, S.L.B. Kramer, M.E. Grady, D.A. McIlroy, J.S. Moore et al., Autonomic restoration of electrical conductivity. Adv. Mater. 24(3), 398–401 (2012). https://doi.org/10.1002/adma.201102888
- K. Liu, Y. Wang, W. Liu, C. Zheng, T. Xu et al., Bacterial cellulose/chitosan composite materials for biomedical applications. Chem. Eng. J. 494, 153014 (2024). https://doi.org/10.1016/j.cej.2024.153014
- J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada et al., Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3(1), 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
- Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang et al., An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. 56(31), 9141–9145 (2017). https://doi.org/10.1002/anie.201705212
- N. Zhang, F. Huang, S. Zhao, X. Lv, Y. Zhou et al., Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2(5), 1260–1269 (2020). https://doi.org/10.1016/j.matt.2020.01.022
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc-bromine rechargeable batteries: from device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15(1), 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
- Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15(1), 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
- Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
- B. Niu, J. Wang, Y. Guo, Z. Li, C. Yuan et al., Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv. Energy Mater. 14(12), 2303967 (2024). https://doi.org/10.1002/aenm.202303967
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- Q. Guo, K.-I. Kim, H. Jiang, L. Zhang, C. Zhang et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 30(38), 2002825 (2020). https://doi.org/10.1002/adfm.202002825
- Q. Ni, R. Dong, Y. Bai, Z. Wang, H. Ren et al., Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 25, 903–911 (2020). https://doi.org/10.1016/j.ensm.2019.09.001
- W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
- W. Xie, K. Zhu, H. Yang, W. Yang, Advancements in achieving high reversibility of zinc anode for alkaline zinc-based batteries. Adv. Mater. 36(5), e2306154 (2024). https://doi.org/10.1002/adma.202306154
- L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
- W. Yuan, X. Nie, Y. Wang, X. Li, G. Ma et al., Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries. ACS Nano 17(23), 23861–23871 (2023). https://doi.org/10.1021/acsnano.3c08095
- L. Zhang, J. Xiao, X. Xiao, W. Xin, Y. Geng et al., Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 4(2), 100205 (2024). https://doi.org/10.1016/j.esci.2023.100205
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32(26), 2113082 (2022). https://doi.org/10.1002/adfm.202113082
References
Y. Dong, H. Hu, P. Liang, L. Xue, X. Chai et al., Dissolution, solvation and diffusion in low-temperature zinc electrolyte design. Nat. Rev. Chem. 9(2), 102–117 (2025). https://doi.org/10.1038/s41570-024-00670-7
S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14, 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
Y. Dai, R. Lu, C. Zhang, J. Li, Y. Yuan et al., Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 7(7), 776–784 (2024). https://doi.org/10.1038/s41929-024-01169-6
K. Ren, M. Li, Q. Wang, B. Liu, C. Sun et al., Thioacetamide additive homogenizing Zn deposition revealed by in situ digital holography for advanced Zn ion batteries. Nano-Micro Lett. 16(1), 117 (2024). https://doi.org/10.1007/s40820-023-01310-3
D.G. Mackanic, T.-H. Chang, Z. Huang, Y. Cui, Z. Bao, Stretchable electrochemical energy storage devices. Chem. Soc. Rev. 49(13), 4466–4495 (2020). https://doi.org/10.1039/d0cs00035c
Y. Li, X. Ma, X. Zhang, F. Zhang, Q. Wang et al., High Zn(002)-preferential orientation enabled by a proton additive for dendrite-free zinc anodes. Energy Environ. Sci. 17(23), 9205–9214 (2024). https://doi.org/10.1039/d4ee03276d
J. Zhu, Z. Tie, S. Bi, Z. Niu, Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(22), e202403712 (2024). https://doi.org/10.1002/anie.202403712
Y. Pan, Z. Zuo, Y. Jiao, P. Wu, Constructing lysozyme protective layer via conformational transition for aqueous Zn batteries. Adv. Mater. 36(29), 2314144 (2024). https://doi.org/10.1002/adma.202314144
Y.-M. Li, W.-H. Li, K. Li, W.-B. Jiang, Y.-Z. Tang et al., Molecular synergistic effects mediate efficient interfacial chemistry: enabling dendrite-free zinc anode for aqueous zinc-ion batteries. J. Am. Chem. Soc. 146(45), 30998–31011 (2024). https://doi.org/10.1021/jacs.4c10337
Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 63(17), e202400045 (2024). https://doi.org/10.1002/anie.202400045
F. Wang, J. Zhang, H. Lu, H. Zhu, Z. Chen et al., Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 14(1), 4211 (2023). https://doi.org/10.1038/s41467-023-39877-5
J.L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu et al., Cation-conduction dominated hydrogels for durable zinc-iodine batteries. Adv. Mater. 36(21), e2313610 (2024). https://doi.org/10.1002/adma.202313610
Z. Yang, Q. Zhang, T. Wu, Q. Li, J. Shi et al., Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem. Int. Ed. 63(9), e202317457 (2024). https://doi.org/10.1002/anie.202317457
K. Zhu, W. Jiang, Z. Wang, W. Li, W. Xie et al., Hewettite ZnV6 O16·8H2 O with remarkably stable layers and ultralarge interlayer spacing for high-performance aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(1), e202213368 (2023). https://doi.org/10.1002/anie.202213368
X. Zhao, Z. Fu, X. Zhang, X. Wang, B. Li et al., More is better: high-entropy electrolyte design in rechargeable batteries. Energy Environ. Sci. 17(7), 2406–2430 (2024). https://doi.org/10.1039/d3ee03821a
Y. Cui, W. Chen, W. Xin, H. Ling, Y. Hu et al., Gradient quasi-solid electrolyte enables selective and fast ion transport for robust aqueous zinc-ion batteries. Adv. Mater. 36(6), e2308639 (2024). https://doi.org/10.1002/adma.202308639
M. Jiao, L. Dai, H.-R. Ren, M. Zhang, X. Xiao et al., A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. Int. Ed. 62(20), e202301114 (2023). https://doi.org/10.1002/anie.202301114
J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15(1), 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), e2101368 (2021). https://doi.org/10.1002/adma.202101368
C. Li, W. Wang, J. Luo, W. Zhuang, J. Zhou et al., High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery. Adv. Mater. 36(21), e2313772 (2024). https://doi.org/10.1002/adma.202313772
Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34(20), e2108206 (2022). https://doi.org/10.1002/adma.202108206
H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35(36), e2301996 (2023). https://doi.org/10.1002/adma.202301996
H. Dong, X. Hu, R. Liu, M. Ouyang, H. He et al., Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew. Chem. Int. Ed. 62(41), e202311268 (2023). https://doi.org/10.1002/anie.202311268
K. Zhu, X. Niu, W. Xie, H. Yang, W. Jiang et al., An integrated Janus hydrogel with different hydrophilicities and gradient pore structures for high-performance zinc-ion batteries. Energy Environ. Sci. 17(12), 4126–4136 (2024). https://doi.org/10.1039/D4EE01018C
T. Sun, J. Pan, W. Zhang, X. Jiang, M. Cheng et al., Intramolecular hydrogen bond improved durability and kinetics for zinc-organic batteries. Nano-Micro Lett. 16(1), 46 (2023). https://doi.org/10.1007/s40820-023-01263-7
R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/D4EE00942H
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
Q. Zhao, T. Xu, K. Liu, H. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater. 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
Y. Zhang, Y. Li, Z. Guo, J. Li, X. Ge et al., Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4(1), 100174 (2024). https://doi.org/10.1016/j.esci.2023.100174
Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou et al., Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 6(45), 23046–23054 (2018). https://doi.org/10.1039/c8ta08314b
M. Zhu, Z. Wang, H. Li, Y. Xiong, Z. Liu et al., Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy Environ. Sci. 11(9), 2414–2422 (2018). https://doi.org/10.1039/C8EE00590G
R. Xu, J. Zhou, H. Gong, L. Qiao, Y. Li et al., Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomater. Sci. 10(6), 1476–1485 (2022). https://doi.org/10.1039/d1bm01747k
K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10(12), 1903977 (2020). https://doi.org/10.1002/aenm.201903977
Y. Huang, J. Zhang, J. Liu, Z. Li, S. Jin et al., Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349 (2019). https://doi.org/10.1016/j.mtener.2019.100349
A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen et al., An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 6(26), 12237–12243 (2018). https://doi.org/10.1039/C8TA04298E
M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwödiauer, S. Bauer, Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 22(18), 2065–2067 (2010). https://doi.org/10.1002/adma.200904068
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
Y. Wang, L. Zhang, A. Lu, Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl. Mater. Interfaces 11(44), 41710–41716 (2019). https://doi.org/10.1021/acsami.9b15849
Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 2406620 (2024). https://doi.org/10.1002/adfm.202406620
L. Ma, S. Chen, Z. Pei, H. Li, Z. Wang et al., Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 12(8), 8597–8605 (2018). https://doi.org/10.1021/acsnano.8b04317
Y. Zhao, L. Ma, Y. Zhu, P. Qin, H. Li et al., Inhibiting grain pulverization and sulfur dissolution of bismuth sulfide by ionic liquid enhanced poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) for high-performance zinc-ion batteries. ACS Nano 13(6), 7270–7280 (2019). https://doi.org/10.1021/acsnano.9b02986
H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu et al., Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7(23), 1700890 (2017). https://doi.org/10.1002/aenm.201700890
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn–MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), e2408287 (2024). https://doi.org/10.1002/adma.202408287
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
M. Chen, J. Chen, W. Zhou, J. Xu, C.-P. Wong, High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J. Mater. Chem. A 7(46), 26524–26532 (2019). https://doi.org/10.1039/C9TA10944G
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
W. Huang, Z. Zhu, L. Wang, S. Wang, H. Li et al., Quasi-solid-state rechargeable lithium-ion batteries with a Calix [4] quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. 52(35), 9162–9166 (2013). https://doi.org/10.1002/anie.201302586
J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
L. Zhong, Y. Lu, H. Li, Z. Tao, J. Chen, High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustain. Chem. Eng. 6(6), 7761–7768 (2018). https://doi.org/10.1021/acssuschemeng.8b00663
Y.X. Zeng, X.Y. Zhang, Y. Meng, M.H. Yu, J.N. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14(1), 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
B. Zhang, X. Cai, J. Li, H. Zhang, D. Li, H. Ge, S. Liang, B. Lu, J. Zhao, J. Zhou, Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy Environ. Sci. 17(11), 3878–3887 (2024). https://doi.org/10.1039/d4ee01212g
H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14(1), 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
J.L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn–I2 batteries with fast kinetics. Adv. Mater. 35(44), e2306531 (2023). https://doi.org/10.1002/adma.202306531
S.-J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye et al., Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries. Adv. Mater. 36(35), e2404011 (2024). https://doi.org/10.1002/adma.202404011
R. Jia, C. Wei, B. Ma, L. Li, C. Yang et al., Biopolymer-based gel electrolytes for advanced zinc ion batteries: progress and perspectives. Adv. Funct. Mater. 35, 2417498 (2024). https://doi.org/10.1002/adfm.202417498
M. Liu, W. Yuan, X. Qu, X. Ru, X. Li et al., Superhydrophobic and robust hetero-metal-polymer hybrid interphase enables deep-cycling zinc metal anodes. Energy Environ. Sci. 17(24), 9611–9622 (2024). https://doi.org/10.1039/D4EE04122D
Z. Shen, Z. Tang, C. Li, L. Luo, J. Pu et al., Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries. Adv. Energy Mater. 11(41), 2102055 (2021). https://doi.org/10.1002/aenm.202102055
Z. Shen, Y. Liu, L. Luo, J. Pu, Y. Ji et al., Interface engineering of aqueous zinc/manganese dioxide batteries with high areal capacity and energy density. Small 18(50), 2204683 (2022). https://doi.org/10.1002/smll.202204683
W. Xie, K. Zhu, H. Yang, W. Jiang, W. Li et al., Enhancing energy conversion efficiency and durability of alkaline nickel-zinc batteries with air-breathing cathode. Angew. Chem. Int. Ed. 62(22), e202303517 (2023). https://doi.org/10.1002/anie.202303517
K. Qiu, G. Ma, Y. Wang, M. Liu, M. Zhang et al., Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries. Adv. Funct. Mater. 34(18), 2313358 (2024). https://doi.org/10.1002/adfm.202313358
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
Z. Chen, W. Zhou, S. Zhao, X. Lou, S. Chen, In-situ construction of solid electrolyte interphases with gradient zincophilicity for wide temperature zinc ion batteries. Adv. Energy Mater. 2404108 (2024). https://doi.org/10.1002/aenm.202404108
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
S. Huang, S. He, S. Huang, X. Zeng, Y. Li et al., Molecular crowding agent modified polyanionic gel electrolyte for zinc ion batteries operating at 100 °C. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202419153
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), e2007559 (2021). https://doi.org/10.1002/adma.202007559
Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at − 70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
L. Yao, J. Liu, F. Zhang, B. Wen, X. Chi et al., Reconstruction of zinc-metal battery solvation structures operating from − 50 ~ +100 °C. Nat. Commun. 15(1), 6249 (2024). https://doi.org/10.1038/s41467-024-50219-x
Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li et al., Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016). https://doi.org/10.1002/adma.201601928
W. Cui, Y. Zheng, R. Zhu, Q. Mu, X. Wang et al., Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out. Adv. Funct. Mater. 32(39), 2204823 (2022). https://doi.org/10.1002/adfm.202204823
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on Sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from − 20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
W. Zhou, J. Chen, M. Chen, A. Wang, A. Huang et al., An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J. Mater. Chem. A 8(17), 8397–8409 (2020). https://doi.org/10.1039/D0TA01033B
Y. Chen, J. Zhao, Y. Wang, Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications. ACS Appl. Energy Mater. 3(9), 9058–9065 (2020). https://doi.org/10.1021/acsaem.0c01452
M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at − 35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8(14), 6828–6841 (2020). https://doi.org/10.1039/d0ta01553a
Y. Quan, M. Chen, W. Zhou, Q. Tian, J. Chen, High-performance anti-freezing flexible Zn–MnO2 battery based on polyacrylamide/graphene oxide/ethylene glycol gel electrolyte. Front. Chem. 8, 603 (2020). https://doi.org/10.3389/fchem.2020.00603
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), e2110140 (2022). https://doi.org/10.1002/adma.202110140
Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35(18), e2211673 (2023). https://doi.org/10.1002/adma.202211673
B. Zheng, H. Zhou, Z. Wang, Y. Gao, G. Zhao et al., Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv. Funct. Mater. 33(28), 2213501 (2023). https://doi.org/10.1002/adfm.202213501
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from − 20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
Y. Li, X. Yang, Y. He, F. Li, K. Ouyang et al., A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries. Adv. Funct. Mater. 34(4), 2307736 (2024). https://doi.org/10.1002/adfm.202307736
F. Bu, Y. Gao, Q. Wang, Y. Wang, C. Li et al., Ultraviolet-assisted printing of flexible solid-state Zn-ion battery with a heterostructure electrolyte. Small 19(38), e2303108 (2023). https://doi.org/10.1002/smll.202303108
Z. Chen, T. Wang, Y. Hou, Y. Wang, Z. Huang et al., Polymeric single-ion conductors with enhanced side-chain motion for high-performance solid zinc-ion batteries. Adv. Mater. 34(50), e2207682 (2022). https://doi.org/10.1002/adma.202207682
Q. Liu, J. Li, D. Xing, Y. Zhou, F. Yan, Ternary eutectic electrolyte for flexible wide-temperature zinc-ion batteries from − 20 °C to 70 °C. Angew. Chem. Int. Ed. 64(2), e202414728 (2025). https://doi.org/10.1002/anie.202414728
S. Wu, Z. Hu, P. He, L. Ren, J. Huang, J. Luo, Crystallographic engineering of zn anodes for aqueous batteries. eScience 3(3), 100120 (2023). https://doi.org/10.1016/j.esci.2023.100120
L. Chen, Z. Jin, W. Feng, L. Sun, H. Xu et al., A hyperelastic hydrogel with an ultralarge reversible biaxial strain. Science 383(6690), 1455–1461 (2024). https://doi.org/10.1126/science.adh3632
J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), e1903817 (2019). https://doi.org/10.1002/smll.201903817
X. Yan, Q. Chen, L. Zhu, H. Chen, D. Wei et al., High strength and self-healable gelatin/polyacrylamide double network hydrogels. J. Mater. Chem. B 5(37), 7683–7691 (2017). https://doi.org/10.1039/c7tb01780d
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 28(5), 1707147 (2018). https://doi.org/10.1002/adfm.201707147
Y. Lu, Y. Wen, F. Huang, T. Zhu, S. Sun et al., Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and Para-polybenzimidazole electrolyte membrane. Energy Storage Mater. 27, 418–425 (2020). https://doi.org/10.1016/j.ensm.2020.02.016
B.J. Blaiszik, S.L.B. Kramer, M.E. Grady, D.A. McIlroy, J.S. Moore et al., Autonomic restoration of electrical conductivity. Adv. Mater. 24(3), 398–401 (2012). https://doi.org/10.1002/adma.201102888
K. Liu, Y. Wang, W. Liu, C. Zheng, T. Xu et al., Bacterial cellulose/chitosan composite materials for biomedical applications. Chem. Eng. J. 494, 153014 (2024). https://doi.org/10.1016/j.cej.2024.153014
J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada et al., Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3(1), 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang et al., An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. 56(31), 9141–9145 (2017). https://doi.org/10.1002/anie.201705212
N. Zhang, F. Huang, S. Zhao, X. Lv, Y. Zhou et al., Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2(5), 1260–1269 (2020). https://doi.org/10.1016/j.matt.2020.01.022
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc-bromine rechargeable batteries: from device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15(1), 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15(1), 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
B. Niu, J. Wang, Y. Guo, Z. Li, C. Yuan et al., Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv. Energy Mater. 14(12), 2303967 (2024). https://doi.org/10.1002/aenm.202303967
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
Q. Guo, K.-I. Kim, H. Jiang, L. Zhang, C. Zhang et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 30(38), 2002825 (2020). https://doi.org/10.1002/adfm.202002825
Q. Ni, R. Dong, Y. Bai, Z. Wang, H. Ren et al., Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 25, 903–911 (2020). https://doi.org/10.1016/j.ensm.2019.09.001
W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
W. Xie, K. Zhu, H. Yang, W. Yang, Advancements in achieving high reversibility of zinc anode for alkaline zinc-based batteries. Adv. Mater. 36(5), e2306154 (2024). https://doi.org/10.1002/adma.202306154
L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
W. Yuan, X. Nie, Y. Wang, X. Li, G. Ma et al., Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries. ACS Nano 17(23), 23861–23871 (2023). https://doi.org/10.1021/acsnano.3c08095
L. Zhang, J. Xiao, X. Xiao, W. Xin, Y. Geng et al., Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 4(2), 100205 (2024). https://doi.org/10.1016/j.esci.2023.100205
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32(26), 2113082 (2022). https://doi.org/10.1002/adfm.202113082