Efficient Thermally Evaporated Near-Infrared Perovskite Light-Emitting Diodes via Phase Regulation
Corresponding Author: Juan Du
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 270
Abstract
α-phase formamidinium lead triiodide (FAPbI3) has demonstrated extraordinary properties for near-infrared perovskite light-emitting diodes (NIR-PeLEDs). The vacuum processing technique has recently received increasing attention from industry and academia due to its solvent-free feature and compatibility with large-scale production. Nevertheless, vacuum-deposited NIR-PeLEDs have been less studied, and their efficiencies lag far behind those of solution-based PeLEDs as it is still challenging to prepare pure α-FAPbI3 by the thermal evaporation. Herein, we report a Cs-containing triple-source co-evaporation approach to develop the perovskite films. The addition of thermally stable Cs cation fills in the perovskite crystal lattice and eliminates the formation of metallic Pb caused by the degradation of FA cation during the evaporation process. The tri-source co-evaporation strategy significantly promotes the phase transition from yellow δ-phase FAPbI3 to black α-phase FACsPbI3, fostering smooth, uniform, and pinhole-free perovskite films with higher crystallinity and fewer defects. On this basis, the resulting NIR-PeLED based on FACsPbI3 yields a maximum EQE of 10.25%, which is around sixfold higher than that of FAPbI3-based PeLEDs. Our work demonstrates a reliable and effective strategy to achieve α-FAPbI3 via thermal evaporation and paves the pathway toward highly efficient perovskite optoelectronic devices for future commercialization.
Highlights:
1 α-phase formamidinium lead triiodide (FAPbI3) was prepared based on triple-source co-evaporation.
2 A partial Cs-doping in the FAPbI3 can help with the suppression of the non-radiative recombination, elimination of the metallic Pb, improvement of spatial confinement.
3 Near-infrared perovskite light-emitting diodes (NIR-PeLEDs) based on triple-source co-evaporated FACsPbI3 thin films achieved a maximum external quantum efficiency of 10.25%, which was around 6 times higher than that of FAPbI3-based NIR-PeLEDs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14(4), 215–218 (2019). https://doi.org/10.1038/s41566-019-0559-3
- Y. Sun, L. Ge, L. Dai, C. Cho, J.F. Orri et al., Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615(7954), 830–835 (2023). https://doi.org/10.1038/s41586-023-05792-4
- J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photonics 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
- Y. Liu, C. Tao, Y. Cao, L. Chen, S. Wang et al., Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes. Nat. Commun. 13(1), 7425 (2022). https://doi.org/10.1038/s41467-022-35218-0
- S. He, H.B. Lee, K.-J. Ko, N. Kumar, J.-H. Jang et al., Optical engineering of FAPbBr3 nanocrystals via conjugated ligands for light-outcoupling enhancement in perovskite light-emitting diodes. Adv. Opt. Mater. 11(17), 2300486 (2023). https://doi.org/10.1002/adom.202300486
- Y. Liu, F. Di Stasio, C. Bi, J. Zhang, Z. Xia et al., Near-infrared light emitting metal halides: materials, mechanisms, and applications. Adv. Mater. 36(21), 2312482 (2024). https://doi.org/10.1002/adma.202312482
- M. Vasilopoulou, A. Fakharuddin, F.P. García de Arquer, D.G. Georgiadou, H. Kim et al., Advances in solution-processed near-infrared light-emitting diodes. Nat. Photonics 15(9), 656–669 (2021). https://doi.org/10.1038/s41566-021-00855-2
- Z.-L. Tseng, L.-C. Chen, L.-W. Chao, M.-J. Tsai, D. Luo et al., Aggregation control, surface passivation, and optimization of device structure toward near-infrared perovskite quantum-dot light-emitting diodes with an EQE up to 154%. Adv. Mater. 34(18), 2270132 (2022). https://doi.org/10.1002/adma.202270132
- J. Wei, J. Li, C. Duan, L. Yuan, S. Zou et al., High efficiency near-infrared perovskite light emitting diodes with reduced rolling-off by surface post-treatment. Small 19(20), 2207769 (2023). https://doi.org/10.1002/smll.202207769
- J. Luo, J. Li, L. Grater, R. Guo, A.R. Mohd Yusoff, E. Sargent, J. Tang, Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9(4), 282–294 (2024). https://doi.org/10.1038/s41578-024-00651-8
- P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
- L. Wang, J. Xu, J. Luo, W.W. Yu, Thermally evaporated perovskite light-emitting diodes for wide-color-gamut displays in AR/VR devices. Device 2(10), 100549 (2024). https://doi.org/10.1016/j.device.2024.100549
- Z. Zhan, Z. Liu, J. Du, S. Huang, Q. Li et al., Thermally evaporated MAPbBr3 perovskite random laser with improved speckle-free laser imaging. ACS Photonics 10(9), 3077–3086 (2023). https://doi.org/10.1021/acsphotonics.3c00435
- Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang et al., Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C 5(32), 8144–8149 (2017). https://doi.org/10.1039/C7TC02477K
- X. Lian, X. Wang, Y. Ling, E. Lochner, L. Tan et al., Light emitting diodes based on inorganic composite halide perovskites. Adv. Funct. Mater. 29(5), 1807345 (2019). https://doi.org/10.1002/adfm.201807345
- C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550
- C.-A. Hsieh, G.-H. Tan, Y.-T. Chuang, H.-C. Lin, P.-T. Lai et al., Vacuum-deposited inorganic perovskite light-emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum. Adv. Sci. 10(10), 2206076 (2023). https://doi.org/10.1002/advs.202206076
- J. Li, P. Du, S. Li, J. Liu, M. Zhu et al., High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 29(51), 1903607 (2019). https://doi.org/10.1002/adfm.201903607
- B. Dänekamp, N. Droseros, F. Palazon, M. Sessolo, N. Banerji et al., Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Appl. Mater. Interfaces 10(42), 36187–36193 (2018). https://doi.org/10.1021/acsami.8b13100
- J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright et al., Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2(12), 2799–2804 (2017). https://doi.org/10.1021/acsenergylett.7b00967
- D. Lin, Y. Gao, T. Zhang, Z. Zhan, N. Pang et al., Vapor deposited pure α-FAPbI3 perovskite solar cell via moisture-induced phase transition strategy. Adv. Funct. Mater. 32(48), 2208392 (2022). https://doi.org/10.1002/adfm.202208392
- M. Kroll, S.D. Öz, Z. Zhang, R. Ji, T. Schramm et al., Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustain. Energy Fuels 6(13), 3230–3239 (2022). https://doi.org/10.1039/D2SE00373B
- A.-F. Castro-Méndez, F. Jahanbakhshi, D.K. LaFollette, B.J. Lawrie, R. Li et al., Tailoring interface energies via phosphonic acids to grow and stabilize cubic FAPbI3 deposited by thermal evaporation. J. Am. Chem. Soc. 146(27), 18459–18469 (2024). https://doi.org/10.1021/jacs.4c03911
- Z. Yuan, Y. Miao, Z. Hu, W. Xu, C. Kuang et al., Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10(1), 2818 (2019). https://doi.org/10.1038/s41467-019-10612-3
- B.-W. Park, H.W. Kwon, Y. Lee, D.Y. Lee, M.G. Kim et al., Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6(4), 419–428 (2021). https://doi.org/10.1038/s41560-021-00802-z
- J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
- K.A. Elmestekawy, A.D. Wright, K.B. Lohmann, J. Borchert, M.B. Johnston et al., Controlling intrinsic quantum confinement in formamidinium lead triiodide perovskite through Cs substitution. ACS Nano 16(6), 9640–9650 (2022). https://doi.org/10.1021/acsnano.2c02970
- L. Gil-Escrig, C. Momblona, M.-G. La-Placa, P.P. Boix, M. Sessolo et al., Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater. 8(14), 1703506 (2018). https://doi.org/10.1002/aenm.201703506
- H.B. Lee, R. Sahani, V. Devaraj, N. Kumar, B. Tyagi et al., Complex additive-assisted crystal growth and phase stabilization of α-FAPbI3 film for highly efficient, air-stable perovskite photovoltaics. Adv. Mater. Interfaces 10(2), 2201658 (2023). https://doi.org/10.1002/admi.202201658
- B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren et al., Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16(9), 637–643 (2022). https://doi.org/10.1038/s41566-022-01046-3
- G. Rainò, N. Yazdani, S.C. Boehme, M. Kober-Czerny, C. Zhu et al., Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13(1), 2587 (2022). https://doi.org/10.1038/s41467-022-30016-0
- D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- S. Ding, M. Hao, C. Fu, T. Lin, A. Baktash et al., In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Adv. Sci. 9(35), 2204476 (2022). https://doi.org/10.1002/advs.202204476
- R. Lindblad, N.K. Jena, B. Philippe, J. Oscarsson, D. Bi et al., Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. J. Phys. Chem. C 119(4), 1818–1825 (2015). https://doi.org/10.1021/jp509460h
- Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014). https://doi.org/10.1021/ja4132246
- H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10(1), 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
- M. Liu, O. Voznyy, R. Sabatini, F.P. García de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
- D. Han, J. Wang, L. Agosta, Z. Zang, B. Zhao et al., Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622(7983), 493–498 (2023). https://doi.org/10.1038/s41586-023-06514-6
- J. Fu, Q. Xu, G. Han, B. Wu, C.H.A. Huan et al., Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8(1), 1300 (2017). https://doi.org/10.1038/s41467-017-01360-3
- S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker et al., Defect activity in lead halide perovskites. Adv. Mater. 31(47), 1901183 (2019). https://doi.org/10.1002/adma.201901183
- A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9(38), 1901489 (2019). https://doi.org/10.1002/aenm.201901489
- L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11(1), 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
- S. He, N. Kumar, H.B. Lee, K.-J. Ko, Y.-J. Jung et al., Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021). https://doi.org/10.1016/j.cej.2021.130678
- Y. Miao, Y. Ke, N. Wang, W. Zou, M. Xu et al., Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 10(1), 3624 (2019). https://doi.org/10.1038/s41467-019-11567-1
- Y. Ji, Q. Zhong, M. Yu, H. Yan, L. Li et al., Amphoteric chelating ultrasmall colloids for FAPbI3 nanodomains enable efficient near-infrared light-emitting diodes. ACS Nano 18(11), 8157–8167 (2024). https://doi.org/10.1021/acsnano.3c11941
References
X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14(4), 215–218 (2019). https://doi.org/10.1038/s41566-019-0559-3
Y. Sun, L. Ge, L. Dai, C. Cho, J.F. Orri et al., Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615(7954), 830–835 (2023). https://doi.org/10.1038/s41586-023-05792-4
J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photonics 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
Y. Liu, C. Tao, Y. Cao, L. Chen, S. Wang et al., Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes. Nat. Commun. 13(1), 7425 (2022). https://doi.org/10.1038/s41467-022-35218-0
S. He, H.B. Lee, K.-J. Ko, N. Kumar, J.-H. Jang et al., Optical engineering of FAPbBr3 nanocrystals via conjugated ligands for light-outcoupling enhancement in perovskite light-emitting diodes. Adv. Opt. Mater. 11(17), 2300486 (2023). https://doi.org/10.1002/adom.202300486
Y. Liu, F. Di Stasio, C. Bi, J. Zhang, Z. Xia et al., Near-infrared light emitting metal halides: materials, mechanisms, and applications. Adv. Mater. 36(21), 2312482 (2024). https://doi.org/10.1002/adma.202312482
M. Vasilopoulou, A. Fakharuddin, F.P. García de Arquer, D.G. Georgiadou, H. Kim et al., Advances in solution-processed near-infrared light-emitting diodes. Nat. Photonics 15(9), 656–669 (2021). https://doi.org/10.1038/s41566-021-00855-2
Z.-L. Tseng, L.-C. Chen, L.-W. Chao, M.-J. Tsai, D. Luo et al., Aggregation control, surface passivation, and optimization of device structure toward near-infrared perovskite quantum-dot light-emitting diodes with an EQE up to 154%. Adv. Mater. 34(18), 2270132 (2022). https://doi.org/10.1002/adma.202270132
J. Wei, J. Li, C. Duan, L. Yuan, S. Zou et al., High efficiency near-infrared perovskite light emitting diodes with reduced rolling-off by surface post-treatment. Small 19(20), 2207769 (2023). https://doi.org/10.1002/smll.202207769
J. Luo, J. Li, L. Grater, R. Guo, A.R. Mohd Yusoff, E. Sargent, J. Tang, Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9(4), 282–294 (2024). https://doi.org/10.1038/s41578-024-00651-8
P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
L. Wang, J. Xu, J. Luo, W.W. Yu, Thermally evaporated perovskite light-emitting diodes for wide-color-gamut displays in AR/VR devices. Device 2(10), 100549 (2024). https://doi.org/10.1016/j.device.2024.100549
Z. Zhan, Z. Liu, J. Du, S. Huang, Q. Li et al., Thermally evaporated MAPbBr3 perovskite random laser with improved speckle-free laser imaging. ACS Photonics 10(9), 3077–3086 (2023). https://doi.org/10.1021/acsphotonics.3c00435
Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang et al., Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C 5(32), 8144–8149 (2017). https://doi.org/10.1039/C7TC02477K
X. Lian, X. Wang, Y. Ling, E. Lochner, L. Tan et al., Light emitting diodes based on inorganic composite halide perovskites. Adv. Funct. Mater. 29(5), 1807345 (2019). https://doi.org/10.1002/adfm.201807345
C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550
C.-A. Hsieh, G.-H. Tan, Y.-T. Chuang, H.-C. Lin, P.-T. Lai et al., Vacuum-deposited inorganic perovskite light-emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum. Adv. Sci. 10(10), 2206076 (2023). https://doi.org/10.1002/advs.202206076
J. Li, P. Du, S. Li, J. Liu, M. Zhu et al., High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 29(51), 1903607 (2019). https://doi.org/10.1002/adfm.201903607
B. Dänekamp, N. Droseros, F. Palazon, M. Sessolo, N. Banerji et al., Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Appl. Mater. Interfaces 10(42), 36187–36193 (2018). https://doi.org/10.1021/acsami.8b13100
J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright et al., Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2(12), 2799–2804 (2017). https://doi.org/10.1021/acsenergylett.7b00967
D. Lin, Y. Gao, T. Zhang, Z. Zhan, N. Pang et al., Vapor deposited pure α-FAPbI3 perovskite solar cell via moisture-induced phase transition strategy. Adv. Funct. Mater. 32(48), 2208392 (2022). https://doi.org/10.1002/adfm.202208392
M. Kroll, S.D. Öz, Z. Zhang, R. Ji, T. Schramm et al., Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustain. Energy Fuels 6(13), 3230–3239 (2022). https://doi.org/10.1039/D2SE00373B
A.-F. Castro-Méndez, F. Jahanbakhshi, D.K. LaFollette, B.J. Lawrie, R. Li et al., Tailoring interface energies via phosphonic acids to grow and stabilize cubic FAPbI3 deposited by thermal evaporation. J. Am. Chem. Soc. 146(27), 18459–18469 (2024). https://doi.org/10.1021/jacs.4c03911
Z. Yuan, Y. Miao, Z. Hu, W. Xu, C. Kuang et al., Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10(1), 2818 (2019). https://doi.org/10.1038/s41467-019-10612-3
B.-W. Park, H.W. Kwon, Y. Lee, D.Y. Lee, M.G. Kim et al., Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6(4), 419–428 (2021). https://doi.org/10.1038/s41560-021-00802-z
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
K.A. Elmestekawy, A.D. Wright, K.B. Lohmann, J. Borchert, M.B. Johnston et al., Controlling intrinsic quantum confinement in formamidinium lead triiodide perovskite through Cs substitution. ACS Nano 16(6), 9640–9650 (2022). https://doi.org/10.1021/acsnano.2c02970
L. Gil-Escrig, C. Momblona, M.-G. La-Placa, P.P. Boix, M. Sessolo et al., Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater. 8(14), 1703506 (2018). https://doi.org/10.1002/aenm.201703506
H.B. Lee, R. Sahani, V. Devaraj, N. Kumar, B. Tyagi et al., Complex additive-assisted crystal growth and phase stabilization of α-FAPbI3 film for highly efficient, air-stable perovskite photovoltaics. Adv. Mater. Interfaces 10(2), 2201658 (2023). https://doi.org/10.1002/admi.202201658
B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren et al., Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16(9), 637–643 (2022). https://doi.org/10.1038/s41566-022-01046-3
G. Rainò, N. Yazdani, S.C. Boehme, M. Kober-Czerny, C. Zhu et al., Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13(1), 2587 (2022). https://doi.org/10.1038/s41467-022-30016-0
D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
S. Ding, M. Hao, C. Fu, T. Lin, A. Baktash et al., In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Adv. Sci. 9(35), 2204476 (2022). https://doi.org/10.1002/advs.202204476
R. Lindblad, N.K. Jena, B. Philippe, J. Oscarsson, D. Bi et al., Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. J. Phys. Chem. C 119(4), 1818–1825 (2015). https://doi.org/10.1021/jp509460h
Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014). https://doi.org/10.1021/ja4132246
H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10(1), 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
M. Liu, O. Voznyy, R. Sabatini, F.P. García de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
D. Han, J. Wang, L. Agosta, Z. Zang, B. Zhao et al., Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622(7983), 493–498 (2023). https://doi.org/10.1038/s41586-023-06514-6
J. Fu, Q. Xu, G. Han, B. Wu, C.H.A. Huan et al., Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8(1), 1300 (2017). https://doi.org/10.1038/s41467-017-01360-3
S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker et al., Defect activity in lead halide perovskites. Adv. Mater. 31(47), 1901183 (2019). https://doi.org/10.1002/adma.201901183
A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9(38), 1901489 (2019). https://doi.org/10.1002/aenm.201901489
L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11(1), 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
S. He, N. Kumar, H.B. Lee, K.-J. Ko, Y.-J. Jung et al., Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021). https://doi.org/10.1016/j.cej.2021.130678
Y. Miao, Y. Ke, N. Wang, W. Zou, M. Xu et al., Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 10(1), 3624 (2019). https://doi.org/10.1038/s41467-019-11567-1
Y. Ji, Q. Zhong, M. Yu, H. Yan, L. Li et al., Amphoteric chelating ultrasmall colloids for FAPbI3 nanodomains enable efficient near-infrared light-emitting diodes. ACS Nano 18(11), 8157–8167 (2024). https://doi.org/10.1021/acsnano.3c11941