MXene-Based Wearable Contact Lenses: Integrating Smart Technology into Vision Care
Corresponding Author: Siavash Iravani
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 20
Abstract
MXene-based smart contact lenses demonstrate a cutting-edge advancement in wearable ophthalmic technology, combining real-time biosensing, therapeutic capabilities, and user comfort in a single platform. These devices take the advantage of the exceptional electrical conductivity, mechanical flexibility, and biocompatibility of two-dimensional MXenes to enable noninvasive, tear-based monitoring of key physiological markers such as intraocular pressure and glucose levels. Recent developments focus on the integration of transparent MXene films into the conventional lens materials, allowing multifunctional performance including photothermal therapy, antimicrobial and anti-inflammation protection, and dehydration resistance. These innovations offer promising strategies for ocular disease management and eye protection. In addition to their multifunctionality, improvements in MXene synthesis and device engineering have enhanced the stability, transparency, and wearability of these lenses. Despite these advances, challenges remain in long-term biostability, scalable production, and integration with wireless communication systems. This review summarizes the current progress, key challenges, and future directions of MXene-based smart contact lenses, highlighting their transformative potential in next-generation digital healthcare and ophthalmic care.
Highlights:
1 MXene-based smart contact lenses seamlessly combine real-time biosensing, therapeutic functions, and enhanced user comfort, revolutionizing ocular health monitoring and treatment.
2 The use of transparent MXene films enables features like photothermal therapy, antimicrobial protection, and dehydration resistance, significantly improving eye protection and disease management.
3 While stability, scalability, and wireless integration pose hurdles, ongoing advancements suggest these lenses hold tremendous potential for transforming digital healthcare and ophthalmic care.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Seo, W.G. Chung, Y.W. Kwon, S. Kim, Y.M. Hong et al., Smart contact lenses as wearable ophthalmic devices for disease monitoring and health management. Chem. Rev. 123(19), 11488–11558 (2023). https://doi.org/10.1021/acs.chemrev.3c00290
- A.A. Abdulamier, L.M. Shaker, A.A. Al-Amiery, Advancements in the chemistry of contact lenses: innovations and applications. Results Chem. 12, 101872 (2024). https://doi.org/10.1016/j.rechem.2024.101872
- Y. Zhu, S. Li, J. Li, N. Falcone, Q. Cui et al., Lab-on-a-contact lens: recent advances and future opportunities in diagnostics and therapeutics. Adv. Mater. 34(24), e2108389 (2022). https://doi.org/10.1002/adma.202108389
- J. Manikkath, J.A. Subramony, Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 179, 113997 (2021). https://doi.org/10.1016/j.addr.2021.113997
- X. Ma, S. Ahadian, S. Liu, J. Zhang, S. Liu et al., Smart contact lenses for biosensing applications. Adv. Intell. Syst. 3(5), 2170047 (2021). https://doi.org/10.1002/aisy.202170047
- J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
- T.Y. Kim, S. Shin, H. Choi, S.H. Jeong, D. Myung et al., Smart contact lenses with a transparent silver nanowire strain sensor for continuous intraocular pressure monitoring. ACS Appl. Bio Mater. 4(5), 4532–4541 (2021). https://doi.org/10.1021/acsabm.1c00267
- J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- R.C. Tseng, C.C. Chen, S.M. Hsu, H.S. Chuang, Contact-lens biosensors. Sensors 18(8), 2651 (2018). https://doi.org/10.3390/s18082651
- K.H. Shetty, D.T. Desai, H.P. Patel, D.O. Shah, M.D.P. Willcox et al., Contact lens as an emerging platform for non-invasive bio-sensing: a review. Sens. Actuat. A Phys. 376, 115617 (2024). https://doi.org/10.1016/j.sna.2024.115617
- M. Elsherif, R. Moreddu, F. Alam, A.E. Salih, I. Ahmed et al., Wearable smart contact lenses for continual glucose monitoring: a review. Front. Med. 9, 858784 (2022). https://doi.org/10.3389/fmed.2022.858784
- S. Zhang, W. Zhao, J. Zeng, Z. He, X. Wang et al., Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio 20, 100638 (2023). https://doi.org/10.1016/j.mtbio.2023.100638
- M. Elsherif, M.U. Hassan, A.K. Yetisen, H. Butt, Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12(6), 5452–5462 (2018). https://doi.org/10.1021/acsnano.8b00829
- M. Tan, Y. Xu, Z. Gao, T. Yuan, Q. Liu et al., Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery. Adv. Mater. 34(27), 2108491 (2022). https://doi.org/10.1002/adma.202108491
- S. Borandeh, V. Alimardani, S.S. Abolmaali, J. Seppälä, Graphene family nanomaterials in ocular applications: physicochemical properties and toxicity. Chem. Res. Toxicol. 34(6), 1386–1402 (2021). https://doi.org/10.1021/acs.chemrestox.0c00340
- A.E. Salih, M. Elsherif, F. Alam, B. Alqattan, A.K. Yetisen et al., Syntheses of gold and silver nanocomposite contact lenses via chemical volumetric modulation of hydrogels. ACS Biomater. Sci. Eng. 8(5), 2111–2120 (2022). https://doi.org/10.1021/acsbiomaterials.2c00174
- X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
- C. Hu, Z. Wei, L. Li, G. Shen, Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Adv. Funct. Mater. 33(37), 2302188 (2023). https://doi.org/10.1002/adfm.202302188
- M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
- M. Aslam, T. Ahmad, M.H. Manzoor, F. Verpoort, MXenes as theranostics: Diagnosis and therapy including in vitro and in vivo applications. Appl. Mater. Today 35, 102002 (2023). https://doi.org/10.1016/j.apmt.2023.102002
- Y.Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciadv.aat0098
- Y. Yue, N. Liu, T. Su, Y. Cheng, W. Liu et al., Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater. 33(13), 2211613 (2023). https://doi.org/10.1002/adfm.202211613
- Y. Zhang, Y. Cheng, Q. Zhang, W. He, Y. Wang et al., Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes. Energy Storage Mater. 73, 103829 (2024). https://doi.org/10.1016/j.ensm.2024.103829
- F. Mohajer, G.M. Ziarani, A. Badiei, S. Iravani, R.S. Varma, Advanced MXene-based micro- and nanosystems for targeted drug delivery in cancer therapy. Micromachines 13(10), 1773 (2022). https://doi.org/10.3390/mi13101773
- S.S. Sana, M. Santhamoorthy, R. Haldar, C.J. Raorane, S. Iravani et al., Recent advances on MXene-based hydrogels for antibacterial and drug delivery applications. Process Biochem. 132, 200–220 (2023). https://doi.org/10.1016/j.procbio.2023.06.022
- Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
- R. Baghban, M.R. Talebnejad, A. Meshksar, M. Heydari, M.R. Khalili, Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J. Nanobiotechnology 21(1), 402 (2023). https://doi.org/10.1186/s12951-023-02166-w
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14(1), 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- L. Chen, X. Dai, W. Feng, Y. Chen, Biomedical applications of MXenes: from nanomedicine to biomaterials. Acc. Mater. Res. 3(8), 785–798 (2022). https://doi.org/10.1021/accountsmr.2c00025
- J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2(8), 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
- H. Li, R. Fan, B. Zou, J. Yan, Q. Shi et al., Roles of MXenes in biomedical applications: recent developments and prospects. J. Nanobiotechnology 21(1), 73 (2023). https://doi.org/10.1186/s12951-023-01809-2
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
- S. Iravani, R.S. Varma, Multifunctional MXene-decorated contact lenses: advancements in ocular photothermal therapy and eye protection. Matter 6(9), 2628–2629 (2023). https://doi.org/10.1016/j.matt.2023.08.005
- R.K. Mishra, J. Sarkar, K. Verma, I. Chianella, S. Goel et al., Exploring transformative and multifunctional potential of MXenes in 2D materials for next-generation technology. Open Ceram. 18, 100596 (2024). https://doi.org/10.1016/j.oceram.2024.100596
- F. Han, J. Li, P. Xiao, Y. Yang, H. Liu et al., Wearable smart contact lenses: a critical comparison of three physiological signals outputs for health monitoring. Biosens. Bioelectron. 257, 116284 (2024). https://doi.org/10.1016/j.bios.2024.116284
- F. Han, P. Ge, F. Wang, Y. Yang, S. Chen et al., Smart contact Lenses: From rational design strategies to wearable health monitoring. Chem. Eng. J. 497, 154823 (2024). https://doi.org/10.1016/j.cej.2024.154823
- N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Smart contact lenses-a step towards non-invasive continuous eye health monitoring. Biosensors 13(10), 933 (2023). https://doi.org/10.3390/bios13100933
- J. Kim, E. Cha, J.U. Park, Recent advances in smart contact lenses. Adv. Mater. Technol 5, 1900728 (2020). https://doi.org/10.1002/admt.201900728
- B. Sarac, S. Yücer, H. Sahin, M. Unal, F. Ciftci, Wearable and implantable bioelectronic: biosensing contact lens and applications. Chem. Eng. J. 491, 152016 (2024). https://doi.org/10.1016/j.cej.2024.152016
- X. Liu, Y. Ye, Y. Ge, J. Qu, B. Liedberg et al., Smart contact lenses for healthcare monitoring and therapy. ACS Nano 18(9), 6817–6844 (2024). https://doi.org/10.1021/acsnano.3c12072
- H. Zhang, R. He, Y. Niu, F. Han, J. Li et al., Graphene-enabled wearable sensors for healthcare monitoring. Biosens. Bioelectron. 197, 113777 (2022). https://doi.org/10.1016/j.bios.2021.113777
- Y. Niu, H. Liu, R. He, M. Luo, M. Shu et al., Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility, anti-dehydration, and underwater adhesion. Small 17(24), 2101151 (2021). https://doi.org/10.1002/smll.202101151
- S. Lee, D.H. Ho, J. Jekal, S.Y. Cho, Y.J. Choi et al., Fabric-based Lamina emergent MXene-based electrode for electrophysiological monitoring. Nat. Commun. 15(1), 5974 (2024). https://doi.org/10.1038/s41467-024-49939-x
- A. Seitak, S. Luo, N. Cai, K. Liao, A.-M. Pappa et al., Emergence of MXene-based electrochemical biosensors for biomolecule and pathogen detection. Sens. Actuat. Rep. 6, 100175 (2023). https://doi.org/10.1016/j.snr.2023.100175
- M. Liu, Y. Wang, J. Chen, J. Zhang, C. Xu et al., Non-invasive flexible electro-mechanical sensors for human respiratory monitoring and chronic disease management. Adv. Mater. Technol. 9(10), 2302010 (2024). https://doi.org/10.1002/admt.202302010
- Y. Niu, H. Liu, R. He, Z. Li, H. Ren et al., The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Mater. Today 41, 219–242 (2020). https://doi.org/10.1016/j.mattod.2020.10.004
- Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
- S. Faham, S. Faham, B. Sepehri, Wearable optical sensors: toward machine learning-enabled biomarker monitoring. Chem. Afr. 7(8), 4175–4192 (2024). https://doi.org/10.1007/s42250-024-01047-5
- G. Cooksley, M.K. Dymond, N.A. Stewart, G. Bucca, A. Hesketh et al., Positive resolution of the wound-healing response in lens epithelial cells by Ti3C2Tx MXene coatings for use in accommodative intraocular lens devices. 2D Mater 10(1), 014003 (2023). https://doi.org/10.1088/2053-1583/ac95a7
- X. Jin, X. Guo, J. Liu, Q. Guo, B. Lei et al., Smart contact lens with transparent MXene decoration for ocular photothermal therapy and eye protection. Cell Rep. Phys. Sci. 4(2), 101286 (2023). https://doi.org/10.1016/j.xcrp.2023.101286
- E.J. Ward, J. Lacey, C. Crua, M.K. Dymond, K. Maleski et al., 2D titanium carbide (Ti3C2Tx) in accommodating intraocular lens design. Adv. Funct. Mater. 30(47), 2000841 (2020). https://doi.org/10.1002/adfm.202000841
- Z. Duan, M. Yuan, Z. Liu, W. Pei, K. Jiang et al., An ultrasensitive Ti3C2Tx MXene-based soft contact lens for continuous and nondestructive intraocular pressure monitoring. Small 20(24), 2309785 (2024). https://doi.org/10.1002/smll.202309785
- W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
- A. Taieb, B.A. Asma, S. Ghada, H. Yosra, K. Maha et al., Increased intracranial pressure due to chronic weight lifting exercises as a hypothesis of partial empty sella syndrome in an elite athlete. Med. Hypotheses 167, 110951 (2022). https://doi.org/10.1016/j.mehy.2022.110951
- H. Tang, Y. Yang, Z. Liu, W. Li, Y. Zhang et al., Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630(8015), 84–90 (2024). https://doi.org/10.1038/s41586-024-07334-y
- W.R. Kwapong, L. Cao, R. Pan, H. Wang, C. Ye et al., Retinal microvascular and structural changes in intracranial hypertension patients correlate with intracranial pressure. CNS Neurosci. Ther. 29(12), 4093–4101 (2023). https://doi.org/10.1111/cns.14298
- L. Wu, Z. Du, W. Liu, Z. Duan, H. Liu et al., Crack-enhanced MXene-carbon nanotube soft contact lens for body-induced intracranial pressure application. ACS Nano 19(13), 13128–13138 (2025). https://doi.org/10.1021/acsnano.4c18484
- W. Liu, Z. Du, Z. Duan, H. Liu, L. Li et al., Eye-wearable Ti3C2Tx MXene-based micro-supercapacitor as a power unit for intraocular pressure applications. J. Mater. Chem. A 12(27), 16457–16465 (2024). https://doi.org/10.1039/D4TA02127D
- H. Guo, X. Chu, Y. Guo, J. Yang, Y. Jin et al., A water transfer printing method for contact lenses surface 2D MXene modification to resist bacterial infection and inflammation. Sci. Adv. 10(15), eadl3262 (2024). https://doi.org/10.1126/sciadv.adl3262
- L. Hu, S. Azhari, H. Zhang, Y. Matsunaga, J. Hirotani et al., MXene-integrated contact lens: a breakthrough in wearable eye protection and healthcare. Small Sci. 5(7), 2400628 (2025). https://doi.org/10.1002/smsc.202400628
- A. Erdem, E. Eksin, H. Senturk, E. Yildiz, M. Maral, Recent developments in wearable biosensors for healthcare and biomedical applications. Trac Trends Anal. Chem. 171, 117510 (2024). https://doi.org/10.1016/j.trac.2023.117510
- R. Ramachandran, T.-W. Chen, S.-M. Chen, T. Baskar, R. Kannan et al., A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg. Chem. Front. 6(12), 3418–3439 (2019). https://doi.org/10.1039/C9QI00602H
- Y. Zhang, Y. Hu, N. Jiang, A.K. Yetisen, Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 219, 114825 (2023). https://doi.org/10.1016/j.bios.2022.114825
- K.Y. Wu, A. Dave, M. Carbonneau, S.D. Tran, Smart contact lenses in ophthalmology: innovations, applications, and future prospects. Micromachines 15(7), 856 (2024). https://doi.org/10.3390/mi15070856
- G.P. Lim, C.F. Soon, N.L. Ma, M. Morsin, N. Nayan et al., Cytotoxicity of MXene-based nanomaterials for biomedical applications: a mini review. Environ. Res. 201, 111592 (2021). https://doi.org/10.1016/j.envres.2021.111592
- J. Wu, Y. Yu, G. Su, Safety assessment of 2D MXenes: in vitro and in vivo. Nanomaterials 12(5), 828 (2022). https://doi.org/10.3390/nano12050828
- J. Huang, J. Su, Z. Hou, J. Li, Z. Li et al., Cytocompatibility of Ti3C2T x MXene with red blood cells and human umbilical vein endothelial cells and the underlying mechanisms. Chem. Res. Toxicol. 36(3), 347–359 (2023). https://doi.org/10.1021/acs.chemrestox.2c00154
- A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 20(1), 33 (2021). https://doi.org/10.1186/s12938-021-00873-9
- S. Iravani, MXenes and MXene-based (nano) structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48(17), 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
- I.A. Vasyukova, O.V. Zakharova, D.V. Kuznetsov, A.A. Gusev, Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: a review. Nanomaterials 12(11), 1797 (2022). https://doi.org/10.3390/nano12111797
- S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 7(1), 201700889 (2018). https://doi.org/10.1002/adhm.201700889
- H. Mirzajani, F. Mirlou, E. Istif, R. Singh, L. Beker, Powering smart contact lenses for continuous health monitoring: recent advancements and future challenges. Biosens. Bioelectron. 197, 113761 (2022). https://doi.org/10.1016/j.bios.2021.113761
References
H. Seo, W.G. Chung, Y.W. Kwon, S. Kim, Y.M. Hong et al., Smart contact lenses as wearable ophthalmic devices for disease monitoring and health management. Chem. Rev. 123(19), 11488–11558 (2023). https://doi.org/10.1021/acs.chemrev.3c00290
A.A. Abdulamier, L.M. Shaker, A.A. Al-Amiery, Advancements in the chemistry of contact lenses: innovations and applications. Results Chem. 12, 101872 (2024). https://doi.org/10.1016/j.rechem.2024.101872
Y. Zhu, S. Li, J. Li, N. Falcone, Q. Cui et al., Lab-on-a-contact lens: recent advances and future opportunities in diagnostics and therapeutics. Adv. Mater. 34(24), e2108389 (2022). https://doi.org/10.1002/adma.202108389
J. Manikkath, J.A. Subramony, Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 179, 113997 (2021). https://doi.org/10.1016/j.addr.2021.113997
X. Ma, S. Ahadian, S. Liu, J. Zhang, S. Liu et al., Smart contact lenses for biosensing applications. Adv. Intell. Syst. 3(5), 2170047 (2021). https://doi.org/10.1002/aisy.202170047
J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
T.Y. Kim, S. Shin, H. Choi, S.H. Jeong, D. Myung et al., Smart contact lenses with a transparent silver nanowire strain sensor for continuous intraocular pressure monitoring. ACS Appl. Bio Mater. 4(5), 4532–4541 (2021). https://doi.org/10.1021/acsabm.1c00267
J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
R.C. Tseng, C.C. Chen, S.M. Hsu, H.S. Chuang, Contact-lens biosensors. Sensors 18(8), 2651 (2018). https://doi.org/10.3390/s18082651
K.H. Shetty, D.T. Desai, H.P. Patel, D.O. Shah, M.D.P. Willcox et al., Contact lens as an emerging platform for non-invasive bio-sensing: a review. Sens. Actuat. A Phys. 376, 115617 (2024). https://doi.org/10.1016/j.sna.2024.115617
M. Elsherif, R. Moreddu, F. Alam, A.E. Salih, I. Ahmed et al., Wearable smart contact lenses for continual glucose monitoring: a review. Front. Med. 9, 858784 (2022). https://doi.org/10.3389/fmed.2022.858784
S. Zhang, W. Zhao, J. Zeng, Z. He, X. Wang et al., Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio 20, 100638 (2023). https://doi.org/10.1016/j.mtbio.2023.100638
M. Elsherif, M.U. Hassan, A.K. Yetisen, H. Butt, Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12(6), 5452–5462 (2018). https://doi.org/10.1021/acsnano.8b00829
M. Tan, Y. Xu, Z. Gao, T. Yuan, Q. Liu et al., Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery. Adv. Mater. 34(27), 2108491 (2022). https://doi.org/10.1002/adma.202108491
S. Borandeh, V. Alimardani, S.S. Abolmaali, J. Seppälä, Graphene family nanomaterials in ocular applications: physicochemical properties and toxicity. Chem. Res. Toxicol. 34(6), 1386–1402 (2021). https://doi.org/10.1021/acs.chemrestox.0c00340
A.E. Salih, M. Elsherif, F. Alam, B. Alqattan, A.K. Yetisen et al., Syntheses of gold and silver nanocomposite contact lenses via chemical volumetric modulation of hydrogels. ACS Biomater. Sci. Eng. 8(5), 2111–2120 (2022). https://doi.org/10.1021/acsbiomaterials.2c00174
X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
C. Hu, Z. Wei, L. Li, G. Shen, Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Adv. Funct. Mater. 33(37), 2302188 (2023). https://doi.org/10.1002/adfm.202302188
M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
M. Aslam, T. Ahmad, M.H. Manzoor, F. Verpoort, MXenes as theranostics: Diagnosis and therapy including in vitro and in vivo applications. Appl. Mater. Today 35, 102002 (2023). https://doi.org/10.1016/j.apmt.2023.102002
Y.Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciadv.aat0098
Y. Yue, N. Liu, T. Su, Y. Cheng, W. Liu et al., Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater. 33(13), 2211613 (2023). https://doi.org/10.1002/adfm.202211613
Y. Zhang, Y. Cheng, Q. Zhang, W. He, Y. Wang et al., Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes. Energy Storage Mater. 73, 103829 (2024). https://doi.org/10.1016/j.ensm.2024.103829
F. Mohajer, G.M. Ziarani, A. Badiei, S. Iravani, R.S. Varma, Advanced MXene-based micro- and nanosystems for targeted drug delivery in cancer therapy. Micromachines 13(10), 1773 (2022). https://doi.org/10.3390/mi13101773
S.S. Sana, M. Santhamoorthy, R. Haldar, C.J. Raorane, S. Iravani et al., Recent advances on MXene-based hydrogels for antibacterial and drug delivery applications. Process Biochem. 132, 200–220 (2023). https://doi.org/10.1016/j.procbio.2023.06.022
Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
R. Baghban, M.R. Talebnejad, A. Meshksar, M. Heydari, M.R. Khalili, Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J. Nanobiotechnology 21(1), 402 (2023). https://doi.org/10.1186/s12951-023-02166-w
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14(1), 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
L. Chen, X. Dai, W. Feng, Y. Chen, Biomedical applications of MXenes: from nanomedicine to biomaterials. Acc. Mater. Res. 3(8), 785–798 (2022). https://doi.org/10.1021/accountsmr.2c00025
J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2(8), 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
H. Li, R. Fan, B. Zou, J. Yan, Q. Shi et al., Roles of MXenes in biomedical applications: recent developments and prospects. J. Nanobiotechnology 21(1), 73 (2023). https://doi.org/10.1186/s12951-023-01809-2
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
S. Iravani, R.S. Varma, Multifunctional MXene-decorated contact lenses: advancements in ocular photothermal therapy and eye protection. Matter 6(9), 2628–2629 (2023). https://doi.org/10.1016/j.matt.2023.08.005
R.K. Mishra, J. Sarkar, K. Verma, I. Chianella, S. Goel et al., Exploring transformative and multifunctional potential of MXenes in 2D materials for next-generation technology. Open Ceram. 18, 100596 (2024). https://doi.org/10.1016/j.oceram.2024.100596
F. Han, J. Li, P. Xiao, Y. Yang, H. Liu et al., Wearable smart contact lenses: a critical comparison of three physiological signals outputs for health monitoring. Biosens. Bioelectron. 257, 116284 (2024). https://doi.org/10.1016/j.bios.2024.116284
F. Han, P. Ge, F. Wang, Y. Yang, S. Chen et al., Smart contact Lenses: From rational design strategies to wearable health monitoring. Chem. Eng. J. 497, 154823 (2024). https://doi.org/10.1016/j.cej.2024.154823
N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Smart contact lenses-a step towards non-invasive continuous eye health monitoring. Biosensors 13(10), 933 (2023). https://doi.org/10.3390/bios13100933
J. Kim, E. Cha, J.U. Park, Recent advances in smart contact lenses. Adv. Mater. Technol 5, 1900728 (2020). https://doi.org/10.1002/admt.201900728
B. Sarac, S. Yücer, H. Sahin, M. Unal, F. Ciftci, Wearable and implantable bioelectronic: biosensing contact lens and applications. Chem. Eng. J. 491, 152016 (2024). https://doi.org/10.1016/j.cej.2024.152016
X. Liu, Y. Ye, Y. Ge, J. Qu, B. Liedberg et al., Smart contact lenses for healthcare monitoring and therapy. ACS Nano 18(9), 6817–6844 (2024). https://doi.org/10.1021/acsnano.3c12072
H. Zhang, R. He, Y. Niu, F. Han, J. Li et al., Graphene-enabled wearable sensors for healthcare monitoring. Biosens. Bioelectron. 197, 113777 (2022). https://doi.org/10.1016/j.bios.2021.113777
Y. Niu, H. Liu, R. He, M. Luo, M. Shu et al., Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility, anti-dehydration, and underwater adhesion. Small 17(24), 2101151 (2021). https://doi.org/10.1002/smll.202101151
S. Lee, D.H. Ho, J. Jekal, S.Y. Cho, Y.J. Choi et al., Fabric-based Lamina emergent MXene-based electrode for electrophysiological monitoring. Nat. Commun. 15(1), 5974 (2024). https://doi.org/10.1038/s41467-024-49939-x
A. Seitak, S. Luo, N. Cai, K. Liao, A.-M. Pappa et al., Emergence of MXene-based electrochemical biosensors for biomolecule and pathogen detection. Sens. Actuat. Rep. 6, 100175 (2023). https://doi.org/10.1016/j.snr.2023.100175
M. Liu, Y. Wang, J. Chen, J. Zhang, C. Xu et al., Non-invasive flexible electro-mechanical sensors for human respiratory monitoring and chronic disease management. Adv. Mater. Technol. 9(10), 2302010 (2024). https://doi.org/10.1002/admt.202302010
Y. Niu, H. Liu, R. He, Z. Li, H. Ren et al., The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Mater. Today 41, 219–242 (2020). https://doi.org/10.1016/j.mattod.2020.10.004
Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
S. Faham, S. Faham, B. Sepehri, Wearable optical sensors: toward machine learning-enabled biomarker monitoring. Chem. Afr. 7(8), 4175–4192 (2024). https://doi.org/10.1007/s42250-024-01047-5
G. Cooksley, M.K. Dymond, N.A. Stewart, G. Bucca, A. Hesketh et al., Positive resolution of the wound-healing response in lens epithelial cells by Ti3C2Tx MXene coatings for use in accommodative intraocular lens devices. 2D Mater 10(1), 014003 (2023). https://doi.org/10.1088/2053-1583/ac95a7
X. Jin, X. Guo, J. Liu, Q. Guo, B. Lei et al., Smart contact lens with transparent MXene decoration for ocular photothermal therapy and eye protection. Cell Rep. Phys. Sci. 4(2), 101286 (2023). https://doi.org/10.1016/j.xcrp.2023.101286
E.J. Ward, J. Lacey, C. Crua, M.K. Dymond, K. Maleski et al., 2D titanium carbide (Ti3C2Tx) in accommodating intraocular lens design. Adv. Funct. Mater. 30(47), 2000841 (2020). https://doi.org/10.1002/adfm.202000841
Z. Duan, M. Yuan, Z. Liu, W. Pei, K. Jiang et al., An ultrasensitive Ti3C2Tx MXene-based soft contact lens for continuous and nondestructive intraocular pressure monitoring. Small 20(24), 2309785 (2024). https://doi.org/10.1002/smll.202309785
W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
A. Taieb, B.A. Asma, S. Ghada, H. Yosra, K. Maha et al., Increased intracranial pressure due to chronic weight lifting exercises as a hypothesis of partial empty sella syndrome in an elite athlete. Med. Hypotheses 167, 110951 (2022). https://doi.org/10.1016/j.mehy.2022.110951
H. Tang, Y. Yang, Z. Liu, W. Li, Y. Zhang et al., Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630(8015), 84–90 (2024). https://doi.org/10.1038/s41586-024-07334-y
W.R. Kwapong, L. Cao, R. Pan, H. Wang, C. Ye et al., Retinal microvascular and structural changes in intracranial hypertension patients correlate with intracranial pressure. CNS Neurosci. Ther. 29(12), 4093–4101 (2023). https://doi.org/10.1111/cns.14298
L. Wu, Z. Du, W. Liu, Z. Duan, H. Liu et al., Crack-enhanced MXene-carbon nanotube soft contact lens for body-induced intracranial pressure application. ACS Nano 19(13), 13128–13138 (2025). https://doi.org/10.1021/acsnano.4c18484
W. Liu, Z. Du, Z. Duan, H. Liu, L. Li et al., Eye-wearable Ti3C2Tx MXene-based micro-supercapacitor as a power unit for intraocular pressure applications. J. Mater. Chem. A 12(27), 16457–16465 (2024). https://doi.org/10.1039/D4TA02127D
H. Guo, X. Chu, Y. Guo, J. Yang, Y. Jin et al., A water transfer printing method for contact lenses surface 2D MXene modification to resist bacterial infection and inflammation. Sci. Adv. 10(15), eadl3262 (2024). https://doi.org/10.1126/sciadv.adl3262
L. Hu, S. Azhari, H. Zhang, Y. Matsunaga, J. Hirotani et al., MXene-integrated contact lens: a breakthrough in wearable eye protection and healthcare. Small Sci. 5(7), 2400628 (2025). https://doi.org/10.1002/smsc.202400628
A. Erdem, E. Eksin, H. Senturk, E. Yildiz, M. Maral, Recent developments in wearable biosensors for healthcare and biomedical applications. Trac Trends Anal. Chem. 171, 117510 (2024). https://doi.org/10.1016/j.trac.2023.117510
R. Ramachandran, T.-W. Chen, S.-M. Chen, T. Baskar, R. Kannan et al., A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg. Chem. Front. 6(12), 3418–3439 (2019). https://doi.org/10.1039/C9QI00602H
Y. Zhang, Y. Hu, N. Jiang, A.K. Yetisen, Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 219, 114825 (2023). https://doi.org/10.1016/j.bios.2022.114825
K.Y. Wu, A. Dave, M. Carbonneau, S.D. Tran, Smart contact lenses in ophthalmology: innovations, applications, and future prospects. Micromachines 15(7), 856 (2024). https://doi.org/10.3390/mi15070856
G.P. Lim, C.F. Soon, N.L. Ma, M. Morsin, N. Nayan et al., Cytotoxicity of MXene-based nanomaterials for biomedical applications: a mini review. Environ. Res. 201, 111592 (2021). https://doi.org/10.1016/j.envres.2021.111592
J. Wu, Y. Yu, G. Su, Safety assessment of 2D MXenes: in vitro and in vivo. Nanomaterials 12(5), 828 (2022). https://doi.org/10.3390/nano12050828
J. Huang, J. Su, Z. Hou, J. Li, Z. Li et al., Cytocompatibility of Ti3C2T x MXene with red blood cells and human umbilical vein endothelial cells and the underlying mechanisms. Chem. Res. Toxicol. 36(3), 347–359 (2023). https://doi.org/10.1021/acs.chemrestox.2c00154
A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 20(1), 33 (2021). https://doi.org/10.1186/s12938-021-00873-9
S. Iravani, MXenes and MXene-based (nano) structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48(17), 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
I.A. Vasyukova, O.V. Zakharova, D.V. Kuznetsov, A.A. Gusev, Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: a review. Nanomaterials 12(11), 1797 (2022). https://doi.org/10.3390/nano12111797
S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 7(1), 201700889 (2018). https://doi.org/10.1002/adhm.201700889
H. Mirzajani, F. Mirlou, E. Istif, R. Singh, L. Beker, Powering smart contact lenses for continuous health monitoring: recent advancements and future challenges. Biosens. Bioelectron. 197, 113761 (2022). https://doi.org/10.1016/j.bios.2021.113761