Recent Advancements and Perspectives of Low-Dimensional Halide Perovskites for Visual Perception and Optoelectronic Applications
Corresponding Author: Santanu Jana
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 44
Abstract
Low-dimensional (LD) halide perovskites have attracted considerable attention due to their distinctive structures and exceptional optoelectronic properties, including high absorption coefficients, extended charge carrier diffusion lengths, suppressed non-radiative recombination rates, and intense photoluminescence. A key advantage of LD perovskites is the tunability of their optical and electronic properties through the precise optimization of their structural arrangements and dimensionality. This review systematically examines recent progress in the synthesis and optoelectronic characterizations of LD perovskites, focusing on their structural, optical, and photophysical properties that underpin their versatility in diverse applications. The review further summarizes advancements in LD perovskite-based devices, including resistive memory, artificial synapses, photodetectors, light-emitting diodes, and solar cells. Finally, the challenges associated with stability, scalability, and integration, as well as future prospects, are discussed, emphasizing the potential of LD perovskites to drive breakthroughs in device efficiency and industrial applicability.
Highlights:
1 This review uniquely bridges the relationship between 0D, 1D, and 2D structural motifs of halide perovskites and their distinct optoelectronic properties; such as photoluminescence, charge transport, and excitonic behavior and how these impact performance across various devices (e.g., LEDs, photodetectors, synapses). This dimensional-property-functionality mapping is not extensively covered in previous reviews.
2 Unlike many earlier reviews focused solely on photovoltaics or LEDs, this article expands into emerging fields like artificial synapses and visual perception-related electronics, offering insights into how low-dimensional perovskites could enable next-generation neuromorphic and intelligent sensing systems.
3 The review doesn't just summarize the field it also critically evaluates current limitations in scalability, environmental stability, and device integration, and provides future directions to overcome these, particularly through material design and interfacial engineering, making it highly relevant for guiding industrial research.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Koo, T. Moon, M. Kang, H. Joo, C. Lee et al., Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light Sci. Appl. 13(1), 30 (2024). https://doi.org/10.1038/s41377-024-01380-x
- B.H. Alshammari, M.M.A. Lashin, M.A. Mahmood, F.S. Al-Mubaddel, N. Ilyas et al., Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv. 13(20), 13735–13785 (2023). https://doi.org/10.1039/D3RA01421E
- Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003). https://doi.org/10.1002/adma.200390087
- A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
- R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184
- Q. Han, J. Wang, S. Tian, S. Hu, X. Wu et al., Inorganic perovskite-based active multifunctional integrated photonic devices. Nat. Commun. 15(1), 1536 (2024). https://doi.org/10.1038/s41467-024-45565-9
- X. Xu, S. Liu, Y. Kuai, Y. Jiang, Z. Hu et al., Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv. Sci. 11(42), 2309862 (2024). https://doi.org/10.1002/advs.202309862
- A. Ravilla, C.A.R. Perini, J.-P. Correa-Baena, A.W.Y. Ho-Baillie, I. Celik, Life cycle assessment of low-dimensional materials for perovskite photovoltaic cells. Energy Adv. 3(4), 800–811 (2024). https://doi.org/10.1039/D3YA00540B
- F. Ye, T. Tian, J. Su, R. Jiang, J. Li et al., Tailoring low-dimensional perovskites passivation for efficient two-step-processed FAPbI3 solar cells and modules. Adv. Energy Mater. 14(4), 2302775 (2024). https://doi.org/10.1002/aenm.202302775
- M. Li, J. Wang, J. Yao, S. Wang, L. Xu et al., Trade-off between efficiency and stability of CsPbBr3 perovskite quantum dot-based light-emitting diodes by optimized passivation ligands for Br/Pb. Adv. Funct. Mater. 34(3), 2308341 (2024). https://doi.org/10.1002/adfm.202308341
- S. Aftab, G. Koyyada, Z. Haider, E. Akman, F. Kabir et al., From lab to luminescence: Perovskite-based dimensional integrations pushing LED boundaries. Mater. Today Phys. 46, 101490 (2024). https://doi.org/10.1016/j.mtphys.2024.101490
- H. Dong, C. Ran, W. Gao, M. Li, Y. Xia et al., Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight 3(1), 3 (2023). https://doi.org/10.1186/s43593-022-00033-z
- K. M. Salim, S. Masi, A. F. Gualdrón-Reyes, R. S. Sánchez, E. M. Barea, M. Kreĉmarová, J. F. Sánchez-Royo, I. n. Mora-Seró. Boosting long-term stability of pure formamidinium perovskite solar cells by ambient air additive assisted fabrication. ACS Energy Lett. 6, 3511–3521 (2021). https://pubs.acs.org/doi/https://doi.org/10.1021/acsenergylett.1c01311
- H. Liu, H. Zhou, Repair strategies for perovskite solar cells. Chem. Res. Chin. Univ. 37(5), 1055–1066 (2021). https://doi.org/10.1007/s40242-021-1334-9
- K. Tanaka, T. Takahashi, T. Kondo, T. Umebayashi, K. Asai et al., Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71(4), 045312 (2005). https://doi.org/10.1103/PhysRevB.71.045312
- W. Chen, F. Zhang, C. Wang, M. Jia, X. Zhao et al., Nonlinear photonics using low-dimensional metal-halide perovskites: recent advances and future challenges. Adv. Mater. 33(11), 2004446 (2021). https://doi.org/10.1002/adma.202004446
- T.W. Kasel, Electronic structure perturbations of perovskite material: Photovoltaic applications (Ph.D thesis of University of Oregon, 2020).
- K. Chondroudis, D.B. Mitzi, Electroluminescence from an organic–inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11(11), 3028–3030 (1999). https://doi.org/10.1021/cm990561t
- E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136(38), 13154–13157 (2014). https://doi.org/10.1021/ja507086b
- C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- W. Ahmad, Y. Gong, G. Abbas, K. Khan, M. Khan et al., Evolution of low-dimensional material-based field-effect transistors. Nanoscale 13(10), 5162–5186 (2021). https://doi.org/10.1039/d0nr07548e
- Z. Tan, Y. Wu, H. Hong, J. Yin, J. Zhang et al., Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138(51), 16612–16615 (2016). https://doi.org/10.1021/jacs.6b11683
- G. Zhou, R. Sun, Y. Xiao, G. Abbas, Z. Peng, A high-performance flexible broadband photodetector based on graphene–PTAA–perovskite heterojunctions. Adv. Electron. Mater. 7(3), 2000522 (2021). https://doi.org/10.1002/aelm.202000522
- X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang et al., Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13(33), 1700611 (2017). https://doi.org/10.1002/smll.201700611
- P. Chen, Y. Bai, M. Lyu, J.-H. Yun, M. Hao et al., Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Sol. RRL 2(3), 1700186 (2018). https://doi.org/10.1002/solr.201700186
- G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith, Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8(1), 591–598 (2014). https://doi.org/10.1021/nn4052309
- J. Song, L. Xu, J. Li, J. Xue, Y. Dong et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016). https://doi.org/10.1002/adma.201600225
- C. Lee, S.J. Lee, Y. Shin, Y. Woo, S.-H. Han et al., Synthetic and post-synthetic strategies to improve photoluminescence quantum yields in perovskite quantum dots. Catalysts 11(8), 957 (2021). https://doi.org/10.3390/catal11080957
- Y. Liu, S. Bose, W. Fan, Effect of size and shape on electronic and optical properties of CdSe quantum dots. Optik 155, 242–250 (2018). https://doi.org/10.1016/j.ijleo.2017.10.165
- X. Fang, W. Zhai, K. Zhang, Y. Wang, L. Yao et al., Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands. AIP Adv. 7(8), 085217 (2017). https://doi.org/10.1063/1.4994995
- S. Parveen, K.K. Paul, R. Das, P.K. Giri, Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. J. Colloid Interface Sci. 539, 619–633 (2019). https://doi.org/10.1016/j.jcis.2018.12.105
- X.-F. Hu, C.-G. Lu, Q. Wang, J.-K. Xu, Y.-P. Cui, A high-precision, template-assisted, anisotropic wet etching method for fabricating perovskite microstructure arrays. RSC Adv. 10(63), 38220–38226 (2020). https://doi.org/10.1039/D0RA07228A
- S. Wang, C. Bi, J. Yuan, L. Zhang, J. Tian, Original core–shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 3(1), 245–251 (2018). https://doi.org/10.1021/acsenergylett.7b01243
- Y. Yang, S. Wei, X. Kang, O. Tegus, D. Pan, Short-chain ligand assisted synthesis of CH3NH3PbX3 (X = Cl, Br, I) perovskite quantum dots and improved morphology of CH3NH3PbBr3 thin films. J. Lumin. 211, 26–31 (2019). https://doi.org/10.1016/j.jlumin.2019.03.018
- C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark et al., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9(3), 586–593 (2018). https://doi.org/10.1039/c7sc04539e
- C. Zhou, Y. Tian, M. Wang, A. Rose, T. Besara et al., Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56(31), 9018–9022 (2017). https://doi.org/10.1002/anie.201702825
- J. Li, P. Dwivedi, K.S. Kumar, T. Roy, K.E. Crawford et al., Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater. 7(1), 2000535 (2021). https://doi.org/10.1002/aelm.202000535
- J. Guo, Q. Hu, M. Lu, A. Li, X. Zhang et al., Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chem. Eng. J. 427, 131010 (2022). https://doi.org/10.1016/j.cej.2021.131010
- W. Zhang, M. Hong, J. Luo, Centimeter-sized single crystal of a one-dimensional lead-free mixed-cation perovskite ferroelectric for highly polarization sensitive photodetection. J. Am. Chem. Soc. 143(40), 16758–16767 (2021). https://doi.org/10.1021/jacs.1c08281
- M.M. Rahman, C.-Y. Ge, K. Yoo, J.-J. Lee, Aqueous phase synthesis of trimethylsulfoxonium lead triiodide for moisture-stable perovskite solar cells. Mater. Today Energy 21, 100803 (2021). https://doi.org/10.1016/j.mtener.2021.100803
- Y. Liang, F. Li, R. Zheng, Low-dimensional hybrid perovskites for field-effect transistors with improved stability: progress and challenges. Adv. Electron. Mater. 6(9), 2000137 (2020). https://doi.org/10.1002/aelm.202000137
- D. Yao, M.T. Hoang, H. Wang, Low-dimensional-networked perovskites with A-site-cation engineering for optoelectronic devices. Small Meth. 5(5), 2001147 (2021). https://doi.org/10.1002/smtd.202001147
- Z. Chu, X. Chu, Y. Zhao, Q. Ye, J. Jiang et al., Emerging low-dimensional crystal structure of metal halide perovskite optoelectronic materials and devices. Small Struct. 2(6), 2000133 (2021). https://doi.org/10.1002/sstr.202000133
- Z. Ma, F. Li, L. Sui, Y. Shi, R. Fu et al., Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure. Adv. Opt. Mater. 8(18), 2000713 (2020). https://doi.org/10.1002/adom.202000713
- A. Ishii, T. Miyasaka, Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6(46), eabd3274 (2020). https://doi.org/10.1126/sciadv.abd3274
- S.K. Vishwanath, B. Febriansyah, S.E. Ng, T. Das, J. Acharya et al., Correction: High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Mater. Horiz. 11(18), 4519–4519 (2024). https://doi.org/10.1039/D4MH90073A
- Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier et al., One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017). https://doi.org/10.1038/ncomms14051
- X. Xu, X. Zhang, W. Deng, J. Jie, X. Zhang, 1D organic–inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Meth. 2(7), 1700340 (2018). https://doi.org/10.1002/smtd.201700340
- S.-X. Li, Y.-S. Xu, C.-L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32(28), e2001998 (2020). https://doi.org/10.1002/adma.202001998
- Y. Wang, X. Liu, Q. He, G. Chen, D. Xu et al., Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 31(22), 2011251 (2021). https://doi.org/10.1002/adfm.202011251
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15(10), 6521–6527 (2015). https://doi.org/10.1021/acs.nanolett.5b02985
- S. Ahmad, X. Guo, Rapid development in two-dimensional layered perovskite materials and their application in solar cells. Chin. Chem. Lett. 29(5), 657–663 (2018). https://doi.org/10.1016/j.cclet.2017.08.057
- H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2(9), 1500194 (2015). https://doi.org/10.1002/advs.201500194
- K.C. Kwon, K.S. Choi, S.Y. Kim, Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 22(22), 4724–4731 (2012). https://doi.org/10.1002/adfm.201200997
- K.T. Nam, S.A. Shelby, P.H. Choi, A.B. Marciel, R. Chen et al., Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 9(5), 454–460 (2010). https://doi.org/10.1038/nmat2742
- G. Grancini, M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4(1), 4–22 (2018). https://doi.org/10.1038/s41578-018-0065-0
- M. Braun, W. Tuffentsammer, H. Wachtel, H.C. Wolf, Tailoring of energy levels in lead chloride based layered perovskites and energy transfer between the organic and inorganic planes. Chem. Phys. Lett. 303(1–2), 157–164 (1999). https://doi.org/10.1016/S0009-2614(99)00205-5
- R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu et al., Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29(9), 1604278 (2017). https://doi.org/10.1002/adma.201604278
- A. Fraccarollo, A. Zoccante, L. Marchese, M. Cossi, Ab initio modeling of 2D and quasi-2D lead organohalide perovskites with divalent organic cations and a tunable band gap. Phys. Chem. Chem. Phys. 22(36), 20573–20587 (2020). https://doi.org/10.1039/c9cp06851a
- X. Li, F. Cao, D. Yu, J. Chen, Z. Sun et al., All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13(9). 1603996 (2017). https://doi.org/10.1002/smll.201603996
- D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. 1, 1–12 (2001). https://doi.org/10.1039/b007070j
- J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu et al., Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 4(12), 2913–2921 (2019). https://doi.org/10.1021/acsenergylett.9b02375
- F. Yang, P. Zhang, M.A. Kamarudin, G. Kapil, T. Ma et al., Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 28(46), 1804856 (2018). https://doi.org/10.1002/adfm.201804856
- M.J. Brites, M.A. Barreiros, V. Corregidor, L.C. Alves, J.V. Pinto et al., Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process. ACS Appl. Energy Mater. 2(3), 1844–1853 (2019). https://doi.org/10.1021/acsaem.8b02005
- Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7(18), 1700162 (2017). https://doi.org/10.1002/aenm.201700162
- J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
- B.-E. Cohen, M. Wierzbowska, L. Etgar, High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 27(5), 1604733 (2017). https://doi.org/10.1002/adfm.201604733
- X. Gan, O. Wang, K. Liu, X. Du, L. Guo et al., 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 162, 93–102 (2017). https://doi.org/10.1016/j.solmat.2016.12.047
- C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- T.M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Müller-Buschbaum et al., Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics. Adv. Mater. 28(19), 3653–3661 (2016). https://doi.org/10.1002/adma.201506141
- T. Ishihara, Optical properties of PbI-based perovskite structures. J. Lumin. 60, 269–274 (1994). https://doi.org/10.1016/0022-2313(94)90145-7
- D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy, Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets. Science 267(5203), 1473–1476 (1995). https://doi.org/10.1126/science.267.5203.1473
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher et al., 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30(19), 1909919 (2020). https://doi.org/10.1002/adfm.201909919
- Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
- P. Tyagi, S.M. Arveson, W.A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6(10), 1911–1916 (2015). https://doi.org/10.1021/acs.jpclett.5b00664
- Z. Yuan, Y. Shu, Y. Xin, B. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 52(20), 3887–3890 (2016). https://doi.org/10.1039/C5CC09762B
- S.T. Ha, X. Liu, Q. Zhang, D. Giovanni, T.C. Sum et al., Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2(9), 838–844 (2014). https://doi.org/10.1002/adom.201400106
- J.H. Han, S. Lee, J. Cheon, Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals. Chem. Soc. Rev. 42(7), 2581–2591 (2013). https://doi.org/10.1039/C2CS35386E
- Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137(51), 16008–16011 (2015). https://doi.org/10.1021/jacs.5b11199
- B.A. Koscher, N.D. Bronstein, J.H. Olshansky, Y. Bekenstein, A.P. Alivisatos, Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 138(37), 12065–12068 (2016). https://doi.org/10.1021/jacs.6b08178
- J. Liu, K. Chen, S.A. Khan, B. Shabbir, Y. Zhang et al., Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology 31(15), 152002 (2020). https://doi.org/10.1088/1361-6528/ab5a19
- S. Panigrahi, S. Jana, T. Calmeiro, D. Nunes, R. Martins et al., Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 11(10), 10214–10221 (2017). https://doi.org/10.1021/acsnano.7b04762
- B.-E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
- J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2D halide perovskites beyond the ruddlesden-popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
- E. Oksenberg, E. Sanders, R. Popovitz-Biro, L. Houben, E. Joselevich, Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 18(1), 424–433 (2018). https://doi.org/10.1021/acs.nanolett.7b04310
- H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33(7), 2003309 (2021). https://doi.org/10.1002/adma.202003309
- Y. Zhang, J. Liu, Z. Wang, Y. Xue, Q. Ou et al., Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 52(94), 13637–13655 (2016). https://doi.org/10.1039/C6CC06425F
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
- N. Nishimura, M. Tojo, Y. Takeoka, Simple one-step synthesis of a two-dimensional perovskite consisting of perfluoroalkyl-based ammonium spacers using acetone as the solvent. Chem. Commun. 56(71), 10293–10296 (2020). https://doi.org/10.1039/D0CC03874A
- J. Chen, L. Gan, F. Zhuge, H. Li, J. Song et al., A ternary solvent method for large-sized two-dimensional perovskites. Angew. Chem. Int. Ed. 56(9), 2390–2394 (2017). https://doi.org/10.1002/anie.201611794
- I.M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi et al., Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small 15(1), 1804150 (2019). https://doi.org/10.1002/smll.201804150
- K. Yang, F. Li, Y. Liu, Z. Xu, Q. Li et al., All-solution-processed perovskite quantum dots light-emitting diodes based on the solvent engineering strategy. ACS Appl. Mater. Interfaces 10(32), 27374–27380 (2018). https://doi.org/10.1021/acsami.8b09702
- J. Zhang, B. Wei, L. Wang, X. Yang, The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. J. Mater. Chem. C 9(36), 12037–12045 (2021). https://doi.org/10.1039/d1tc03385a
- J. Yuan, X. Zhang, J. Sun, R. Patterson, H. Yao et al., Hybrid perovskite quantum dot/non-fullerene molecule solar cells with efficiency over 15%. Adv. Funct. Mater. 31(27), 2101272 (2021). https://doi.org/10.1002/adfm.202101272
- D. Ghosh, M.Y. Ali, A. Ghosh, A. Mandal, S. Bhattacharyya, Heterovalent substitution in mixed halide perovskite quantum dots for improved and stable photovoltaic performance. J. Phys. Chem. C 125(10), 5485–5493 (2021). https://doi.org/10.1021/acs.jpcc.0c11122
- W.-C. Chen, Y.-H. Fang, L.-G. Chen, F.-C. Liang, Z.-L. Yan et al., High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chem. Eng. J. 414, 128866 (2021). https://doi.org/10.1016/j.cej.2021.128866
- X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
- A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang et al., All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17(8), 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
- J. Li, R. Gao, F. Gao, J. Lei, H. Wang et al., Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. J. Alloys Compd. 818, 152903 (2020). https://doi.org/10.1016/j.jallcom.2019.152903
- Y. Wang, Y. Shi, G. Xin, J. Lian, J. Shi, Two-dimensional van der waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15(10), 4741–4749 (2015). https://doi.org/10.1021/acs.cgd.5b00949
- P. Li, B.N. Shivananju, Y. Zhang, S. Li, Q. Bao, High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. J. Phys. D Appl. Phys. 50(9), 094002 (2017). https://doi.org/10.1088/1361-6463/aa5623
- M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He et al., Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 5, 14083 (2015). https://doi.org/10.1038/srep14083
- D. Ghoshal, T. Wang, H.-Z. Tsai, S.-W. Chang, M. Crommie et al., Catalyst-free and morphology-controlled growth of 2D perovskite nanowires for polarized light detection. Adv. Opt. Mater. 7(15), 1900039 (2019). https://doi.org/10.1002/adom.201900039
- Y. Xue, J. Yuan, J. Liu, S. Li, Controllable synthesis of 2D perovskite on different substrates and its application as photodetector. Nanomaterials 8(8), 591 (2018). https://doi.org/10.3390/nano8080591
- W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu et al., Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/ nanoflake single crystals. ACS Appl. Mater. Interfaces 10(2), 1865–1870 (2018). https://doi.org/10.1021/acsami.7b18093
- J. Wang, C. Fang, J. Ma, S. Wang, L. Jin et al., Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection. ACS Nano 13(8), 9473–9481 (2019). https://doi.org/10.1021/acsnano.9b04437
- G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon et al., Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29(2), 45–96 (2004). https://doi.org/10.1080/10408430490490905
- A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang et al., Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 17(1), 523–530 (2017). https://doi.org/10.1021/acs.nanolett.6b04587
- D.N. Dirin, L. Protesescu, D. Trummer, I.V. Kochetygov, S. Yakunin et al., Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16(9), 5866–5874 (2016). https://doi.org/10.1021/acs.nanolett.6b02688
- S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. Int. Ed. 54(19), 5693–5696 (2015). https://doi.org/10.1002/anie.201411956
- L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar et al., Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates. Nanoscale 10(32), 15164–15172 (2018). https://doi.org/10.1039/C8NR03058H
- W. Deng, L. Huang, X. Xu, X. Zhang, X. Jin et al., Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17(4), 2482–2489 (2017). https://doi.org/10.1021/acs.nanolett.7b00166
- L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
- K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12(5), 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
- Y. Liu, H. Ye, Y. Zhang, K. Zhao, Z. Yang et al., Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter 1(2), 465–480 (2019). https://doi.org/10.1016/j.matt.2019.04.002
- H. Tian, L. Zhao, X. Wang, Y.-W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
- H.L. Kagdada, B. Roondhe, V. Roondhe, S.D. Dabhi, W. Luo et al., Exploring A-site cation variations in Dion–jacobson two-dimensional halide perovskites for enhanced solar cell applications: a density functional theory study. Adv. Energy Sustain. Res. 5(1), 2300147 (2024). https://doi.org/10.1002/aesr.202300147
- Y. Dong, R. Zhu, Y. Jia, Linear relationship between the dielectric constant and band gap in low-dimensional mixed-halide perovskites. J. Phys. Chem. C 125(27), 14883–14890 (2021). https://doi.org/10.1021/acs.jpcc.1c01576
- M.S. Ozório, A.C. Dias, J.F.R.V. Silveira, J.L.F. Da Silva, Theoretical investigation of the role of anion and trivalent cation substitution in the physical properties of lead-free zero-dimensional perovskites. J. Phys. Chem. C 126(16), 7245–7255 (2022). https://doi.org/10.1021/acs.jpcc.2c00494
- H.T. Abdulla, A DFT approach on the investigations of the structural and optoelectronic properties of lead-free and Ge-based mixed halide perovskites RbGeBr2Cl and RbGeI2Cl. Indian J. Phys. 99(3), 1041–1050 (2025). https://doi.org/10.1007/s12648-024-03354-6
- M.U. Khandaker, H. Osman, S.A.M. Issa, M.M. Uddin, M.H. Ullah et al., Newly predicted halide perovskites Mg3AB3 (a = N, Bi; B = F, Br, I) for next-generation photovoltaic applications: a first-principles study. RSC Adv. 15(8), 5766–5780 (2025). https://doi.org/10.1039/d4ra09093d
- H. Beck, C. Gehrmann, D.A. Egger, Structure and binding in halide perovskites: analysis of static and dynamic effects from dispersion-corrected density functional theory. APL Mater. 7(2), 021108 (2019). https://doi.org/10.1063/1.5086541
- M.B. Fridriksson, S. Maheshwari, F.C. Grozema, Structural dynamics of two-dimensional ruddlesden–popper perovskites: a computational study. J. Phys. Chem. C 124(40), 22096–22104 (2020). https://doi.org/10.1021/acs.jpcc.0c05225
- R.C.B. Cedeno, J. Wei, Theoretical investigation of the mechanical properties of perovskite at various environmental factors change for application in solar cells proposed for green policy. Eng. Anal. Bound. Elem. 152, 326–333 (2023). https://doi.org/10.1016/j.enganabound.2023.04.017
- R. Lyu, C.E. Moore, T. Liu, Y. Yu, Y. Wu, Predictive design model for low-dimensional organic-inorganic halide perovskites assisted by machine learning. J. Am. Chem. Soc. 143(32), 12766–12776 (2021). https://doi.org/10.1021/jacs.1c05441
- W.A. Saidi, W. Shadid, I.E. Castelli, Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. NPJ Comput. Mater. 6, 36 (2020). https://doi.org/10.1038/s41524-020-0307-8
- S. Yuan, Y. Liu, J. Lan, W. Yang, H. Xiong et al., Accurate dimension prediction for low-dimensional organic-inorganic halide perovskites via a self-established machine learning strategy. J. Phys. Chem. Lett. 14(32), 7323–7330 (2023). https://doi.org/10.1021/acs.jpclett.3c01915
- C.-S. Hu, R. Mayengbam, M.-C. Wu, K. Xia, T.C. Sum, Geometric data analysis-based machine learning for two-dimensional perovskite design. Commun. Mater. 5, 106 (2024). https://doi.org/10.1038/s43246-024-00545-w
- M. A. Mahmud. Low-temperature processed perovskite solar cells. (2018) https://doi.org/10.26190/unsworks/3582
- E. Calabrò, F. Matteocci, A.L. Palma, L. Vesce, B. Taheri et al., Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Sol. Energy Mater. Sol. Cells 185, 136–144 (2018). https://doi.org/10.1016/j.solmat.2018.05.001
- M. Sharifi, R. Taheri Ghahrizjani, D. A. Amini, E. Mohajerani. Poling-assisted strategies for enhancing open-circuit voltage in highly sensitive, self-powered perovskite photodetector. Self-Powered Perovskite Photodetector. https://doi.org/10.2139/ssrn.5111215
- Z. Xie, D. Liu, C. Gao, X. Zhang, H. Dong et al., High mobility emissive organic semiconductors for optoelectronic devices. J. Am. Chem. Soc. 147(3), 2239–2256 (2025). https://doi.org/10.1021/jacs.4c11208
- S.M. Hasnain, A. Iqbal, I. Qasim, K. Irshad, M.A. Mir et al., Performance evaluation of organometal halide MASnI3 and inorganic BaZrS3 hybrids in perovskites solar cells: Theoretical approach. Hybrid Adv. 9, 100408 (2025). https://doi.org/10.1016/j.hybadv.2025.100408
- A. Hichri, S. Jaziri, M.O. Goerbig, Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B 100(11), 115426 (2019). https://doi.org/10.1103/physrevb.100.115426
- H. Wang, F.U. Kosasih, H. Yu, G. Zheng, J. Zhang et al., Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nat. Commun. 11(1), 891 (2020). https://doi.org/10.1038/s41467-020-14747-6
- A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
- J. Mao, F. Uemura, S.A. Yazdani, Y. Yin, H. Sato et al., Ultra-fast perovskite electro-optic modulator and multi-band transmission up to 300 Gbit s−1. Commun. Mater. 5, 114 (2024). https://doi.org/10.1038/s43246-024-00558-5
- A. Khalid, M.I. Malik, I. Qasim, Analysis and performance evaluation of non-toxic organo-metal halide (CH3NH3SnI3) perovskite optical absorber based photovoltaic cell. Chem. Inorg. Mater. 5, 100083 (2025). https://doi.org/10.1016/j.cinorg.2024.100083
- S.M. Hasnain, I. Qasim, A. Iqbal, M.A. Mir, N. Abu-Libdeh, Novel dual absorber configuration for eco-friendly perovskite solar cells: design, numerical investigations and performance of ITO-C60-MASnI3-RbGeI3-Cu2O-Au. Sol. Energy 278, 112788 (2024). https://doi.org/10.1016/j.solener.2024.112788
- A. Javed, M.F. Nasir, I. Qasim, Y.M. Alanazi, M.T. Khan, Numerical modelling of an effective perovskite solar cell and PV-module for comparison analysis of organic and inorganic electron transport layers. Int. J. Electrochem. Sci. 19(8), 100641 (2024). https://doi.org/10.1016/j.ijoes.2024.100641
- A. Basit, I. Qasim, Optimizing solar cell and module design with SnO2-ETL and organometal-halide perovskite absorber: SCAPS-1D and PVSyst analysis. Wirel. Power Transf. 12(1), e001 (2025). https://doi.org/10.48130/wpt-0024-0015
- O. Ahmad, I. Qasim, S.M. Hasnain, Z.U. Abdin, M.F. Nasir et al., Modelling and numerical simulations of eco-friendly double absorber solar cell “Spiro-OmeTAD/CIGS/MASnI3/CdS/ZnO” and its PV-module. Org. Electron. 117, 106781 (2023). https://doi.org/10.1016/j.orgel.2023.106781
- M.S. Hanif, I. Qasim, M.I. Malik, M.F. Nasir, O. Ahmad et al., Development of low-cost and high-efficiency solar modules based on perovskite solar cells for large-scale applications. Heliyon 10(4), e25703 (2024). https://doi.org/10.1016/j.heliyon.2024.e25703
- Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10(6), 497–502 (2015). https://doi.org/10.1038/nnano.2015.75
- H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak et al., A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6(15), eaay0815 (2020). https://doi.org/10.1126/sciadv.aay0815
- J.Q. Grim, A.S. Bracker, M. Zalalutdinov, S.G. Carter, A.C. Kozen et al., Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18(9), 963–969 (2019). https://doi.org/10.1038/s41563-019-0418-0
- X. Yang, L. Ma, M. Yu, H.-H. Chen, Y. Ji et al., Focus on perovskite emitters in blue light-emitting diodes. Light Sci. Appl. 12(1), 177 (2023). https://doi.org/10.1038/s41377-023-01206-2
- M. Kober-Czerny, S.G. Motti, P. Holzhey, B. Wenger, J. Lim et al., Excellent long-range charge-carrier mobility in 2D perovskites. Adv. Funct. Mater. 32(36), 2203064 (2022). https://doi.org/10.1002/adfm.202203064
- S. Kar, K. Dey, Instabilities and degradation in perovskite materials and devices. Perovskite Optoelectronic Devices. Springer International Publishing, (2024)., pp 573–637 https://doi.org/10.1007/978-3-031-57663-8_17
- R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm et al., Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13(6), 579–633 (2011). https://doi.org/10.1021/co200007w
- D.I. Kutsarov, E. Rezaee, J. Lambert, W.T. Stroud, A. Panagiotopoulos et al., Progress in flexible perovskite solar cells: paving the way for scalable manufacturing. Adv. Mater. Technol. 2401834 (2025). https://doi.org/10.1002/admt.202401834
- C. Cho, S. Feldmann, K.M. Yeom, Y.W. Jang, S. Kahmann et al., Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nat. Mater. 21(12), 1388–1395 (2022). https://doi.org/10.1038/s41563-022-01395-y
- J. Liang, Z. Zhang, Y. Zheng, X. Wu, J. Wang et al., Overcoming the carrier transport limitation in Ruddlesden-Popper perovskite films by using lamellar nickel oxide substrates. J. Mater. Chem. A 9(19), 11741–11752 (2021). https://doi.org/10.1039/d1ta01038g
- Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable Dion−Jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
- S.S. Hong, J.H. Yu, D. Lu, A.F. Marshall, Y. Hikita et al., Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3(11), eaao5173 (2017). https://doi.org/10.1126/sciadv.aao5173
- L. Zhao, H. Tian, S.H. Silver, A. Kahn, T.-L. Ren et al., Ultrasensitive heterojunctions of graphene and 2D perovskites reveal spontaneous iodide loss. Joule 2(10), 2133–2144 (2018). https://doi.org/10.1016/j.joule.2018.07.011
- H. Pan, J. Chen, R. Cao, V. Murugesan, N.N. Rajput et al., Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2(10), 813–820 (2017). https://doi.org/10.1038/s41560-017-0005-z
- L.J. Sutherland, H.C. Weerasinghe, G.P. Simon, A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv. Energy Mater. 11(34), 2101383 (2021). https://doi.org/10.1002/aenm.202101383
- X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai et al., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12(1), 52 (2021). https://doi.org/10.1038/s41467-020-20272-3
- J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
- B. Dou, J.B. Whitaker, K. Bruening, D.T. Moore, L.M. Wheeler et al., Roll-to-roll printing of perovskite solar cells. ACS Energy Lett. 3(10), 2558–2565 (2018). https://doi.org/10.1021/acsenergylett.8b01556
- J. Li, Y. Yang, Z. Ye, D. Chen, J. Cui et al., Controlled high-quality perovskite single crystals growth for radiation detection: Nucleation and growth kinetics of antisolvent vapor-assisted crystallization. J. Mater. Sci. Technol. 232, 276–282 (2025). https://doi.org/10.1016/j.jmst.2025.02.019
- Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. NPJ Comput. Mater. 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
- X. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi et al., In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 1(1), 35–38 (2002). https://doi.org/10.1038/nmat703
- Y. Hu, Y. Chu, Q. Wang, Z. Zhang, Y. Ming et al., Standardizing perovskite solar modules beyond cells. Joule 3(9), 2076–2085 (2019). https://doi.org/10.1016/j.joule.2019.08.015
- K. Kang, H. Ahn, Y. Song, W. Lee, J. Kim et al., High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31(21), 1804841 (2019). https://doi.org/10.1002/adma.201804841
- C.V. Mary Vijila, P.S. Subin, M. Shaji, K.R. Kumar, M.K. Jayaraj, Perovskite quantum dot based resistive memory with very low operating power. The 3rd International Conference on Optoelectronic and Nano Materials for Advanced Technology (icONMAT 2019) Kerala, India. Author(s), (2019). 070004. https://doi.org/10.1063/1.5093879
- H. Yang, Y. Yan, X. Wu, Y. Liu, Q. Chen et al., A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 8(8), 2861–2869 (2020). https://doi.org/10.1039/c9tc06622e
- Y. Hu, F. Florio, Z. Chen, W.A. Phelan, M.A. Siegler et al., A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6(9), eaay4213 (2020). https://doi.org/10.1126/sciadv.aay4213
- X. Song, H. Yin, Q. Chang, Y. Qian, C. Lyu et al., One-dimensional (NH=CINH3)3PbI5 perovskite for ultralow power consumption resistive memory. Research 2021, 9760729 (2021). https://doi.org/10.34133/2021/9760729
- G. Abbas, M. Hassan, Q. Khan, H. Wang, G. Zhou et al., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Adv. Electron. Mater. 8(9), 2101412 (2022). https://doi.org/10.1002/aelm.202101412
- J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang et al., Wafer-scale reliable switching memory based on 2-dimensional layered organic–inorganic halide perovskite. Nanoscale 9(40), 15278–15285 (2017). https://doi.org/10.1039/C7NR05582J
- D. Lee, B. Hwang, J.-S. Lee, Impact of grain sizes on programmable memory characteristics in two-dimensional organic–inorganic hybrid perovskite memory. ACS Appl. Mater. Interfaces 11(22), 20225–20231 (2019). https://doi.org/10.1021/acsami.9b05038
- X.-F. Cheng, X. Hou, J. Zhou, B.-J. Gao, J.-H. He et al., Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance. Small 14(12), 1703667 (2018). https://doi.org/10.1002/smll.201703667
- H. Kim, M.-J. Choi, J.M. Suh, J.S. Han, S.G. Kim et al., Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Mater. 12, 21 (2020). https://doi.org/10.1038/s41427-020-0202-2
- S. Lee, H. Kim, D.H. Kim, W.B. Kim, J.M. Lee et al., Tailored 2D/3D halide perovskite heterointerface for substantially enhanced endurance in conducting bridge resistive switching memory. ACS Appl. Mater. Interfaces 12(14), 17039–17045 (2020). https://doi.org/10.1021/acsami.9b22918
- H. An, W.K. Kim, C. Wu, T.W. Kim, Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 56, 41–45 (2018). https://doi.org/10.1016/j.orgel.2018.02.001
- M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12, 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
- T.D. Dongale, N.B. Mullani, V.B. Patil, R.S. Tikke, P.S. Pawar et al., Mimicking the biological synapse functions of analog memory, synaptic weights, and forgetting with ZnO-based memristive devices. J. Nanosci. Nanotechnol. 18(11), 7758–7766 (2018). https://doi.org/10.1166/jnn.2018.15540
- Y.J. Jeon, H. An, Y. Kim, Y.P. Jeon, T.W. Kim, Highly reliable memristive devices with synaptic behavior via facilitating ion transport of the zeolitic imidazolate framework-8 embedded into a polyvinylpyrrolidone polymer matrix. Appl. Surf. Sci. 567, 150748 (2021). https://doi.org/10.1016/j.apsusc.2021.150748
- C.D. Wright, P. Hosseini, J.A.V. Diosdado, Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23(18), 2248–2254 (2013). https://doi.org/10.1002/adfm.201202383
- K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
- C. Tian, L. Wei, Y. Li, J. Jiang, Recent progress on two-dimensional neuromorphic devices and artificial neural network. Curr. Appl. Phys. 31, 182–198 (2021). https://doi.org/10.1016/j.cap.2021.08.014
- T. Liu, R. Yan, H. Huang, L. Pan, X. Cao et al., A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 30(46), 2004410 (2020). https://doi.org/10.1002/adfm.202004410
- L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2(5), 1900167 (2020). https://doi.org/10.1002/aisy.201900167
- S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371–388 (2020). https://doi.org/10.1021/acsaelm.9b00694
- S. Oh, S. Jung, M.H. Ali, J.-H. Kim, H. Kim et al., Highly stable artificial synapse consisting of low-surface defect van der waals and self-assembled materials. ACS Appl. Mater. Interfaces 12(34), 38299–38305 (2020). https://doi.org/10.1021/acsami.0c07394
- V. Gupta, G. Lucarelli, S. Castro-Hermosa, T. Brown, M. Ottavi, Characterisation & modelling of perovskite-based synaptic memristor device. Microelectron. Reliab. 111, 113708 (2020). https://doi.org/10.1016/j.microrel.2020.113708
- D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
- Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
- S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
- S.-I. Kim, Y. Lee, M.-H. Park, G.-T. Go, Y.-H. Kim et al., Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5(9), 1900008 (2019). https://doi.org/10.1002/aelm.201900008
- L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/C8NR00914G
- M. Kumar, H.-S. Kim, D.Y. Park, M.S. Jeong, J. Kim, Compliance-free multileveled resistive switching in a transparent 2D perovskite for neuromorphic computing. ACS Appl. Mater. Interfaces 10(15), 12768–12772 (2018). https://doi.org/10.1021/acsami.7b19406
- T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
- R. Ferreira, M. Shaikh, S.K. Jakka, J. Deuermeier, P. Barquinha et al., Bandlike transport in FaPbBr3 quantum dot phototransistor with high hole mobility and ultrahigh photodetectivity. Nano Lett. 22(22), 9020–9026 (2022). https://doi.org/10.1021/acs.nanolett.2c03317
- V. Darshan, V.R. Rajeev, K.N. Narayanan Unni, Enhanced performance of room temperature ammonia sensors using morphology-controlled organic field-effect transistors. Org. Electron. 98, 106280 (2021). https://doi.org/10.1016/j.orgel.2021.106280
- S. Rehman, H. Kim, M.F. Khan, J.-H. Hur, J. Eom et al., Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. J. Alloys Compd. 855, 157310 (2021). https://doi.org/10.1016/j.jallcom.2020.157310
- X. Guo, L. Han, X. Hou, Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration. Mater. Chem. Front. 5(18), 6760–6778 (2021). https://doi.org/10.1039/d1qm00334h
- J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye et al., Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces 13(11), 13362–13371 (2021). https://doi.org/10.1021/acsami.0c22604
- S. Aynehband, M. Mohammadi, R. Poushimin, J.-M. Nunzi, A. Simchi, Efficient FAPbI3–PbS quantum dot graphene-based phototransistors. New J. Chem. 45(34), 15285–15293 (2021). https://doi.org/10.1039/D1NJ03139B
- W. Zhao, T. Chen, W. Wang, S. Bi, M. Jiang et al., Layer-by-layer 2D ultrathin conductive Cu3(HHTP)2 film for high-performance flexible transparent supercapacitors. Adv. Mater. Interfaces 8(11), 2100308 (2021). https://doi.org/10.1002/admi.202100308
- A. Subramanian, S. Hussain, N. Din, G. Abbas, A. Shuja et al., Solution-processed vertical field-effect transistor with separated charge generation and charge transport layers for high-performance near-infrared photodetection. ACS Appl. Electron. Mater. 2(12), 3871–3879 (2020). https://doi.org/10.1021/acsaelm.0c00707
- C. Chen, X. Zhang, G. Wu, H. Li, H. Chen, Visible-light ultrasensitive solution-prepared layered organic–inorganic hybrid perovskite field-effect transistor. Adv. Opt. Mater. 5(2), 1600539 (2017). https://doi.org/10.1002/adom.201600539
- X. Song, S. Liu, L. Ren, Y. Zuo, S. Wang et al., Two-dimensionalization of 3D perovskites for passive narrowband Photodetection. EcoMat 6(7), e12472 (2024). https://doi.org/10.1002/eom2.12472
- H. Wang, Y. Chen, E. Lim, X. Wang, S. Yuan et al., High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. J. Mater. Chem. C 6(46), 12714–12720 (2018). https://doi.org/10.1039/C8TC04691C
- F. Zhang, Q. Zhang, X. Liu, Y. Hu, Z. Lou et al., Property modulation of two-dimensional lead-free perovskite thin films by aromatic polymer additives for performance enhancement of field-effect transistors. ACS Appl. Mater. Interfaces 13(20), 24272–24284 (2021). https://doi.org/10.1021/acsami.1c03041
- Y. Park, M.-K. Kim, J.-S. Lee, 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J. Mater. Chem. C 9(4), 1429–1436 (2021). https://doi.org/10.1039/d0tc04250a
- X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang et al., Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 13(5), 5910–5919 (2019). https://doi.org/10.1021/acsnano.9b01734
- B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
- Y. Zou, F. Li, C. Zhao, J. Xing, Z. Yu et al., Anomalous ambipolar phototransistors based on all-inorganic CsPbBr3 perovskite at room temperature. Adv. Opt. Mater. 7(21), 1900676 (2019). https://doi.org/10.1002/adom.201900676
- J. Jiang, X. Zou, Y. Lv, Y. Liu, W. Xu et al., Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat. Commun. 11, 4266 (2020). https://doi.org/10.1038/s41467-020-18100-9
- L. Qian, Y. Sun, M. Wu, D. Xie, L. Ding et al., A solution-processed high-performance phototransistor based on a perovskite composite with chemically modified graphenes. Adv. Mater. 29(22), 1606175 (2017). https://doi.org/10.1002/adma.201606175
- J. Chen, W. Ouyang, W. Yang, J.-H. He, X. Fang, Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater. 30(16), 1909909 (2020). https://doi.org/10.1002/adfm.201909909
- F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2(3), 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
- K. Chandra Sekhar Reddy, V. Selamneni, M.G. Syamala Rao, J. Meza-Arroyo, P. Sahatiya et al., All solution processed flexible p-NiO/n-CdS rectifying junction: Applications towards broadband photodetector and human breath monitoring. Appl. Surf. Sci. 568, 150944 (2021). https://doi.org/10.1016/j.apsusc.2021.150944
- T. Handa, T. Aharen, A. Wakamiya, Y. Kanemitsu, Radiative recombination and electron-phonon coupling in lead-free CH3NH3SnI3 perovskite thin films. Phys. Rev. Mater. 2(7), 075402 (2018). https://doi.org/10.1103/PhysRevMaterials.2.075402
- X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang et al., Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 12(2), 2884–2891 (2020). https://doi.org/10.1021/acsami.9b18826
- P.K. Roy, R.K. Ulaganathan, C.M. Raghavan, S.M. Mhatre, H.-I. Lin et al., Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale 12(35), 18269–18277 (2020). https://doi.org/10.1039/d0nr01171a
- H. Jing, R. Peng, R.-M. Ma, J. He, Y. Zhou et al., Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett. 20(10), 7144–7151 (2020). https://doi.org/10.1021/acs.nanolett.0c02468
- D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13(15), 17766–17780 (2021). https://doi.org/10.1021/acsami.1c00724
- B. Yang, X. Ouyang, X. Zhao, J. Su, Y. Li et al., Inch-sized 2D perovskite single-crystal scintillators for high-resolution neutron and X-ray imaging. InfoMat 7(4), e12648 (2025). https://doi.org/10.1002/inf2.12648
- S. Li, Y. Zhang, W. Yang, H. Liu, X. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32(7), 1905443 (2020). https://doi.org/10.1002/adma.201905443
- B. Hwang, Y. Park, J.-S. Lee, Impact of grain size on the optoelectronic performance of 2D Ruddlesden-Popper perovskite-based photodetectors. J. Mater. Chem. C 9(1), 110–116 (2021). https://doi.org/10.1039/d0tc04350h
- Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31(5), 1804285 (2019). https://doi.org/10.1002/adma.201804285
- J. Wang, J. Li, S. Lan, C. Fang, H. Shen et al., Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13(5), 5473–5484 (2019). https://doi.org/10.1021/acsnano.9b00259
- L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li et al., 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7(18), 5353–5358 (2019). https://doi.org/10.1039/c9tc00138g
- M. Dyksik, S. Wang, W. Paritmongkol, D.K. Maude, W.A. Tisdale et al., Tuning the excitonic properties of the 2D (PEA)2(MA)n–1PbnI3n+1Perovskite family via quantum confinement. J. Phys. Chem. Lett. 12(6), 1638–1643 (2021). https://doi.org/10.1021/acs.jpclett.0c03731
- Z. Yin, J. Leng, S. Wang, G. Liang, W. Tian et al., Auger-assisted electron transfer between adjacent quantum wells in two-dimensional layered perovskites. J. Am. Chem. Soc. 143(12), 4725–4731 (2021). https://doi.org/10.1021/jacs.1c00424
- I. Bülthoff, W. Jung, R.G. Armann, C. Wallraven, Predominance of eyes and surface information for face race categorization. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.48550/arXiv.2108.04983
- V.M. Montaño-Serrano, J.M. Jacinto-Villegas, A.H. Vilchis-González, O. Portillo-Rodríguez, Artificial vision algorithms for socially assistive robot applications: a review of the literature. Sensors 21(17), 5728 (2021). https://doi.org/10.3390/s21175728
- H. Tian, X. Wang, F. Wu, Y. Yang, T.-L. Ren, High performance 2D perovskite/graphene optical synapses as artificial eyes. 2018 IEEE International Electron Devices Meeting (IEDM). December 1–5, 2018, San Francisco, CA, USA. IEEE, (2018)., 38.6.1–38.6.4. https://doi.org/10.1109/IEDM.2018.8614666
- Z. Xu, C. Wu, Y. Zhu, S. Ju, F. Ma et al., Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale 13(1), 253–260 (2021). https://doi.org/10.1039/D0NR06550A
- S.L. Hart, Beyond greening: Strategies for a sustainable world. Harvard Business Review 1, 66–76 (1997). https://doi.org/10.1080/00076799700000047
- V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 14(9), 2641–2654 (2010). https://doi.org/10.1016/j.rser.2010.06.008
- P. Ron, C. Wilder, The Clean Tech Revolution. (Betascript Publishing 2007), pp. 112–115.
- M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13(9), 838–842 (2014). https://doi.org/10.1038/nmat4065
- D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). https://doi.org/10.1063/1.1721711
- G. Wang, Q. Su, H. Tang, H. Wu, H. Lin et al., 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond. Nat. Commun. 15(1), 8931 (2024). https://doi.org/10.1038/s41467-024-53275-5
- X. Ru, M. Yang, S. Yin, Y. Wang, C. Hong et al., Silicon heterojunction solar cells achieving 26.6% efficiency on commercial-size p-type silicon wafer. Joule 8(4), 1092–1104 (2024). https://doi.org/10.1016/j.joule.2024.01.015
- H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8(8), 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
- L. Pereira, D. Brida, E. Fortunato, I. Ferreira, H. Águas et al., A-Si: H interface optimisation for thin film position sensitive detectors produced on polymeric substrates. J. Non Cryst. Solids 299, 1289–1294 (2002). https://doi.org/10.1016/S0022-3093(01)01150-4
- H. Águas, R. Martins, E. Fortunato, Role of ion bombardment on the properties of a-Si: H films. Vacuum 60(1–2), 247–254 (2001). https://doi.org/10.1016/S0042-207X(00)00391-2
- R. Martins, I. Ferreira, H. Águas, V. Silva, E. Fortunato et al., Engineering of a-Si: H device stability by suitable design of interfaces. Sol. Energy Mater. Sol. Cells 73(1), 39–49 (2002). https://doi.org/10.1016/S0927-0248(01)00109-X
- S. Morawiec, M.J. Mendes, S.A. Filonovich, T. Mateus, S. Mirabella et al., Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express 22(Suppl 4), A1059–A1070 (2014). https://doi.org/10.1364/OE.22.0A1059
- D. Gaspar, A.C. Pimentel, M.J. Mendes, T. Mateus, B.P. Falcão et al., Ag and Sn nanops to enhance the near-infrared absorbance of a-Si: H thin films. Plasmonics 9(5), 1015–1023 (2014). https://doi.org/10.1007/s11468-014-9709-0
- P. Narchi, J. Alvarez, P. Chrétien, G. Picardi, R. Cariou et al., Cross-sectional investigations on epitaxial silicon solar cells by kelvin and conducting probe atomic force microscopy: effect of illumination. Nanoscale Res. Lett. 11(1), 55 (2016). https://doi.org/10.1186/s11671-016-1268-1
- R. Cariou, W. Chen, I. Cosme-Bolanos, J.-L. Maurice, M. Foldyna et al., Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process. Prog. Photovolt: Res. Appl. 24(8), 1075–1084 (2016). https://doi.org/10.1002/pip.2762
- H. Águas, S.K. Ram, A. Araújo, D. Gaspar, A. Vicente et al., Silicon thin film solar cells on commercial tiles. Energy Environ. Sci. 4(11), 4620 (2011). https://doi.org/10.1039/c1ee02303a
- G. Ribeiro, G. Ferreira, U.D. Menda, M. Alexandre, M.J. Brites et al., Sub-bandgap sensitization of perovskite semiconductors via colloidal quantum dots incorporation. Nanomaterials 13(17), 2447 (2023). https://doi.org/10.3390/nano13172447
- I.M. Santos, M. Alexandre, V.D. Mihailetchi, J.A. Silva, T. Mateus et al., Optically-boosted planar IBC solar cells with electrically-harmless photonic nanocoatings. Adv. Opt. Mater. 11(15), 2300276 (2023). https://doi.org/10.1002/adom.202300276
- S. Haque, M. Alexandre, A.T. Vicente, K. Li, C.S. Schuster et al., Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Light Sci. Appl. 13(1), 238 (2024). https://doi.org/10.1038/s41377-024-01559-2
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- U.D. Menda, G. Ribeiro, D. Nunes, T. Calmeiro, H. Águas et al., High-performance wide bandgap perovskite solar cells fabricated in ambient high-humidity conditions. Mater. Adv. 2(19), 6344–6355 (2021). https://doi.org/10.1039/D1MA00432H
- U.D. Menda, G. Ribeiro, J. Deuermeier, E. López, D. Nunes et al., Thermal-carrier-escape mitigation in a quantum-dot-In-perovskite intermediate band solar cell via bandgap engineering. ACS Photonics 10(10), 3647–3655 (2023). https://doi.org/10.1021/acsphotonics.3c00738
- A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6(16), 1600920 (2016). https://doi.org/10.1002/aenm.201600920
- H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- M. Alexandre, H. Águas, E. Fortunato, R. Martins, M.J. Mendes, Light management with quantum nanostructured dots-in-host semiconductors. Light Sci. Appl. 10(1), 231 (2021). https://doi.org/10.1038/s41377-021-00671-x
- G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
- M. Chen, P. Li, C. Liang, H. Gu, W. Tong et al., Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization. J. Energy Chem. 45, 103–109 (2020). https://doi.org/10.1016/j.jechem.2019.10.006
- Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li et al., Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A 7(23), 13860–13872 (2019). https://doi.org/10.1039/c9ta03217g
- L. Chao, Z. Wang, Y. Xia, Y. Chen, W. Huang, Recent progress on low dimensional perovskite solar cells. J. Energy Chem. 27(4), 1091–1100 (2018). https://doi.org/10.1016/j.jechem.2017.10.013
- N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
- S. Rabhi, K. Sekar, K. Kalna, T. Hidouri, D.P. Samajdar et al., Enhancing perovskite solar cell performance through PbI2in situ passivation using a one-step process: experimental insights and simulations. RSC Adv. 14(46), 34051–34065 (2024). https://doi.org/10.1039/D4RA06193D
- W. Zhang, Z. Liu, L. Zhang, H. Wang, C. Jiang et al., Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells. Nat. Commun. 15(1), 5709 (2024). https://doi.org/10.1038/s41467-024-50018-4
- J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013). https://doi.org/10.1038/nphoton.2013.80
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., SOLAR CELLS: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26(29), 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
- J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden–popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
- D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji et al., Thiophene-based two-dimensional Dion-jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
- M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu et al., Lead-free Dion–jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2019). https://doi.org/10.1021/acsenergylett.8b02051
- H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
- Y. Zhou, H.F. Garces, B.S. Senturk, A.L. Ortiz, N.P. Padture, Room temperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films and ps. Mater. Lett. 110, 127–129 (2013). https://doi.org/10.1016/j.matlet.2013.08.011
- H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D ruddlesden–popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/adma.202001470
- Y. Huang, Y. Li, E.L. Lim, T. Kong, Y. Zhang et al., Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfa
References
Y. Koo, T. Moon, M. Kang, H. Joo, C. Lee et al., Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light Sci. Appl. 13(1), 30 (2024). https://doi.org/10.1038/s41377-024-01380-x
B.H. Alshammari, M.M.A. Lashin, M.A. Mahmood, F.S. Al-Mubaddel, N. Ilyas et al., Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv. 13(20), 13735–13785 (2023). https://doi.org/10.1039/D3RA01421E
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003). https://doi.org/10.1002/adma.200390087
A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184
Q. Han, J. Wang, S. Tian, S. Hu, X. Wu et al., Inorganic perovskite-based active multifunctional integrated photonic devices. Nat. Commun. 15(1), 1536 (2024). https://doi.org/10.1038/s41467-024-45565-9
X. Xu, S. Liu, Y. Kuai, Y. Jiang, Z. Hu et al., Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv. Sci. 11(42), 2309862 (2024). https://doi.org/10.1002/advs.202309862
A. Ravilla, C.A.R. Perini, J.-P. Correa-Baena, A.W.Y. Ho-Baillie, I. Celik, Life cycle assessment of low-dimensional materials for perovskite photovoltaic cells. Energy Adv. 3(4), 800–811 (2024). https://doi.org/10.1039/D3YA00540B
F. Ye, T. Tian, J. Su, R. Jiang, J. Li et al., Tailoring low-dimensional perovskites passivation for efficient two-step-processed FAPbI3 solar cells and modules. Adv. Energy Mater. 14(4), 2302775 (2024). https://doi.org/10.1002/aenm.202302775
M. Li, J. Wang, J. Yao, S. Wang, L. Xu et al., Trade-off between efficiency and stability of CsPbBr3 perovskite quantum dot-based light-emitting diodes by optimized passivation ligands for Br/Pb. Adv. Funct. Mater. 34(3), 2308341 (2024). https://doi.org/10.1002/adfm.202308341
S. Aftab, G. Koyyada, Z. Haider, E. Akman, F. Kabir et al., From lab to luminescence: Perovskite-based dimensional integrations pushing LED boundaries. Mater. Today Phys. 46, 101490 (2024). https://doi.org/10.1016/j.mtphys.2024.101490
H. Dong, C. Ran, W. Gao, M. Li, Y. Xia et al., Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight 3(1), 3 (2023). https://doi.org/10.1186/s43593-022-00033-z
K. M. Salim, S. Masi, A. F. Gualdrón-Reyes, R. S. Sánchez, E. M. Barea, M. Kreĉmarová, J. F. Sánchez-Royo, I. n. Mora-Seró. Boosting long-term stability of pure formamidinium perovskite solar cells by ambient air additive assisted fabrication. ACS Energy Lett. 6, 3511–3521 (2021). https://pubs.acs.org/doi/https://doi.org/10.1021/acsenergylett.1c01311
H. Liu, H. Zhou, Repair strategies for perovskite solar cells. Chem. Res. Chin. Univ. 37(5), 1055–1066 (2021). https://doi.org/10.1007/s40242-021-1334-9
K. Tanaka, T. Takahashi, T. Kondo, T. Umebayashi, K. Asai et al., Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71(4), 045312 (2005). https://doi.org/10.1103/PhysRevB.71.045312
W. Chen, F. Zhang, C. Wang, M. Jia, X. Zhao et al., Nonlinear photonics using low-dimensional metal-halide perovskites: recent advances and future challenges. Adv. Mater. 33(11), 2004446 (2021). https://doi.org/10.1002/adma.202004446
T.W. Kasel, Electronic structure perturbations of perovskite material: Photovoltaic applications (Ph.D thesis of University of Oregon, 2020).
K. Chondroudis, D.B. Mitzi, Electroluminescence from an organic–inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11(11), 3028–3030 (1999). https://doi.org/10.1021/cm990561t
E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136(38), 13154–13157 (2014). https://doi.org/10.1021/ja507086b
C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
W. Ahmad, Y. Gong, G. Abbas, K. Khan, M. Khan et al., Evolution of low-dimensional material-based field-effect transistors. Nanoscale 13(10), 5162–5186 (2021). https://doi.org/10.1039/d0nr07548e
Z. Tan, Y. Wu, H. Hong, J. Yin, J. Zhang et al., Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138(51), 16612–16615 (2016). https://doi.org/10.1021/jacs.6b11683
G. Zhou, R. Sun, Y. Xiao, G. Abbas, Z. Peng, A high-performance flexible broadband photodetector based on graphene–PTAA–perovskite heterojunctions. Adv. Electron. Mater. 7(3), 2000522 (2021). https://doi.org/10.1002/aelm.202000522
X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang et al., Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13(33), 1700611 (2017). https://doi.org/10.1002/smll.201700611
P. Chen, Y. Bai, M. Lyu, J.-H. Yun, M. Hao et al., Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Sol. RRL 2(3), 1700186 (2018). https://doi.org/10.1002/solr.201700186
G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith, Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8(1), 591–598 (2014). https://doi.org/10.1021/nn4052309
J. Song, L. Xu, J. Li, J. Xue, Y. Dong et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016). https://doi.org/10.1002/adma.201600225
C. Lee, S.J. Lee, Y. Shin, Y. Woo, S.-H. Han et al., Synthetic and post-synthetic strategies to improve photoluminescence quantum yields in perovskite quantum dots. Catalysts 11(8), 957 (2021). https://doi.org/10.3390/catal11080957
Y. Liu, S. Bose, W. Fan, Effect of size and shape on electronic and optical properties of CdSe quantum dots. Optik 155, 242–250 (2018). https://doi.org/10.1016/j.ijleo.2017.10.165
X. Fang, W. Zhai, K. Zhang, Y. Wang, L. Yao et al., Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands. AIP Adv. 7(8), 085217 (2017). https://doi.org/10.1063/1.4994995
S. Parveen, K.K. Paul, R. Das, P.K. Giri, Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. J. Colloid Interface Sci. 539, 619–633 (2019). https://doi.org/10.1016/j.jcis.2018.12.105
X.-F. Hu, C.-G. Lu, Q. Wang, J.-K. Xu, Y.-P. Cui, A high-precision, template-assisted, anisotropic wet etching method for fabricating perovskite microstructure arrays. RSC Adv. 10(63), 38220–38226 (2020). https://doi.org/10.1039/D0RA07228A
S. Wang, C. Bi, J. Yuan, L. Zhang, J. Tian, Original core–shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 3(1), 245–251 (2018). https://doi.org/10.1021/acsenergylett.7b01243
Y. Yang, S. Wei, X. Kang, O. Tegus, D. Pan, Short-chain ligand assisted synthesis of CH3NH3PbX3 (X = Cl, Br, I) perovskite quantum dots and improved morphology of CH3NH3PbBr3 thin films. J. Lumin. 211, 26–31 (2019). https://doi.org/10.1016/j.jlumin.2019.03.018
C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark et al., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9(3), 586–593 (2018). https://doi.org/10.1039/c7sc04539e
C. Zhou, Y. Tian, M. Wang, A. Rose, T. Besara et al., Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56(31), 9018–9022 (2017). https://doi.org/10.1002/anie.201702825
J. Li, P. Dwivedi, K.S. Kumar, T. Roy, K.E. Crawford et al., Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater. 7(1), 2000535 (2021). https://doi.org/10.1002/aelm.202000535
J. Guo, Q. Hu, M. Lu, A. Li, X. Zhang et al., Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chem. Eng. J. 427, 131010 (2022). https://doi.org/10.1016/j.cej.2021.131010
W. Zhang, M. Hong, J. Luo, Centimeter-sized single crystal of a one-dimensional lead-free mixed-cation perovskite ferroelectric for highly polarization sensitive photodetection. J. Am. Chem. Soc. 143(40), 16758–16767 (2021). https://doi.org/10.1021/jacs.1c08281
M.M. Rahman, C.-Y. Ge, K. Yoo, J.-J. Lee, Aqueous phase synthesis of trimethylsulfoxonium lead triiodide for moisture-stable perovskite solar cells. Mater. Today Energy 21, 100803 (2021). https://doi.org/10.1016/j.mtener.2021.100803
Y. Liang, F. Li, R. Zheng, Low-dimensional hybrid perovskites for field-effect transistors with improved stability: progress and challenges. Adv. Electron. Mater. 6(9), 2000137 (2020). https://doi.org/10.1002/aelm.202000137
D. Yao, M.T. Hoang, H. Wang, Low-dimensional-networked perovskites with A-site-cation engineering for optoelectronic devices. Small Meth. 5(5), 2001147 (2021). https://doi.org/10.1002/smtd.202001147
Z. Chu, X. Chu, Y. Zhao, Q. Ye, J. Jiang et al., Emerging low-dimensional crystal structure of metal halide perovskite optoelectronic materials and devices. Small Struct. 2(6), 2000133 (2021). https://doi.org/10.1002/sstr.202000133
Z. Ma, F. Li, L. Sui, Y. Shi, R. Fu et al., Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure. Adv. Opt. Mater. 8(18), 2000713 (2020). https://doi.org/10.1002/adom.202000713
A. Ishii, T. Miyasaka, Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6(46), eabd3274 (2020). https://doi.org/10.1126/sciadv.abd3274
S.K. Vishwanath, B. Febriansyah, S.E. Ng, T. Das, J. Acharya et al., Correction: High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Mater. Horiz. 11(18), 4519–4519 (2024). https://doi.org/10.1039/D4MH90073A
Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier et al., One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017). https://doi.org/10.1038/ncomms14051
X. Xu, X. Zhang, W. Deng, J. Jie, X. Zhang, 1D organic–inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Meth. 2(7), 1700340 (2018). https://doi.org/10.1002/smtd.201700340
S.-X. Li, Y.-S. Xu, C.-L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32(28), e2001998 (2020). https://doi.org/10.1002/adma.202001998
Y. Wang, X. Liu, Q. He, G. Chen, D. Xu et al., Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 31(22), 2011251 (2021). https://doi.org/10.1002/adfm.202011251
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15(10), 6521–6527 (2015). https://doi.org/10.1021/acs.nanolett.5b02985
S. Ahmad, X. Guo, Rapid development in two-dimensional layered perovskite materials and their application in solar cells. Chin. Chem. Lett. 29(5), 657–663 (2018). https://doi.org/10.1016/j.cclet.2017.08.057
H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2(9), 1500194 (2015). https://doi.org/10.1002/advs.201500194
K.C. Kwon, K.S. Choi, S.Y. Kim, Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 22(22), 4724–4731 (2012). https://doi.org/10.1002/adfm.201200997
K.T. Nam, S.A. Shelby, P.H. Choi, A.B. Marciel, R. Chen et al., Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 9(5), 454–460 (2010). https://doi.org/10.1038/nmat2742
G. Grancini, M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4(1), 4–22 (2018). https://doi.org/10.1038/s41578-018-0065-0
M. Braun, W. Tuffentsammer, H. Wachtel, H.C. Wolf, Tailoring of energy levels in lead chloride based layered perovskites and energy transfer between the organic and inorganic planes. Chem. Phys. Lett. 303(1–2), 157–164 (1999). https://doi.org/10.1016/S0009-2614(99)00205-5
R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu et al., Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29(9), 1604278 (2017). https://doi.org/10.1002/adma.201604278
A. Fraccarollo, A. Zoccante, L. Marchese, M. Cossi, Ab initio modeling of 2D and quasi-2D lead organohalide perovskites with divalent organic cations and a tunable band gap. Phys. Chem. Chem. Phys. 22(36), 20573–20587 (2020). https://doi.org/10.1039/c9cp06851a
X. Li, F. Cao, D. Yu, J. Chen, Z. Sun et al., All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13(9). 1603996 (2017). https://doi.org/10.1002/smll.201603996
D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. 1, 1–12 (2001). https://doi.org/10.1039/b007070j
J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu et al., Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 4(12), 2913–2921 (2019). https://doi.org/10.1021/acsenergylett.9b02375
F. Yang, P. Zhang, M.A. Kamarudin, G. Kapil, T. Ma et al., Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 28(46), 1804856 (2018). https://doi.org/10.1002/adfm.201804856
M.J. Brites, M.A. Barreiros, V. Corregidor, L.C. Alves, J.V. Pinto et al., Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process. ACS Appl. Energy Mater. 2(3), 1844–1853 (2019). https://doi.org/10.1021/acsaem.8b02005
Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7(18), 1700162 (2017). https://doi.org/10.1002/aenm.201700162
J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
B.-E. Cohen, M. Wierzbowska, L. Etgar, High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 27(5), 1604733 (2017). https://doi.org/10.1002/adfm.201604733
X. Gan, O. Wang, K. Liu, X. Du, L. Guo et al., 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 162, 93–102 (2017). https://doi.org/10.1016/j.solmat.2016.12.047
C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
T.M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Müller-Buschbaum et al., Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics. Adv. Mater. 28(19), 3653–3661 (2016). https://doi.org/10.1002/adma.201506141
T. Ishihara, Optical properties of PbI-based perovskite structures. J. Lumin. 60, 269–274 (1994). https://doi.org/10.1016/0022-2313(94)90145-7
D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy, Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets. Science 267(5203), 1473–1476 (1995). https://doi.org/10.1126/science.267.5203.1473
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher et al., 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30(19), 1909919 (2020). https://doi.org/10.1002/adfm.201909919
Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
P. Tyagi, S.M. Arveson, W.A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6(10), 1911–1916 (2015). https://doi.org/10.1021/acs.jpclett.5b00664
Z. Yuan, Y. Shu, Y. Xin, B. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 52(20), 3887–3890 (2016). https://doi.org/10.1039/C5CC09762B
S.T. Ha, X. Liu, Q. Zhang, D. Giovanni, T.C. Sum et al., Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2(9), 838–844 (2014). https://doi.org/10.1002/adom.201400106
J.H. Han, S. Lee, J. Cheon, Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals. Chem. Soc. Rev. 42(7), 2581–2591 (2013). https://doi.org/10.1039/C2CS35386E
Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137(51), 16008–16011 (2015). https://doi.org/10.1021/jacs.5b11199
B.A. Koscher, N.D. Bronstein, J.H. Olshansky, Y. Bekenstein, A.P. Alivisatos, Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 138(37), 12065–12068 (2016). https://doi.org/10.1021/jacs.6b08178
J. Liu, K. Chen, S.A. Khan, B. Shabbir, Y. Zhang et al., Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology 31(15), 152002 (2020). https://doi.org/10.1088/1361-6528/ab5a19
S. Panigrahi, S. Jana, T. Calmeiro, D. Nunes, R. Martins et al., Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 11(10), 10214–10221 (2017). https://doi.org/10.1021/acsnano.7b04762
B.-E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2D halide perovskites beyond the ruddlesden-popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
E. Oksenberg, E. Sanders, R. Popovitz-Biro, L. Houben, E. Joselevich, Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 18(1), 424–433 (2018). https://doi.org/10.1021/acs.nanolett.7b04310
H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33(7), 2003309 (2021). https://doi.org/10.1002/adma.202003309
Y. Zhang, J. Liu, Z. Wang, Y. Xue, Q. Ou et al., Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 52(94), 13637–13655 (2016). https://doi.org/10.1039/C6CC06425F
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
N. Nishimura, M. Tojo, Y. Takeoka, Simple one-step synthesis of a two-dimensional perovskite consisting of perfluoroalkyl-based ammonium spacers using acetone as the solvent. Chem. Commun. 56(71), 10293–10296 (2020). https://doi.org/10.1039/D0CC03874A
J. Chen, L. Gan, F. Zhuge, H. Li, J. Song et al., A ternary solvent method for large-sized two-dimensional perovskites. Angew. Chem. Int. Ed. 56(9), 2390–2394 (2017). https://doi.org/10.1002/anie.201611794
I.M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi et al., Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small 15(1), 1804150 (2019). https://doi.org/10.1002/smll.201804150
K. Yang, F. Li, Y. Liu, Z. Xu, Q. Li et al., All-solution-processed perovskite quantum dots light-emitting diodes based on the solvent engineering strategy. ACS Appl. Mater. Interfaces 10(32), 27374–27380 (2018). https://doi.org/10.1021/acsami.8b09702
J. Zhang, B. Wei, L. Wang, X. Yang, The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. J. Mater. Chem. C 9(36), 12037–12045 (2021). https://doi.org/10.1039/d1tc03385a
J. Yuan, X. Zhang, J. Sun, R. Patterson, H. Yao et al., Hybrid perovskite quantum dot/non-fullerene molecule solar cells with efficiency over 15%. Adv. Funct. Mater. 31(27), 2101272 (2021). https://doi.org/10.1002/adfm.202101272
D. Ghosh, M.Y. Ali, A. Ghosh, A. Mandal, S. Bhattacharyya, Heterovalent substitution in mixed halide perovskite quantum dots for improved and stable photovoltaic performance. J. Phys. Chem. C 125(10), 5485–5493 (2021). https://doi.org/10.1021/acs.jpcc.0c11122
W.-C. Chen, Y.-H. Fang, L.-G. Chen, F.-C. Liang, Z.-L. Yan et al., High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chem. Eng. J. 414, 128866 (2021). https://doi.org/10.1016/j.cej.2021.128866
X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang et al., All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17(8), 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
J. Li, R. Gao, F. Gao, J. Lei, H. Wang et al., Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. J. Alloys Compd. 818, 152903 (2020). https://doi.org/10.1016/j.jallcom.2019.152903
Y. Wang, Y. Shi, G. Xin, J. Lian, J. Shi, Two-dimensional van der waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15(10), 4741–4749 (2015). https://doi.org/10.1021/acs.cgd.5b00949
P. Li, B.N. Shivananju, Y. Zhang, S. Li, Q. Bao, High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. J. Phys. D Appl. Phys. 50(9), 094002 (2017). https://doi.org/10.1088/1361-6463/aa5623
M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He et al., Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 5, 14083 (2015). https://doi.org/10.1038/srep14083
D. Ghoshal, T. Wang, H.-Z. Tsai, S.-W. Chang, M. Crommie et al., Catalyst-free and morphology-controlled growth of 2D perovskite nanowires for polarized light detection. Adv. Opt. Mater. 7(15), 1900039 (2019). https://doi.org/10.1002/adom.201900039
Y. Xue, J. Yuan, J. Liu, S. Li, Controllable synthesis of 2D perovskite on different substrates and its application as photodetector. Nanomaterials 8(8), 591 (2018). https://doi.org/10.3390/nano8080591
W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu et al., Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/ nanoflake single crystals. ACS Appl. Mater. Interfaces 10(2), 1865–1870 (2018). https://doi.org/10.1021/acsami.7b18093
J. Wang, C. Fang, J. Ma, S. Wang, L. Jin et al., Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection. ACS Nano 13(8), 9473–9481 (2019). https://doi.org/10.1021/acsnano.9b04437
G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon et al., Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29(2), 45–96 (2004). https://doi.org/10.1080/10408430490490905
A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang et al., Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 17(1), 523–530 (2017). https://doi.org/10.1021/acs.nanolett.6b04587
D.N. Dirin, L. Protesescu, D. Trummer, I.V. Kochetygov, S. Yakunin et al., Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16(9), 5866–5874 (2016). https://doi.org/10.1021/acs.nanolett.6b02688
S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. Int. Ed. 54(19), 5693–5696 (2015). https://doi.org/10.1002/anie.201411956
L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar et al., Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates. Nanoscale 10(32), 15164–15172 (2018). https://doi.org/10.1039/C8NR03058H
W. Deng, L. Huang, X. Xu, X. Zhang, X. Jin et al., Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17(4), 2482–2489 (2017). https://doi.org/10.1021/acs.nanolett.7b00166
L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12(5), 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
Y. Liu, H. Ye, Y. Zhang, K. Zhao, Z. Yang et al., Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter 1(2), 465–480 (2019). https://doi.org/10.1016/j.matt.2019.04.002
H. Tian, L. Zhao, X. Wang, Y.-W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
H.L. Kagdada, B. Roondhe, V. Roondhe, S.D. Dabhi, W. Luo et al., Exploring A-site cation variations in Dion–jacobson two-dimensional halide perovskites for enhanced solar cell applications: a density functional theory study. Adv. Energy Sustain. Res. 5(1), 2300147 (2024). https://doi.org/10.1002/aesr.202300147
Y. Dong, R. Zhu, Y. Jia, Linear relationship between the dielectric constant and band gap in low-dimensional mixed-halide perovskites. J. Phys. Chem. C 125(27), 14883–14890 (2021). https://doi.org/10.1021/acs.jpcc.1c01576
M.S. Ozório, A.C. Dias, J.F.R.V. Silveira, J.L.F. Da Silva, Theoretical investigation of the role of anion and trivalent cation substitution in the physical properties of lead-free zero-dimensional perovskites. J. Phys. Chem. C 126(16), 7245–7255 (2022). https://doi.org/10.1021/acs.jpcc.2c00494
H.T. Abdulla, A DFT approach on the investigations of the structural and optoelectronic properties of lead-free and Ge-based mixed halide perovskites RbGeBr2Cl and RbGeI2Cl. Indian J. Phys. 99(3), 1041–1050 (2025). https://doi.org/10.1007/s12648-024-03354-6
M.U. Khandaker, H. Osman, S.A.M. Issa, M.M. Uddin, M.H. Ullah et al., Newly predicted halide perovskites Mg3AB3 (a = N, Bi; B = F, Br, I) for next-generation photovoltaic applications: a first-principles study. RSC Adv. 15(8), 5766–5780 (2025). https://doi.org/10.1039/d4ra09093d
H. Beck, C. Gehrmann, D.A. Egger, Structure and binding in halide perovskites: analysis of static and dynamic effects from dispersion-corrected density functional theory. APL Mater. 7(2), 021108 (2019). https://doi.org/10.1063/1.5086541
M.B. Fridriksson, S. Maheshwari, F.C. Grozema, Structural dynamics of two-dimensional ruddlesden–popper perovskites: a computational study. J. Phys. Chem. C 124(40), 22096–22104 (2020). https://doi.org/10.1021/acs.jpcc.0c05225
R.C.B. Cedeno, J. Wei, Theoretical investigation of the mechanical properties of perovskite at various environmental factors change for application in solar cells proposed for green policy. Eng. Anal. Bound. Elem. 152, 326–333 (2023). https://doi.org/10.1016/j.enganabound.2023.04.017
R. Lyu, C.E. Moore, T. Liu, Y. Yu, Y. Wu, Predictive design model for low-dimensional organic-inorganic halide perovskites assisted by machine learning. J. Am. Chem. Soc. 143(32), 12766–12776 (2021). https://doi.org/10.1021/jacs.1c05441
W.A. Saidi, W. Shadid, I.E. Castelli, Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. NPJ Comput. Mater. 6, 36 (2020). https://doi.org/10.1038/s41524-020-0307-8
S. Yuan, Y. Liu, J. Lan, W. Yang, H. Xiong et al., Accurate dimension prediction for low-dimensional organic-inorganic halide perovskites via a self-established machine learning strategy. J. Phys. Chem. Lett. 14(32), 7323–7330 (2023). https://doi.org/10.1021/acs.jpclett.3c01915
C.-S. Hu, R. Mayengbam, M.-C. Wu, K. Xia, T.C. Sum, Geometric data analysis-based machine learning for two-dimensional perovskite design. Commun. Mater. 5, 106 (2024). https://doi.org/10.1038/s43246-024-00545-w
M. A. Mahmud. Low-temperature processed perovskite solar cells. (2018) https://doi.org/10.26190/unsworks/3582
E. Calabrò, F. Matteocci, A.L. Palma, L. Vesce, B. Taheri et al., Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Sol. Energy Mater. Sol. Cells 185, 136–144 (2018). https://doi.org/10.1016/j.solmat.2018.05.001
M. Sharifi, R. Taheri Ghahrizjani, D. A. Amini, E. Mohajerani. Poling-assisted strategies for enhancing open-circuit voltage in highly sensitive, self-powered perovskite photodetector. Self-Powered Perovskite Photodetector. https://doi.org/10.2139/ssrn.5111215
Z. Xie, D. Liu, C. Gao, X. Zhang, H. Dong et al., High mobility emissive organic semiconductors for optoelectronic devices. J. Am. Chem. Soc. 147(3), 2239–2256 (2025). https://doi.org/10.1021/jacs.4c11208
S.M. Hasnain, A. Iqbal, I. Qasim, K. Irshad, M.A. Mir et al., Performance evaluation of organometal halide MASnI3 and inorganic BaZrS3 hybrids in perovskites solar cells: Theoretical approach. Hybrid Adv. 9, 100408 (2025). https://doi.org/10.1016/j.hybadv.2025.100408
A. Hichri, S. Jaziri, M.O. Goerbig, Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B 100(11), 115426 (2019). https://doi.org/10.1103/physrevb.100.115426
H. Wang, F.U. Kosasih, H. Yu, G. Zheng, J. Zhang et al., Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nat. Commun. 11(1), 891 (2020). https://doi.org/10.1038/s41467-020-14747-6
A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
J. Mao, F. Uemura, S.A. Yazdani, Y. Yin, H. Sato et al., Ultra-fast perovskite electro-optic modulator and multi-band transmission up to 300 Gbit s−1. Commun. Mater. 5, 114 (2024). https://doi.org/10.1038/s43246-024-00558-5
A. Khalid, M.I. Malik, I. Qasim, Analysis and performance evaluation of non-toxic organo-metal halide (CH3NH3SnI3) perovskite optical absorber based photovoltaic cell. Chem. Inorg. Mater. 5, 100083 (2025). https://doi.org/10.1016/j.cinorg.2024.100083
S.M. Hasnain, I. Qasim, A. Iqbal, M.A. Mir, N. Abu-Libdeh, Novel dual absorber configuration for eco-friendly perovskite solar cells: design, numerical investigations and performance of ITO-C60-MASnI3-RbGeI3-Cu2O-Au. Sol. Energy 278, 112788 (2024). https://doi.org/10.1016/j.solener.2024.112788
A. Javed, M.F. Nasir, I. Qasim, Y.M. Alanazi, M.T. Khan, Numerical modelling of an effective perovskite solar cell and PV-module for comparison analysis of organic and inorganic electron transport layers. Int. J. Electrochem. Sci. 19(8), 100641 (2024). https://doi.org/10.1016/j.ijoes.2024.100641
A. Basit, I. Qasim, Optimizing solar cell and module design with SnO2-ETL and organometal-halide perovskite absorber: SCAPS-1D and PVSyst analysis. Wirel. Power Transf. 12(1), e001 (2025). https://doi.org/10.48130/wpt-0024-0015
O. Ahmad, I. Qasim, S.M. Hasnain, Z.U. Abdin, M.F. Nasir et al., Modelling and numerical simulations of eco-friendly double absorber solar cell “Spiro-OmeTAD/CIGS/MASnI3/CdS/ZnO” and its PV-module. Org. Electron. 117, 106781 (2023). https://doi.org/10.1016/j.orgel.2023.106781
M.S. Hanif, I. Qasim, M.I. Malik, M.F. Nasir, O. Ahmad et al., Development of low-cost and high-efficiency solar modules based on perovskite solar cells for large-scale applications. Heliyon 10(4), e25703 (2024). https://doi.org/10.1016/j.heliyon.2024.e25703
Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10(6), 497–502 (2015). https://doi.org/10.1038/nnano.2015.75
H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak et al., A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6(15), eaay0815 (2020). https://doi.org/10.1126/sciadv.aay0815
J.Q. Grim, A.S. Bracker, M. Zalalutdinov, S.G. Carter, A.C. Kozen et al., Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18(9), 963–969 (2019). https://doi.org/10.1038/s41563-019-0418-0
X. Yang, L. Ma, M. Yu, H.-H. Chen, Y. Ji et al., Focus on perovskite emitters in blue light-emitting diodes. Light Sci. Appl. 12(1), 177 (2023). https://doi.org/10.1038/s41377-023-01206-2
M. Kober-Czerny, S.G. Motti, P. Holzhey, B. Wenger, J. Lim et al., Excellent long-range charge-carrier mobility in 2D perovskites. Adv. Funct. Mater. 32(36), 2203064 (2022). https://doi.org/10.1002/adfm.202203064
S. Kar, K. Dey, Instabilities and degradation in perovskite materials and devices. Perovskite Optoelectronic Devices. Springer International Publishing, (2024)., pp 573–637 https://doi.org/10.1007/978-3-031-57663-8_17
R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm et al., Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13(6), 579–633 (2011). https://doi.org/10.1021/co200007w
D.I. Kutsarov, E. Rezaee, J. Lambert, W.T. Stroud, A. Panagiotopoulos et al., Progress in flexible perovskite solar cells: paving the way for scalable manufacturing. Adv. Mater. Technol. 2401834 (2025). https://doi.org/10.1002/admt.202401834
C. Cho, S. Feldmann, K.M. Yeom, Y.W. Jang, S. Kahmann et al., Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nat. Mater. 21(12), 1388–1395 (2022). https://doi.org/10.1038/s41563-022-01395-y
J. Liang, Z. Zhang, Y. Zheng, X. Wu, J. Wang et al., Overcoming the carrier transport limitation in Ruddlesden-Popper perovskite films by using lamellar nickel oxide substrates. J. Mater. Chem. A 9(19), 11741–11752 (2021). https://doi.org/10.1039/d1ta01038g
Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable Dion−Jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
S.S. Hong, J.H. Yu, D. Lu, A.F. Marshall, Y. Hikita et al., Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3(11), eaao5173 (2017). https://doi.org/10.1126/sciadv.aao5173
L. Zhao, H. Tian, S.H. Silver, A. Kahn, T.-L. Ren et al., Ultrasensitive heterojunctions of graphene and 2D perovskites reveal spontaneous iodide loss. Joule 2(10), 2133–2144 (2018). https://doi.org/10.1016/j.joule.2018.07.011
H. Pan, J. Chen, R. Cao, V. Murugesan, N.N. Rajput et al., Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2(10), 813–820 (2017). https://doi.org/10.1038/s41560-017-0005-z
L.J. Sutherland, H.C. Weerasinghe, G.P. Simon, A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv. Energy Mater. 11(34), 2101383 (2021). https://doi.org/10.1002/aenm.202101383
X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai et al., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12(1), 52 (2021). https://doi.org/10.1038/s41467-020-20272-3
J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
B. Dou, J.B. Whitaker, K. Bruening, D.T. Moore, L.M. Wheeler et al., Roll-to-roll printing of perovskite solar cells. ACS Energy Lett. 3(10), 2558–2565 (2018). https://doi.org/10.1021/acsenergylett.8b01556
J. Li, Y. Yang, Z. Ye, D. Chen, J. Cui et al., Controlled high-quality perovskite single crystals growth for radiation detection: Nucleation and growth kinetics of antisolvent vapor-assisted crystallization. J. Mater. Sci. Technol. 232, 276–282 (2025). https://doi.org/10.1016/j.jmst.2025.02.019
Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. NPJ Comput. Mater. 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
X. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi et al., In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 1(1), 35–38 (2002). https://doi.org/10.1038/nmat703
Y. Hu, Y. Chu, Q. Wang, Z. Zhang, Y. Ming et al., Standardizing perovskite solar modules beyond cells. Joule 3(9), 2076–2085 (2019). https://doi.org/10.1016/j.joule.2019.08.015
K. Kang, H. Ahn, Y. Song, W. Lee, J. Kim et al., High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31(21), 1804841 (2019). https://doi.org/10.1002/adma.201804841
C.V. Mary Vijila, P.S. Subin, M. Shaji, K.R. Kumar, M.K. Jayaraj, Perovskite quantum dot based resistive memory with very low operating power. The 3rd International Conference on Optoelectronic and Nano Materials for Advanced Technology (icONMAT 2019) Kerala, India. Author(s), (2019). 070004. https://doi.org/10.1063/1.5093879
H. Yang, Y. Yan, X. Wu, Y. Liu, Q. Chen et al., A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 8(8), 2861–2869 (2020). https://doi.org/10.1039/c9tc06622e
Y. Hu, F. Florio, Z. Chen, W.A. Phelan, M.A. Siegler et al., A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6(9), eaay4213 (2020). https://doi.org/10.1126/sciadv.aay4213
X. Song, H. Yin, Q. Chang, Y. Qian, C. Lyu et al., One-dimensional (NH=CINH3)3PbI5 perovskite for ultralow power consumption resistive memory. Research 2021, 9760729 (2021). https://doi.org/10.34133/2021/9760729
G. Abbas, M. Hassan, Q. Khan, H. Wang, G. Zhou et al., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Adv. Electron. Mater. 8(9), 2101412 (2022). https://doi.org/10.1002/aelm.202101412
J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang et al., Wafer-scale reliable switching memory based on 2-dimensional layered organic–inorganic halide perovskite. Nanoscale 9(40), 15278–15285 (2017). https://doi.org/10.1039/C7NR05582J
D. Lee, B. Hwang, J.-S. Lee, Impact of grain sizes on programmable memory characteristics in two-dimensional organic–inorganic hybrid perovskite memory. ACS Appl. Mater. Interfaces 11(22), 20225–20231 (2019). https://doi.org/10.1021/acsami.9b05038
X.-F. Cheng, X. Hou, J. Zhou, B.-J. Gao, J.-H. He et al., Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance. Small 14(12), 1703667 (2018). https://doi.org/10.1002/smll.201703667
H. Kim, M.-J. Choi, J.M. Suh, J.S. Han, S.G. Kim et al., Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Mater. 12, 21 (2020). https://doi.org/10.1038/s41427-020-0202-2
S. Lee, H. Kim, D.H. Kim, W.B. Kim, J.M. Lee et al., Tailored 2D/3D halide perovskite heterointerface for substantially enhanced endurance in conducting bridge resistive switching memory. ACS Appl. Mater. Interfaces 12(14), 17039–17045 (2020). https://doi.org/10.1021/acsami.9b22918
H. An, W.K. Kim, C. Wu, T.W. Kim, Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 56, 41–45 (2018). https://doi.org/10.1016/j.orgel.2018.02.001
M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12, 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
T.D. Dongale, N.B. Mullani, V.B. Patil, R.S. Tikke, P.S. Pawar et al., Mimicking the biological synapse functions of analog memory, synaptic weights, and forgetting with ZnO-based memristive devices. J. Nanosci. Nanotechnol. 18(11), 7758–7766 (2018). https://doi.org/10.1166/jnn.2018.15540
Y.J. Jeon, H. An, Y. Kim, Y.P. Jeon, T.W. Kim, Highly reliable memristive devices with synaptic behavior via facilitating ion transport of the zeolitic imidazolate framework-8 embedded into a polyvinylpyrrolidone polymer matrix. Appl. Surf. Sci. 567, 150748 (2021). https://doi.org/10.1016/j.apsusc.2021.150748
C.D. Wright, P. Hosseini, J.A.V. Diosdado, Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23(18), 2248–2254 (2013). https://doi.org/10.1002/adfm.201202383
K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
C. Tian, L. Wei, Y. Li, J. Jiang, Recent progress on two-dimensional neuromorphic devices and artificial neural network. Curr. Appl. Phys. 31, 182–198 (2021). https://doi.org/10.1016/j.cap.2021.08.014
T. Liu, R. Yan, H. Huang, L. Pan, X. Cao et al., A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 30(46), 2004410 (2020). https://doi.org/10.1002/adfm.202004410
L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2(5), 1900167 (2020). https://doi.org/10.1002/aisy.201900167
S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371–388 (2020). https://doi.org/10.1021/acsaelm.9b00694
S. Oh, S. Jung, M.H. Ali, J.-H. Kim, H. Kim et al., Highly stable artificial synapse consisting of low-surface defect van der waals and self-assembled materials. ACS Appl. Mater. Interfaces 12(34), 38299–38305 (2020). https://doi.org/10.1021/acsami.0c07394
V. Gupta, G. Lucarelli, S. Castro-Hermosa, T. Brown, M. Ottavi, Characterisation & modelling of perovskite-based synaptic memristor device. Microelectron. Reliab. 111, 113708 (2020). https://doi.org/10.1016/j.microrel.2020.113708
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
S.-I. Kim, Y. Lee, M.-H. Park, G.-T. Go, Y.-H. Kim et al., Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5(9), 1900008 (2019). https://doi.org/10.1002/aelm.201900008
L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/C8NR00914G
M. Kumar, H.-S. Kim, D.Y. Park, M.S. Jeong, J. Kim, Compliance-free multileveled resistive switching in a transparent 2D perovskite for neuromorphic computing. ACS Appl. Mater. Interfaces 10(15), 12768–12772 (2018). https://doi.org/10.1021/acsami.7b19406
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
R. Ferreira, M. Shaikh, S.K. Jakka, J. Deuermeier, P. Barquinha et al., Bandlike transport in FaPbBr3 quantum dot phototransistor with high hole mobility and ultrahigh photodetectivity. Nano Lett. 22(22), 9020–9026 (2022). https://doi.org/10.1021/acs.nanolett.2c03317
V. Darshan, V.R. Rajeev, K.N. Narayanan Unni, Enhanced performance of room temperature ammonia sensors using morphology-controlled organic field-effect transistors. Org. Electron. 98, 106280 (2021). https://doi.org/10.1016/j.orgel.2021.106280
S. Rehman, H. Kim, M.F. Khan, J.-H. Hur, J. Eom et al., Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. J. Alloys Compd. 855, 157310 (2021). https://doi.org/10.1016/j.jallcom.2020.157310
X. Guo, L. Han, X. Hou, Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration. Mater. Chem. Front. 5(18), 6760–6778 (2021). https://doi.org/10.1039/d1qm00334h
J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye et al., Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces 13(11), 13362–13371 (2021). https://doi.org/10.1021/acsami.0c22604
S. Aynehband, M. Mohammadi, R. Poushimin, J.-M. Nunzi, A. Simchi, Efficient FAPbI3–PbS quantum dot graphene-based phototransistors. New J. Chem. 45(34), 15285–15293 (2021). https://doi.org/10.1039/D1NJ03139B
W. Zhao, T. Chen, W. Wang, S. Bi, M. Jiang et al., Layer-by-layer 2D ultrathin conductive Cu3(HHTP)2 film for high-performance flexible transparent supercapacitors. Adv. Mater. Interfaces 8(11), 2100308 (2021). https://doi.org/10.1002/admi.202100308
A. Subramanian, S. Hussain, N. Din, G. Abbas, A. Shuja et al., Solution-processed vertical field-effect transistor with separated charge generation and charge transport layers for high-performance near-infrared photodetection. ACS Appl. Electron. Mater. 2(12), 3871–3879 (2020). https://doi.org/10.1021/acsaelm.0c00707
C. Chen, X. Zhang, G. Wu, H. Li, H. Chen, Visible-light ultrasensitive solution-prepared layered organic–inorganic hybrid perovskite field-effect transistor. Adv. Opt. Mater. 5(2), 1600539 (2017). https://doi.org/10.1002/adom.201600539
X. Song, S. Liu, L. Ren, Y. Zuo, S. Wang et al., Two-dimensionalization of 3D perovskites for passive narrowband Photodetection. EcoMat 6(7), e12472 (2024). https://doi.org/10.1002/eom2.12472
H. Wang, Y. Chen, E. Lim, X. Wang, S. Yuan et al., High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. J. Mater. Chem. C 6(46), 12714–12720 (2018). https://doi.org/10.1039/C8TC04691C
F. Zhang, Q. Zhang, X. Liu, Y. Hu, Z. Lou et al., Property modulation of two-dimensional lead-free perovskite thin films by aromatic polymer additives for performance enhancement of field-effect transistors. ACS Appl. Mater. Interfaces 13(20), 24272–24284 (2021). https://doi.org/10.1021/acsami.1c03041
Y. Park, M.-K. Kim, J.-S. Lee, 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J. Mater. Chem. C 9(4), 1429–1436 (2021). https://doi.org/10.1039/d0tc04250a
X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang et al., Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 13(5), 5910–5919 (2019). https://doi.org/10.1021/acsnano.9b01734
B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
Y. Zou, F. Li, C. Zhao, J. Xing, Z. Yu et al., Anomalous ambipolar phototransistors based on all-inorganic CsPbBr3 perovskite at room temperature. Adv. Opt. Mater. 7(21), 1900676 (2019). https://doi.org/10.1002/adom.201900676
J. Jiang, X. Zou, Y. Lv, Y. Liu, W. Xu et al., Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat. Commun. 11, 4266 (2020). https://doi.org/10.1038/s41467-020-18100-9
L. Qian, Y. Sun, M. Wu, D. Xie, L. Ding et al., A solution-processed high-performance phototransistor based on a perovskite composite with chemically modified graphenes. Adv. Mater. 29(22), 1606175 (2017). https://doi.org/10.1002/adma.201606175
J. Chen, W. Ouyang, W. Yang, J.-H. He, X. Fang, Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater. 30(16), 1909909 (2020). https://doi.org/10.1002/adfm.201909909
F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2(3), 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
K. Chandra Sekhar Reddy, V. Selamneni, M.G. Syamala Rao, J. Meza-Arroyo, P. Sahatiya et al., All solution processed flexible p-NiO/n-CdS rectifying junction: Applications towards broadband photodetector and human breath monitoring. Appl. Surf. Sci. 568, 150944 (2021). https://doi.org/10.1016/j.apsusc.2021.150944
T. Handa, T. Aharen, A. Wakamiya, Y. Kanemitsu, Radiative recombination and electron-phonon coupling in lead-free CH3NH3SnI3 perovskite thin films. Phys. Rev. Mater. 2(7), 075402 (2018). https://doi.org/10.1103/PhysRevMaterials.2.075402
X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang et al., Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 12(2), 2884–2891 (2020). https://doi.org/10.1021/acsami.9b18826
P.K. Roy, R.K. Ulaganathan, C.M. Raghavan, S.M. Mhatre, H.-I. Lin et al., Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale 12(35), 18269–18277 (2020). https://doi.org/10.1039/d0nr01171a
H. Jing, R. Peng, R.-M. Ma, J. He, Y. Zhou et al., Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett. 20(10), 7144–7151 (2020). https://doi.org/10.1021/acs.nanolett.0c02468
D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13(15), 17766–17780 (2021). https://doi.org/10.1021/acsami.1c00724
B. Yang, X. Ouyang, X. Zhao, J. Su, Y. Li et al., Inch-sized 2D perovskite single-crystal scintillators for high-resolution neutron and X-ray imaging. InfoMat 7(4), e12648 (2025). https://doi.org/10.1002/inf2.12648
S. Li, Y. Zhang, W. Yang, H. Liu, X. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32(7), 1905443 (2020). https://doi.org/10.1002/adma.201905443
B. Hwang, Y. Park, J.-S. Lee, Impact of grain size on the optoelectronic performance of 2D Ruddlesden-Popper perovskite-based photodetectors. J. Mater. Chem. C 9(1), 110–116 (2021). https://doi.org/10.1039/d0tc04350h
Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31(5), 1804285 (2019). https://doi.org/10.1002/adma.201804285
J. Wang, J. Li, S. Lan, C. Fang, H. Shen et al., Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13(5), 5473–5484 (2019). https://doi.org/10.1021/acsnano.9b00259
L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li et al., 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7(18), 5353–5358 (2019). https://doi.org/10.1039/c9tc00138g
M. Dyksik, S. Wang, W. Paritmongkol, D.K. Maude, W.A. Tisdale et al., Tuning the excitonic properties of the 2D (PEA)2(MA)n–1PbnI3n+1Perovskite family via quantum confinement. J. Phys. Chem. Lett. 12(6), 1638–1643 (2021). https://doi.org/10.1021/acs.jpclett.0c03731
Z. Yin, J. Leng, S. Wang, G. Liang, W. Tian et al., Auger-assisted electron transfer between adjacent quantum wells in two-dimensional layered perovskites. J. Am. Chem. Soc. 143(12), 4725–4731 (2021). https://doi.org/10.1021/jacs.1c00424
I. Bülthoff, W. Jung, R.G. Armann, C. Wallraven, Predominance of eyes and surface information for face race categorization. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.48550/arXiv.2108.04983
V.M. Montaño-Serrano, J.M. Jacinto-Villegas, A.H. Vilchis-González, O. Portillo-Rodríguez, Artificial vision algorithms for socially assistive robot applications: a review of the literature. Sensors 21(17), 5728 (2021). https://doi.org/10.3390/s21175728
H. Tian, X. Wang, F. Wu, Y. Yang, T.-L. Ren, High performance 2D perovskite/graphene optical synapses as artificial eyes. 2018 IEEE International Electron Devices Meeting (IEDM). December 1–5, 2018, San Francisco, CA, USA. IEEE, (2018)., 38.6.1–38.6.4. https://doi.org/10.1109/IEDM.2018.8614666
Z. Xu, C. Wu, Y. Zhu, S. Ju, F. Ma et al., Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale 13(1), 253–260 (2021). https://doi.org/10.1039/D0NR06550A
S.L. Hart, Beyond greening: Strategies for a sustainable world. Harvard Business Review 1, 66–76 (1997). https://doi.org/10.1080/00076799700000047
V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 14(9), 2641–2654 (2010). https://doi.org/10.1016/j.rser.2010.06.008
P. Ron, C. Wilder, The Clean Tech Revolution. (Betascript Publishing 2007), pp. 112–115.
M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13(9), 838–842 (2014). https://doi.org/10.1038/nmat4065
D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). https://doi.org/10.1063/1.1721711
G. Wang, Q. Su, H. Tang, H. Wu, H. Lin et al., 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond. Nat. Commun. 15(1), 8931 (2024). https://doi.org/10.1038/s41467-024-53275-5
X. Ru, M. Yang, S. Yin, Y. Wang, C. Hong et al., Silicon heterojunction solar cells achieving 26.6% efficiency on commercial-size p-type silicon wafer. Joule 8(4), 1092–1104 (2024). https://doi.org/10.1016/j.joule.2024.01.015
H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8(8), 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
L. Pereira, D. Brida, E. Fortunato, I. Ferreira, H. Águas et al., A-Si: H interface optimisation for thin film position sensitive detectors produced on polymeric substrates. J. Non Cryst. Solids 299, 1289–1294 (2002). https://doi.org/10.1016/S0022-3093(01)01150-4
H. Águas, R. Martins, E. Fortunato, Role of ion bombardment on the properties of a-Si: H films. Vacuum 60(1–2), 247–254 (2001). https://doi.org/10.1016/S0042-207X(00)00391-2
R. Martins, I. Ferreira, H. Águas, V. Silva, E. Fortunato et al., Engineering of a-Si: H device stability by suitable design of interfaces. Sol. Energy Mater. Sol. Cells 73(1), 39–49 (2002). https://doi.org/10.1016/S0927-0248(01)00109-X
S. Morawiec, M.J. Mendes, S.A. Filonovich, T. Mateus, S. Mirabella et al., Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express 22(Suppl 4), A1059–A1070 (2014). https://doi.org/10.1364/OE.22.0A1059
D. Gaspar, A.C. Pimentel, M.J. Mendes, T. Mateus, B.P. Falcão et al., Ag and Sn nanops to enhance the near-infrared absorbance of a-Si: H thin films. Plasmonics 9(5), 1015–1023 (2014). https://doi.org/10.1007/s11468-014-9709-0
P. Narchi, J. Alvarez, P. Chrétien, G. Picardi, R. Cariou et al., Cross-sectional investigations on epitaxial silicon solar cells by kelvin and conducting probe atomic force microscopy: effect of illumination. Nanoscale Res. Lett. 11(1), 55 (2016). https://doi.org/10.1186/s11671-016-1268-1
R. Cariou, W. Chen, I. Cosme-Bolanos, J.-L. Maurice, M. Foldyna et al., Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process. Prog. Photovolt: Res. Appl. 24(8), 1075–1084 (2016). https://doi.org/10.1002/pip.2762
H. Águas, S.K. Ram, A. Araújo, D. Gaspar, A. Vicente et al., Silicon thin film solar cells on commercial tiles. Energy Environ. Sci. 4(11), 4620 (2011). https://doi.org/10.1039/c1ee02303a
G. Ribeiro, G. Ferreira, U.D. Menda, M. Alexandre, M.J. Brites et al., Sub-bandgap sensitization of perovskite semiconductors via colloidal quantum dots incorporation. Nanomaterials 13(17), 2447 (2023). https://doi.org/10.3390/nano13172447
I.M. Santos, M. Alexandre, V.D. Mihailetchi, J.A. Silva, T. Mateus et al., Optically-boosted planar IBC solar cells with electrically-harmless photonic nanocoatings. Adv. Opt. Mater. 11(15), 2300276 (2023). https://doi.org/10.1002/adom.202300276
S. Haque, M. Alexandre, A.T. Vicente, K. Li, C.S. Schuster et al., Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Light Sci. Appl. 13(1), 238 (2024). https://doi.org/10.1038/s41377-024-01559-2
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
U.D. Menda, G. Ribeiro, D. Nunes, T. Calmeiro, H. Águas et al., High-performance wide bandgap perovskite solar cells fabricated in ambient high-humidity conditions. Mater. Adv. 2(19), 6344–6355 (2021). https://doi.org/10.1039/D1MA00432H
U.D. Menda, G. Ribeiro, J. Deuermeier, E. López, D. Nunes et al., Thermal-carrier-escape mitigation in a quantum-dot-In-perovskite intermediate band solar cell via bandgap engineering. ACS Photonics 10(10), 3647–3655 (2023). https://doi.org/10.1021/acsphotonics.3c00738
A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6(16), 1600920 (2016). https://doi.org/10.1002/aenm.201600920
H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
M. Alexandre, H. Águas, E. Fortunato, R. Martins, M.J. Mendes, Light management with quantum nanostructured dots-in-host semiconductors. Light Sci. Appl. 10(1), 231 (2021). https://doi.org/10.1038/s41377-021-00671-x
G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
M. Chen, P. Li, C. Liang, H. Gu, W. Tong et al., Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization. J. Energy Chem. 45, 103–109 (2020). https://doi.org/10.1016/j.jechem.2019.10.006
Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li et al., Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A 7(23), 13860–13872 (2019). https://doi.org/10.1039/c9ta03217g
L. Chao, Z. Wang, Y. Xia, Y. Chen, W. Huang, Recent progress on low dimensional perovskite solar cells. J. Energy Chem. 27(4), 1091–1100 (2018). https://doi.org/10.1016/j.jechem.2017.10.013
N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
S. Rabhi, K. Sekar, K. Kalna, T. Hidouri, D.P. Samajdar et al., Enhancing perovskite solar cell performance through PbI2in situ passivation using a one-step process: experimental insights and simulations. RSC Adv. 14(46), 34051–34065 (2024). https://doi.org/10.1039/D4RA06193D
W. Zhang, Z. Liu, L. Zhang, H. Wang, C. Jiang et al., Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells. Nat. Commun. 15(1), 5709 (2024). https://doi.org/10.1038/s41467-024-50018-4
J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013). https://doi.org/10.1038/nphoton.2013.80
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., SOLAR CELLS: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26(29), 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden–popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji et al., Thiophene-based two-dimensional Dion-jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu et al., Lead-free Dion–jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2019). https://doi.org/10.1021/acsenergylett.8b02051
H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
Y. Zhou, H.F. Garces, B.S. Senturk, A.L. Ortiz, N.P. Padture, Room temperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films and ps. Mater. Lett. 110, 127–129 (2013). https://doi.org/10.1016/j.matlet.2013.08.011
H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D ruddlesden–popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/adma.202001470
Y. Huang, Y. Li, E.L. Lim, T. Kong, Y. Zhang et al., Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfa