Wearable Ultrasound Devices for Therapeutic Applications
Corresponding Author: Zheng Yan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 45
Abstract
Wearable ultrasound devices represent a transformative advancement in therapeutic applications, offering noninvasive, continuous, and targeted treatment for deep tissues. These systems leverage flexible materials (e.g., piezoelectric composites, biodegradable polymers) and conformable designs to enable stable integration with dynamic anatomical surfaces. Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration, accelerated tissue regeneration via mechanical and electrical stimulation, and precise neuromodulation using focused acoustic waves. Recent developments demonstrate wireless operation, real-time monitoring, and closed-loop therapy, facilitated by energy-efficient transducers and AI-driven adaptive control. Despite progress, challenges persist in material durability, clinical validation, and scalable manufacturing. Future directions highlight the integration of nanomaterials, 3D-printed architectures, and multimodal sensing for personalized medicine. This technology holds significant potential to redefine chronic disease management, postoperative recovery, and neurorehabilitation, bridging the gap between clinical and home-based care.
Highlights:
1 Flexible ultrasound devices enable deep-tissue therapy via conformable designs, overcoming limitations of rigid systems for continuous monitoring and treatment.
2 Cavitation-enhanced drug delivery and neuromodulation demonstrate noninvasive, targeted interventions for chronic diseases and neural disorders.
3 Wireless, AI-integrated platforms pave the way for personalized, adaptive therapeutics in home-based and clinical settings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wu, W. Gao, Z. Yin, Materials, devices and systems of soft bioelectronics for precision therapy. Adv. Healthc. Mater. 6(10), 1700017 (2017). https://doi.org/10.1002/adhm.201700017
- M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7(11), 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31(42), 2104686 (2021). https://doi.org/10.1002/adfm.202104686
- J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian et al., Wearable sensors: modalities, challenges, and prospects. Lab Chip 18(2), 217–248 (2018). https://doi.org/10.1039/C7LC00914C
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
- J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
- S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
- C. Dagdeviren, Y. Shi, P. Joe, R. Ghaffari, G. Balooch et al., Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14(7), 728–736 (2015). https://doi.org/10.1038/nmat4289
- L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
- C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu et al., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). https://doi.org/10.1038/ncomms5496
- Y.-S. Kim, M. Mahmood, S. Kwon, K. Maher, J.W. Kang et al., Wireless, skin-like membrane electronics with multifunctional ergonomic sensors for enhanced pediatric care. IEEE Trans. Biomed. Eng. 67(8), 2159–2165 (2020). https://doi.org/10.1109/TBME.2019.2956048
- S.P. Lee, G. Ha, D.E. Wright, Y. Ma, E. Sen-Gupta et al., Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit. Med. 1, 2 (2018). https://doi.org/10.1038/s41746-017-0009-x
- M. Rehman, L.M. Higdon, M.R. Sperling, Long-term home EEG recording: wearable and implantable devices. J. Clin. Neurophysiol. 41(3), 200–206 (2024). https://doi.org/10.1097/wnp.0000000000001014
- M. Seong, G. Kim, D. Yeo, Y. Kang, H. Yang et al., MultiSenseBadminton: wearable sensor-based biomechanical dataset for evaluation of badminton performance. Sci. Data 11(1), 343 (2024). https://doi.org/10.1038/s41597-024-03144-z
- Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
- J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
- H.-J. Chung, M.S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv. Healthc. Mater. 3(1), 59–68 (2014). https://doi.org/10.1002/adhm.201300124
- J.R. Sempionatto, A.A. Khorshed, A. Ahmed, A.N. De Loyola E Silva, A. Barfidokht et al., Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sens. 5(6), 1804–1813 (2020). https://doi.org/10.1021/acssensors.0c00604
- C. Ye, M. Wang, J. Min, R.Y. Tay, H. Lukas et al., A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19(3), 330–337 (2024). https://doi.org/10.1038/s41565-023-01513-0
- J. Kang, F. Gao, Y. Wang, J. Fu, S. Song et al., High sensitivity and fast response wireless humidity sensor enabled by MXene-Lys for finger proximity detection and health monitoring applications. Chem. Eng. J. 505, 159474 (2025). https://doi.org/10.1016/j.cej.2025.159474
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- H. Tian, J. Ma, Y. Li, X. Xiao, M. Zhang et al., Electrochemical sensing fibers for wearable health monitoring devices. Biosens. Bioelectron. 246, 115890 (2024). https://doi.org/10.1016/j.bios.2023.115890
- E. Samei, D.J. Peck, Hendee’s Physics of Medical Imaging, 5th edn. (John Wiley & Sons Inc, Berlin, 2019). https://doi.org/10.1002/9781118671016
- M. Wilson, M. Wahlberg, A. Surlykke, P.T. Madsen, Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air? Front. Physiol. 4, 137 (2013). https://doi.org/10.3389/fphys.2013.00137
- J. Hu, G. Zhang, S. Liu, Enzyme-responsive polymeric assemblies, nanops and hydrogels. Chem. Soc. Rev. 41(18), 5933 (2012). https://doi.org/10.1039/c2cs35103j
- T. Boissenot, A. Bordat, E. Fattal, N. Tsapis, Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J. Control. Release 241, 144–163 (2016). https://doi.org/10.1016/j.jconrel.2016.09.026
- K.T. Nguyen, L.H. Le, N.R. Kaipatur, R. Zheng, E.H. Lou et al., High-resolution ultrasonic imaging of dento-periodontal tissues using a multi-element phased array system. Ann. Biomed. Eng. 44(10), 2874–2886 (2016). https://doi.org/10.1007/s10439-016-1634-2
- K.T. Nguyen, C. Pachêco-Pereira, N.R. Kaipatur, J. Cheung, P.W. Major et al., Comparison of ultrasound imaging and cone-beam computed tomography for examination of the alveolar bone level: a systematic review. PLoS ONE 13(10), e0200596 (2018). https://doi.org/10.1371/journal.pone.0200596
- C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang et al., Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2(9), 687–695 (2018). https://doi.org/10.1038/s41551-018-0287-x
- W. Du, L. Zhang, E. Suh, D. Lin, C. Marcus et al., Conformable ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 9(30), eadh5325 (2023). https://doi.org/10.1126/sciadv.adh5325
- C.K.S. Park, T. Trumpour, A. Aziz, J.S. Bax, D. Tessier et al., Cost-effective, portable, patient-dedicated three-dimensional automated breast ultrasound for point-of-care breast cancer screening. Sci. Rep. 13(1), 14390 (2023). https://doi.org/10.1038/s41598-023-41424-7
- H. Hu, X. Zhu, C. Wang, L. Zhang, X. Li et al., Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4(3), eaar3979 (2018). https://doi.org/10.1126/sciadv.aar3979
- H. Hu, H. Huang, M. Li, X. Gao, L. Yin et al., A wearable cardiac ultrasound imager. Nature 613(7945), 667–675 (2023). https://doi.org/10.1038/s41586-022-05498-z
- L. Jiang, G. Lu, Y. Zeng, Y. Sun, H. Kang et al., Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat. Commun. 13(1), 3853 (2022). https://doi.org/10.1038/s41467-022-31599-4
- D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016). https://doi.org/10.1016/j.neuron.2016.06.034
- P. Zhuang, W. Yang, Y. Chen, Y. Zhang, C. Leboucher et al., Biomaterials that passively and actively target macrophages promote the regeneration of injured tissues. Biomed. Tech. 8, 17–49 (2024). https://doi.org/10.1016/j.bmt.2024.09.005
- Y. Xu, Q. Saiding, X. Zhou, J. Wang, W. Cui et al., Electrospun fiber-based immune engineering in regenerative medicine. Smart Medicine 3(1), e20230034 (2024). https://doi.org/10.1002/SMMD.20230034
- Y. Al-Ajam, A. Woollard, N. Kang, Advances in upper limb loss rehabilitation: the role of targeted muscle reinnervation and regenerative peripheral nerve interfaces. Plast. Aesthetic. Res. 9, 63 (2022). https://doi.org/10.20517/2347-9264.2022.24
- K.L. Burke, T.A. Kung, R.C. Hooper, S.W.P. Kemp, P.S. Cederna, Regenerative peripheral nerve interfaces (RPNIs): current status and future direction. Plast. Aesthet. Res. 9(8), 48 (2022). https://doi.org/10.20517/2347-9264.2022.26
- R.J. Coffey, Deep brain stimulation devices: a brief technical history and review. Artif. Organs 33(3), 208–220 (2009). https://doi.org/10.1111/j.1525-1594.2008.00620.x
- J.M. Bronstein, M. Tagliati, R.L. Alterman, A.M. Lozano, J. Volkmann et al., Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68(2), 165 (2011). https://doi.org/10.1001/archneurol.2010.260
- Y. Tufail, A. Yoshihiro, S. Pati, M.M. Li, W.J. Tyler, Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6(9), 1453–1470 (2011). https://doi.org/10.1038/nprot.2011.371
- A. Haritonova, D. Liu, E.S. Ebbini, In vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(12), 2031–2042 (2015). https://doi.org/10.1109/TUFFC.2014.006882
- D. Park, J. Won, G. Lee, Y. Lee, C.-W. Kim et al., Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery. Skin Res. Technol. 28(2), 291–298 (2022). https://doi.org/10.1111/srt.13129
- S. Mitragotri, J. Kost, Low-frequency sonophoresis a review. Adv. Drug Deliv. Rev. 56(5), 589–601 (2004). https://doi.org/10.1016/j.addr.2003.10.024
- Q. Zhou, S. Lau, D. Wu, K.K. Shung, Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 56(2), 139–174 (2011). https://doi.org/10.1016/j.pmatsci.2010.09.001
- Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.001
- S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111(3), 031301 (2012). https://doi.org/10.1063/1.3679521
- W.N. McDicken, T. Anderson, Basic Physics of Medical Ultrasound. Clinical Ultrasound (Elsevier, Amsterdam, 2011), pp.3–15. https://doi.org/10.1016/b978-0-7020-3131-1.00001-8
- F. Wang, P. Jin, Y. Feng, J. Fu, P. Wang et al., Flexible Doppler ultrasound device for the monitoring of blood flow velocity. Sci. Adv. 7(44), eabi9283 (2021). https://doi.org/10.1126/sciadv.abi9283
- X. Jiang, O. Savchenko, Y. Li, S. Qi, T. Yang et al., A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Trans. Biomed. Eng. 66(10), 2704–2718 (2018). https://doi.org/10.1109/TBME.2018.2889669
- D. Dalecki, Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 6, 229–248 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140126
- J. Deprez, G. Lajoinie, Y. Engelen, S.C. De Smedt, I. Lentacker, Opening doors with ultrasound and microbubbles: beating biological barriers to promote drug delivery. Adv. Drug Deliv. Rev. 172, 9–36 (2021). https://doi.org/10.1016/j.addr.2021.02.015
- K. Kooiman, S. Roovers, S.A.G. Langeveld, R.T. Kleven, H. Dewitte et al., Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol. 46(6), 1296–1325 (2020). https://doi.org/10.1016/j.ultrasmedbio.2020.01.002
- S. Roovers, T. Segers, G. Lajoinie, J. Deprez, M. Versluis et al., The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation. Langmuir 35(31), 10173–10191 (2019). https://doi.org/10.1021/acs.langmuir.8b03779
- I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T.W. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014). https://doi.org/10.1016/j.addr.2013.11.008
- K. Kooiman, H.J. Vos, M. Versluis, N. de Jong, Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 28–48 (2014). https://doi.org/10.1016/j.addr.2014.03.003
- L. Duan, L. Yang, J. Jin, F. Yang, D. Liu et al., Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 10(2), 462–483 (2020). https://doi.org/10.7150/thno.37593
- E. Buixaderas, D. Nuzhnyy, J. Petzelt, L. Jin, D. Damjanovic, Polar lattice vibrations and phase transition dynamics in Pb(Zr1-xTix)O3. Phys. Rev. B 84(18), 184302 (2011). https://doi.org/10.1103/physrevb.84.184302
- C.-M. Wong, Y. Chen, H. Luo, J. Dai, K.-H. Lam et al., Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer. Ultrasonics 73, 181–186 (2017). https://doi.org/10.1016/j.ultras.2016.09.012
- Y. Sun, L. Jiang, R. Chen, R. Li, H. Kang et al., Design and fabrication of 15-MHz ultrasonic transducers based on a textured Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 ceramic. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(11), 3095–3101 (2022). https://doi.org/10.1109/TUFFC.2022.3145882
- Y. Quan, C. Fei, W. Ren, L. Wang, G. Niu et al., Lead-free KNN-based textured ceramics for high-frequency ultrasonic transducer application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(5), 1979–1987 (2021). https://doi.org/10.1109/TUFFC.2020.3039120
- C.Y.L. Chao, Y.-P. Zheng, Y.-P. Huang, G.L.Y. Cheing, Biomechanical properties of the forefoot plantar soft tissue as measured by an optical coherence tomography-based air-jet indentation system and tissue ultrasound palpation system. Clin. Biomech. 25(6), 594–600 (2010). https://doi.org/10.1016/j.clinbiomech.2010.03.008
- F. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic Press, New York, 2013)
- A. Ng, J. Swanevelder, Resolution in ultrasound imaging. Continuing Educ. Anaesth. Crit. Care Pain. 11(5), 186–192 (2011). https://doi.org/10.1093/bjaceaccp/mkr030
- H. Fujii, C. Nakaya, H. Takeuchi, T. Kondo, Y. Ishikawa, Acoustic properties of lens materials for ultrasonic probes. Jpn. J. Appl. Phys. 34(1R), 312 (1995). https://doi.org/10.1143/jjap.34.312
- Q. Zhang, T. Ma, C. Wang, X. Liu, Y. Li et al., Transformable ultrasonic array transducer for multiscale imaging and beamforming. IEEE Trans. Ind. Electron. 69(3), 3078–3087 (2022). https://doi.org/10.1109/TIE.2021.3065592
- J. Shriki, Ultrasound physics. Crit. Care Clin. 30(1), 1–24 (2014). https://doi.org/10.1016/j.ccc.2013.08.004
- J. Baranger, O. Villemain, G. Goudot, A. Dizeux, H. Le Blay et al., The fundamental mechanisms of the Korotkoff sounds generation. Sci. Adv. 9(40), eadi4252 (2023). https://doi.org/10.1126/sciadv.adi4252
- Y. Wu, Y. Liu, Z. Huang, X. Wang, Z. Jin et al., Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5(11), 1336–1347 (2021). https://doi.org/10.1038/s41551-021-00779-w
- W. Wang, Y. Shi, W. Chai, K.W.K. Tang, I. Pyatnitskiy et al., H-bonded organic frameworks as ultrasound-programmable delivery platform. Nature 638(8050), 401–410 (2025). https://doi.org/10.1038/s41586-024-08401-0
- Z. Bai, Z. Li, Y. Shao, Subcellular cavitation bubbles induce cellular mechanolysis and collective wound healing in ultrasound-inflicted cell ablation. Adv. Sci. 12(11), 2410760 (2025). https://doi.org/10.1002/advs.202410760
- W.D. O’Brien Jr., Ultrasound–biophysics mechanisms. Prog. Biophys. Mol. Biol. 93(1–3), 212–255 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.010
- J.C. Bamber, Ultrasonic Properties of Tissues (CRC Press, Boca Raton, 2020), pp.57–88
- B. Wang, Z. Yin, X. You, H. Peng, Y. Jiang, Thyroid-targeted nano-bombs empower HIFU for graves’ disease. Adv. Sci. 12(11), 2414597 (2025). https://doi.org/10.1002/advs.202414597
- Y. Zhu, K. Deng, J. Zhou, C. Lai, Z. Ma et al., Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 15(1), 1123 (2024). https://doi.org/10.1038/s41467-024-45437-2
- J.W. Jenne, T. Preusser, M. Günther, High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z. Für Med. Phys. 22(4), 311–322 (2012). https://doi.org/10.1016/j.zemedi.2012.07.001
- S. Seyedmirzaei Sarraf, F. Rokhsar Talabazar, I. Namli, M. Maleki, A. Sheibani Aghdam et al., Fundamentals, biomedical applications and future potential of micro-scale cavitation—a review. Lab Chip 22(12), 2237–2258 (2022). https://doi.org/10.1039/d2lc00169a
- X. Han, F. Wang, J. Shen, S. Chen, P. Xiao et al., Ultrasound nanobubble coupling agent for effective noninvasive deep-layer drug delivery. Adv. Mater. 36(3), e2306993 (2024). https://doi.org/10.1002/adma.202306993
- Y. Pan, Y. Li, Y. Li, X. Zheng, C. Zou et al., Nanodroplet-coated microbubbles used in sonothrombolysis with two-step cavitation strategy. Adv. Healthc. Mater. 12(6), e2202281 (2023). https://doi.org/10.1002/adhm.202202281
- J. Huang, L. Zhang, J. Zheng, Y. Lin, X. Leng et al., Microbubbles-assisted ultrasonication to promote tumor accumulation of therapeutics and modulation of tumor microenvironment for enhanced cancer treatments. Biomaterials 299, 122181 (2023). https://doi.org/10.1016/j.biomaterials.2023.122181
- C. Constans, H. Ahnine, M. Santin, S. Lehericy, M. Tanter et al., Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier. J. Control. Release 318, 223–231 (2020). https://doi.org/10.1016/j.jconrel.2019.12.006
- A. Yildirim, N.T. Blum, A.P. Goodwin, Colloids, nanops, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 9(9), 2572–2594 (2019). https://doi.org/10.7150/thno.32424
- A.F.H. Lum, M.A. Borden, P.A. Dayton, D.E. Kruse, S.I. Simon et al., Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J. Control. Release 111(1–2), 128–134 (2006). https://doi.org/10.1016/j.jconrel.2005.11.006
- C.-C. Yu, A. Shah, N. Amiri, C. Marcus, M.O.G. Nayeem et al., A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Adv. Mater. 35(23), e2300066 (2023). https://doi.org/10.1002/adma.202300066
- F. Zou, Y. Luo, W. Zhuang, T. Xu, A fully integrated conformal wearable ultrasound patch for continuous sonodynamic therapy. Adv. Mater. 36(39), 2409528 (2024). https://doi.org/10.1002/adma.202409528
- W. Lyu, Y. Ma, S. Chen, H. Li, P. Wang et al., Flexible ultrasonic patch for accelerating chronic wound healing. Adv. Healthc. Mater. 10(19), e2100785 (2021). https://doi.org/10.1002/adhm.202100785
- H. Yoon, J.-H. Kim, D. Sadat, A. Barrett, S.H. Ko et al., Decoding tissue biomechanics using conformable electronic devices. Nat. Rev. Mater. 10(1), 4–27 (2025). https://doi.org/10.1038/s41578-024-00729-3
- R.S. Singh, M.O. Culjat, S.P. Vampola, K. Williams, Z.D. Taylor et al., P3D-6 simulation, fabrication, and characterization of a novel flexible, conformal ultrasound transducer array, in 2007 IEEE Ultrasonics Symposium Proceedings. October 28–31, 2007, New York, NY, USA (IEEE, 2007), pp. 1824–1827. https://doi.org/10.1109/ULTSYM.2007.459
- P. Kabakov, T. Kim, Z. Cheng, X. Jiang, S. Zhang, The versatility of piezoelectric composites. Annu. Rev. Mater. Res. 53, 165–193 (2023). https://doi.org/10.1146/annurev-matsci-080921-092839
- S. Gupta, W.T. Navaraj, L. Lorenzelli, R. Dahiya, Ultra-thin chips for high-performance flexible electronics. NPJ Flex. Electron. 2, 8 (2018). https://doi.org/10.1038/s41528-018-0021-5
- S. Joshi, S. Yazadi, V. Henneken, R. Dekker, R. Sanders, Conformable body patches for ultrasound applications, in 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC). December 2–4, 2015, Singapore (IEEE, 2015), pp. 1–4. https://doi.org/10.1109/EPTC.2015.7412278
- Q. Zhu, L. Zhang, H. Liu, T. Chen, L. Sun et al., A piezoelectric micro-machined ultrasonic transducer array based on flexible substrate, in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). April 22–26, 2018, Singapore (IEEE, 2018), pp. 345–348. https://doi.org/10.1109/NEMS.2018.8556929
- P. Jin, J. Fu, F. Wang, Y. Zhang, P. Wang et al., A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7(40), eabg2507 (2021). https://doi.org/10.1126/sciadv.abg2507
- X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16(15), 1902827 (2020). https://doi.org/10.1002/smll.201902827
- S. Selvarajan, A. Kim, S.H. Song, Biodegradable piezoelectric transducer for powering transient implants. IEEE Access 8, 68219–68225 (2020). https://doi.org/10.1109/ACCESS.2020.298599
- H. Jin, Z. Zheng, Z. Cui, Y. Jiang, G. Chen et al., A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring. Nat. Commun. 14(1), 4692 (2023). https://doi.org/10.1038/s41467-023-40181-5
- S. Miao, X. Cao, M. Lu, X. Liu, Tailoring micro/nano-materials with special wettability for biomedical devices. Biomed. Tech. 2, 15–30 (2023). https://doi.org/10.1016/j.bmt.2022.11.005
- X. Zhang, M. Lu, X. Cao, Y. Zhao, Functional microneedles for wearable electronics. Smart Medicine 2(1), e20220023 (2023). https://doi.org/10.1002/SMMD.20220023
- L. Zhen, Z. Liu, Z. Liu, Q. Wang, J. Liu et al., High-density flexible piezoelectric sensor array with double working modes. IEEE Sens. J. 23(5), 5270–5277 (2023). https://doi.org/10.1109/JSEN.2023.3236969
- H. Liu, J. Geng, Q. Zhu, L. Zhang, F. Wang et al., Flexible ultrasonic transducer array with bulk PZT for adjuvant treatment of bone injury. Sensors 20(1), 86 (2019). https://doi.org/10.3390/s20010086
- C. Peng, M. Chen, H.K. Sim, Y. Zhu, X. Jiang, Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor. IEEE Sens. J. 21(3), 2642–2650 (2020). https://doi.org/10.1109/JSEN.2020.3021923
- K. Keller, C. Leitner, C. Baumgartner, L. Benini, F. Greco, Fully printed flexible ultrasound transducer for medical applications. Adv. Mater. Technol. 8(18), 2300577 (2023). https://doi.org/10.1002/admt.202300577
- B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
- M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26(37), 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
- H. Hu, Y. Ma, X. Gao, D. Song, M. Li et al., Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue. Nat. Biomed. Eng. 7(10), 1321–1334 (2023). https://doi.org/10.1038/s41551-023-01038-w
- T.F. de Oliveira, C.N. Pai, M.Y. Matuda, J.C. Adamowski, F. Buiochi, Development of a 2.25 MHz flexible array ultrasonic transducer. Res. Biomed. Eng. 35(1), 27–37 (2019). https://doi.org/10.1007/s42600-019-00006-1
- M. State, P.J. Brands, F.N. van de Vosse, Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers. Ultrasonics 50(4–5), 458–466 (2010). https://doi.org/10.1016/j.ultras.2009.10.004
- Y.X. Kato, S. Furukawa, K. Samejima, N. Hironaka, M. Kashino, Photosensitive-polyimide based method for fabricating various neural electrode architectures. Front. Neuroeng. 5, 11 (2012). https://doi.org/10.3389/fneng.2012.00011
- D.-C. Pang, C.-M. Chang, Development of a novel transparent flexible capacitive micromachined ultrasonic transducer. Sensors 17(6), 1443 (2017). https://doi.org/10.3390/s17061443
- M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai et al., Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100(11), 114318 (2006). https://doi.org/10.1063/1.2401312
- S.G. Kirtania, A.W. Elger, M.R. Hasan, A. Wisniewska, K. Sekhar et al., Flexible antennas: a review. Micromachines 11(9), 847 (2020). https://doi.org/10.3390/mi11090847
- T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. 13(1), 1–12 (2022). https://doi.org/10.1038/s41467-022-33457-9
- W. Liu, C. Zhu, D. Wu, Flexible and stretchable ultrasonic transducer array conformed to complex surfaces. IEEE Electron Device Lett. 42(2), 240–243 (2021). https://doi.org/10.1109/LED.2020.3045037
- S. Gong, B. Zhang, J. Zhang, Z.L. Wang, K. Ren, Biocompatible poly(lactic acid-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 30(14), 1908724 (2020). https://doi.org/10.1002/adfm.201908724
- E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller III. et al., Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. U. S. A. 115(5), 909–914 (2018). https://doi.org/10.1073/pnas.1710874115
- E.J. Curry, T.T. Le, R. Das, K. Ke, E.M. Santorella et al., Biodegradable nanofiber-based piezoelectric transducer. Proc. Natl. Acad. Sci. U. S. A. 117(1), 214–220 (2020). https://doi.org/10.1073/pnas.1910343117
- M.T. Chorsi, T.T. Le, F. Lin, T. Vinikoor, R. Das et al., Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Sci. Adv. 9(24), eadg6075 (2023). https://doi.org/10.1126/sciadv.adg6075
- H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu et al., 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020). https://doi.org/10.1038/s41467-020-15316-7
- R. Tutika, A.B.M.T. Haque, M.D. Bartlett, Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun. Mater. 2, 64 (2021). https://doi.org/10.1038/s43246-021-00169-4
- G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6(2), 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
- A. Leber, C. Dong, R. Chandran, T. Das Gupta, N. Bartolomei et al., Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3(6), 316–326 (2020). https://doi.org/10.1038/s41928-020-0415-y
- H. Choi, Y. Luo, G. Olson, P. Won, J.H. Shin et al., Highly stretchable and strain-insensitive liquid metal based elastic kirigami electrodes (LM-eKE). Adv. Funct. Mater. 33(30), 2301388 (2023). https://doi.org/10.1002/adfm.202301388
- S.R. Khan, S.K. Pavuluri, G. Cummins, M.P.Y. Desmulliez, Wireless power transfer techniques for implantable medical devices: a review. Sensors 20(12), 3487 (2020). https://doi.org/10.3390/s20123487
- M. Song, P. Belov, P. Kapitanova, Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 4(2), 021102 (2017). https://doi.org/10.1063/1.4981396
- O. Saha, E. Andersen, S. Roundy, A self-biased magnetoelectric wireless power transfer receiver targeting biomedical implants. Sens. Actuators A Phys. 360, 114558 (2023). https://doi.org/10.1016/j.sna.2023.114558
- E. So, P. Yeon, E.J. Chichilnisky, A. Arbabian, An RF-ultrasound relay for adaptive wireless powering across tissue interfaces. IEEE J. Solid State Circuits 57(11), 3429–3441 (2022). https://doi.org/10.1016/j.matt.2022.08.016
- X. Liu, Y. Wang, G. Wang, Y. Ma, Z. Zheng et al., An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 5(12), 4315–4331 (2022). https://doi.org/10.1016/j.matt.2022.08.016
- S. Zhou, G. Park, K. Longardner, M. Lin, B. Qi et al., Clinical validation of a wearable ultrasound sensor of blood pressure. Nat. Biomed. Eng. 9(6), 865–881 (2025). https://doi.org/10.1038/s41551-024-01279-3
- D.K. Piech, B.C. Johnson, K. Shen, M.M. Ghanbari, K.Y. Li et al., A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4(2), 207–222 (2020). https://doi.org/10.1038/s41551-020-0518-9
- J.R. Sempionatto, M. Lin, L. Yin, E. De la Paz, K. Pei et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5(7), 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
- S. Chi, Y. Li, T. Ye, J. Kang, Z. Xiang et al., Energy reconversion of ultrasound on a piezoelectric hydrogel promotes ROS/CO generation and wound self-closure for infected chronic wound healing. Matter 8(3), 101989 (2025). https://doi.org/10.1016/j.matt.2025.101989
- Y. Yi, J. Song, P. Zhou, Y. Shu, P. Liang et al., An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr. Polym. 334, 122039 (2024). https://doi.org/10.1016/j.carbpol.2024.122039
- Y. Jo, S.-M. Lee, T. Jung, G. Park, C. Lee et al., General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. Adv. Sci. 9(34), 2202345 (2022). https://doi.org/10.1002/advs.202202345
- E. Matt, M. Mitterwallner, S. Radjenovic, D. Grigoryeva, A. Weber et al., Ultrasound neuromodulation with transcranial pulse stimulation in Alzheimer disease: a randomized clinical trial. JAMA Netw. Open 8(2), e2459170 (2025). https://doi.org/10.1001/jamanetworkopen.2024.59170
- X. Hou, J. Jing, Y. Jiang, X. Huang, Q. Xian et al., Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat. Commun. 15(1), 2253 (2024). https://doi.org/10.1038/s41467-024-46461-y
- H. Xue, J. Jin, X. Huang, Z. Tan, Y. Zeng et al., Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat. Commun. 16(1), 2650 (2025). https://doi.org/10.1038/s41467-025-58075-z
- J. Xu, H. Cai, Z. Wu, X. Li, C. Tian et al., Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 14(1), 869 (2023). https://doi.org/10.1038/s41467-023-36581-2
- Y. Meng, R.M. Reilly, R.C. Pezo, M. Trudeau, A. Sahgal et al., MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci. Transl. Med. 13(615), eabj4011 (2021). https://doi.org/10.1126/scitranslmed.abj4011
- S. Li, J. Xu, R. Li, Y. Wang, M. Zhang et al., Stretchable electronic facial masks for sonophoresis. ACS Nano 16(4), 5961–5974 (2022). https://doi.org/10.1021/acsnano.1c11181
- X. Meng, X. Xiao, S. Jeon, D. Kim, B.-J. Park et al., An ultrasound-driven bioadhesive triboelectric nanogenerator for instant wound sealing and electrically accelerated healing in emergencies. Adv. Mater. 35(12), 2209054 (2023). https://doi.org/10.1002/adma.202209054
- Z. Chen, J. Du, Y. Wang, Z. Li, W. Song et al., Fully integrated multifunctional flexible ultrasonic–electric-coupled patches for advancing wound care paradigms. Adv. Funct. Mater. 35(24), 2425025 (2025). https://doi.org/10.1002/adfm.202425025
- H. Liu, S. Ding, X. Lin, S. Wang, Y. Wang et al., Bone fracture healing under the intervention of a stretchable ultrasound array. ACS Nano 18(30), 19549–19560 (2024). https://doi.org/10.1021/acsnano.4c02426
- Y.-C. Chu, J. Lim, A. Chien, C.-C. Chen, J.-L. Wang, Activation of mechanosensitive ion channels by ultrasound. Ultrasound Med. Biol. 48(10), 1981–1994 (2022). https://doi.org/10.1016/j.ultrasmedbio.2022.06.008
- Z. Qiu, S. Kala, J. Guo, Q. Xian, J. Zhu et al., Targeted neurostimulation in mouse brains with non-invasive ultrasound. Cell Rep. 32(7), 108033 (2020). https://doi.org/10.1016/j.celrep.2020.108033
- J.T. Hacker, A.R. Slegaitis, S.W. Stephenson, Development of a wearable ultrasonic auricular vagus nerve stimulator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71(7), 757–762 (2023). https://doi.org/10.1109/TUFFC.2023.3343915
- P. Chen, C. Xu, P. Wu, K. Liu, F. Chen et al., Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair. ACS Nano 16(10), 16513–16528 (2022). https://doi.org/10.1021/acsnano.2c05818
- Z. Hu, Y. Yang, L. Yang, Y. Gong, C. Chukwu, D. Ye, Y. Yue, J. Yuan, A.V. Kravitz, H. Chen, Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Proc. Natl. Acad. Sci. U. S. A. 121(26), e2402200121 (2024)
- W. Liu, W. Chen, C. Zhu, D. Wu, Design and micromachining of a stretchable two-dimensional ultrasonic array. Micro Nano Eng. 13, 100096 (2021). https://doi.org/10.1016/j.mne.2021.100096
- S. Mohammadpourfazeli, S. Arash, A. Ansari, S. Yang, K. Mallick et al., Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 13(1), 370–387 (2022). https://doi.org/10.1039/d2ra06774a
- C. Wang, X. Chen, L. Wang, M. Makihata, H.-C. Liu et al., Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377(6605), 517–523 (2022). https://doi.org/10.1126/science.abo2542
- X. Gao, X. Chen, M. Lin, W. Yue, H. Hu et al., A wearable echomyography system based on a single transducer. Nat. Electron. 7(11), 1035–1046 (2024). https://doi.org/10.1038/s41928-024-01271-4
- C. Wang, B. Qi, M. Lin, Z. Zhang, M. Makihata et al., Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5(7), 749–758 (2021). https://doi.org/10.1038/s41551-021-00763-4
References
H. Wu, W. Gao, Z. Yin, Materials, devices and systems of soft bioelectronics for precision therapy. Adv. Healthc. Mater. 6(10), 1700017 (2017). https://doi.org/10.1002/adhm.201700017
M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7(11), 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31(42), 2104686 (2021). https://doi.org/10.1002/adfm.202104686
J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian et al., Wearable sensors: modalities, challenges, and prospects. Lab Chip 18(2), 217–248 (2018). https://doi.org/10.1039/C7LC00914C
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
C. Dagdeviren, Y. Shi, P. Joe, R. Ghaffari, G. Balooch et al., Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14(7), 728–736 (2015). https://doi.org/10.1038/nmat4289
L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu et al., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). https://doi.org/10.1038/ncomms5496
Y.-S. Kim, M. Mahmood, S. Kwon, K. Maher, J.W. Kang et al., Wireless, skin-like membrane electronics with multifunctional ergonomic sensors for enhanced pediatric care. IEEE Trans. Biomed. Eng. 67(8), 2159–2165 (2020). https://doi.org/10.1109/TBME.2019.2956048
S.P. Lee, G. Ha, D.E. Wright, Y. Ma, E. Sen-Gupta et al., Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit. Med. 1, 2 (2018). https://doi.org/10.1038/s41746-017-0009-x
M. Rehman, L.M. Higdon, M.R. Sperling, Long-term home EEG recording: wearable and implantable devices. J. Clin. Neurophysiol. 41(3), 200–206 (2024). https://doi.org/10.1097/wnp.0000000000001014
M. Seong, G. Kim, D. Yeo, Y. Kang, H. Yang et al., MultiSenseBadminton: wearable sensor-based biomechanical dataset for evaluation of badminton performance. Sci. Data 11(1), 343 (2024). https://doi.org/10.1038/s41597-024-03144-z
Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
H.-J. Chung, M.S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv. Healthc. Mater. 3(1), 59–68 (2014). https://doi.org/10.1002/adhm.201300124
J.R. Sempionatto, A.A. Khorshed, A. Ahmed, A.N. De Loyola E Silva, A. Barfidokht et al., Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sens. 5(6), 1804–1813 (2020). https://doi.org/10.1021/acssensors.0c00604
C. Ye, M. Wang, J. Min, R.Y. Tay, H. Lukas et al., A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19(3), 330–337 (2024). https://doi.org/10.1038/s41565-023-01513-0
J. Kang, F. Gao, Y. Wang, J. Fu, S. Song et al., High sensitivity and fast response wireless humidity sensor enabled by MXene-Lys for finger proximity detection and health monitoring applications. Chem. Eng. J. 505, 159474 (2025). https://doi.org/10.1016/j.cej.2025.159474
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
H. Tian, J. Ma, Y. Li, X. Xiao, M. Zhang et al., Electrochemical sensing fibers for wearable health monitoring devices. Biosens. Bioelectron. 246, 115890 (2024). https://doi.org/10.1016/j.bios.2023.115890
E. Samei, D.J. Peck, Hendee’s Physics of Medical Imaging, 5th edn. (John Wiley & Sons Inc, Berlin, 2019). https://doi.org/10.1002/9781118671016
M. Wilson, M. Wahlberg, A. Surlykke, P.T. Madsen, Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air? Front. Physiol. 4, 137 (2013). https://doi.org/10.3389/fphys.2013.00137
J. Hu, G. Zhang, S. Liu, Enzyme-responsive polymeric assemblies, nanops and hydrogels. Chem. Soc. Rev. 41(18), 5933 (2012). https://doi.org/10.1039/c2cs35103j
T. Boissenot, A. Bordat, E. Fattal, N. Tsapis, Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J. Control. Release 241, 144–163 (2016). https://doi.org/10.1016/j.jconrel.2016.09.026
K.T. Nguyen, L.H. Le, N.R. Kaipatur, R. Zheng, E.H. Lou et al., High-resolution ultrasonic imaging of dento-periodontal tissues using a multi-element phased array system. Ann. Biomed. Eng. 44(10), 2874–2886 (2016). https://doi.org/10.1007/s10439-016-1634-2
K.T. Nguyen, C. Pachêco-Pereira, N.R. Kaipatur, J. Cheung, P.W. Major et al., Comparison of ultrasound imaging and cone-beam computed tomography for examination of the alveolar bone level: a systematic review. PLoS ONE 13(10), e0200596 (2018). https://doi.org/10.1371/journal.pone.0200596
C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang et al., Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2(9), 687–695 (2018). https://doi.org/10.1038/s41551-018-0287-x
W. Du, L. Zhang, E. Suh, D. Lin, C. Marcus et al., Conformable ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 9(30), eadh5325 (2023). https://doi.org/10.1126/sciadv.adh5325
C.K.S. Park, T. Trumpour, A. Aziz, J.S. Bax, D. Tessier et al., Cost-effective, portable, patient-dedicated three-dimensional automated breast ultrasound for point-of-care breast cancer screening. Sci. Rep. 13(1), 14390 (2023). https://doi.org/10.1038/s41598-023-41424-7
H. Hu, X. Zhu, C. Wang, L. Zhang, X. Li et al., Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4(3), eaar3979 (2018). https://doi.org/10.1126/sciadv.aar3979
H. Hu, H. Huang, M. Li, X. Gao, L. Yin et al., A wearable cardiac ultrasound imager. Nature 613(7945), 667–675 (2023). https://doi.org/10.1038/s41586-022-05498-z
L. Jiang, G. Lu, Y. Zeng, Y. Sun, H. Kang et al., Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat. Commun. 13(1), 3853 (2022). https://doi.org/10.1038/s41467-022-31599-4
D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016). https://doi.org/10.1016/j.neuron.2016.06.034
P. Zhuang, W. Yang, Y. Chen, Y. Zhang, C. Leboucher et al., Biomaterials that passively and actively target macrophages promote the regeneration of injured tissues. Biomed. Tech. 8, 17–49 (2024). https://doi.org/10.1016/j.bmt.2024.09.005
Y. Xu, Q. Saiding, X. Zhou, J. Wang, W. Cui et al., Electrospun fiber-based immune engineering in regenerative medicine. Smart Medicine 3(1), e20230034 (2024). https://doi.org/10.1002/SMMD.20230034
Y. Al-Ajam, A. Woollard, N. Kang, Advances in upper limb loss rehabilitation: the role of targeted muscle reinnervation and regenerative peripheral nerve interfaces. Plast. Aesthetic. Res. 9, 63 (2022). https://doi.org/10.20517/2347-9264.2022.24
K.L. Burke, T.A. Kung, R.C. Hooper, S.W.P. Kemp, P.S. Cederna, Regenerative peripheral nerve interfaces (RPNIs): current status and future direction. Plast. Aesthet. Res. 9(8), 48 (2022). https://doi.org/10.20517/2347-9264.2022.26
R.J. Coffey, Deep brain stimulation devices: a brief technical history and review. Artif. Organs 33(3), 208–220 (2009). https://doi.org/10.1111/j.1525-1594.2008.00620.x
J.M. Bronstein, M. Tagliati, R.L. Alterman, A.M. Lozano, J. Volkmann et al., Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68(2), 165 (2011). https://doi.org/10.1001/archneurol.2010.260
Y. Tufail, A. Yoshihiro, S. Pati, M.M. Li, W.J. Tyler, Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6(9), 1453–1470 (2011). https://doi.org/10.1038/nprot.2011.371
A. Haritonova, D. Liu, E.S. Ebbini, In vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(12), 2031–2042 (2015). https://doi.org/10.1109/TUFFC.2014.006882
D. Park, J. Won, G. Lee, Y. Lee, C.-W. Kim et al., Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery. Skin Res. Technol. 28(2), 291–298 (2022). https://doi.org/10.1111/srt.13129
S. Mitragotri, J. Kost, Low-frequency sonophoresis a review. Adv. Drug Deliv. Rev. 56(5), 589–601 (2004). https://doi.org/10.1016/j.addr.2003.10.024
Q. Zhou, S. Lau, D. Wu, K.K. Shung, Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 56(2), 139–174 (2011). https://doi.org/10.1016/j.pmatsci.2010.09.001
Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.001
S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111(3), 031301 (2012). https://doi.org/10.1063/1.3679521
W.N. McDicken, T. Anderson, Basic Physics of Medical Ultrasound. Clinical Ultrasound (Elsevier, Amsterdam, 2011), pp.3–15. https://doi.org/10.1016/b978-0-7020-3131-1.00001-8
F. Wang, P. Jin, Y. Feng, J. Fu, P. Wang et al., Flexible Doppler ultrasound device for the monitoring of blood flow velocity. Sci. Adv. 7(44), eabi9283 (2021). https://doi.org/10.1126/sciadv.abi9283
X. Jiang, O. Savchenko, Y. Li, S. Qi, T. Yang et al., A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Trans. Biomed. Eng. 66(10), 2704–2718 (2018). https://doi.org/10.1109/TBME.2018.2889669
D. Dalecki, Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 6, 229–248 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140126
J. Deprez, G. Lajoinie, Y. Engelen, S.C. De Smedt, I. Lentacker, Opening doors with ultrasound and microbubbles: beating biological barriers to promote drug delivery. Adv. Drug Deliv. Rev. 172, 9–36 (2021). https://doi.org/10.1016/j.addr.2021.02.015
K. Kooiman, S. Roovers, S.A.G. Langeveld, R.T. Kleven, H. Dewitte et al., Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol. 46(6), 1296–1325 (2020). https://doi.org/10.1016/j.ultrasmedbio.2020.01.002
S. Roovers, T. Segers, G. Lajoinie, J. Deprez, M. Versluis et al., The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation. Langmuir 35(31), 10173–10191 (2019). https://doi.org/10.1021/acs.langmuir.8b03779
I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T.W. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014). https://doi.org/10.1016/j.addr.2013.11.008
K. Kooiman, H.J. Vos, M. Versluis, N. de Jong, Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 28–48 (2014). https://doi.org/10.1016/j.addr.2014.03.003
L. Duan, L. Yang, J. Jin, F. Yang, D. Liu et al., Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 10(2), 462–483 (2020). https://doi.org/10.7150/thno.37593
E. Buixaderas, D. Nuzhnyy, J. Petzelt, L. Jin, D. Damjanovic, Polar lattice vibrations and phase transition dynamics in Pb(Zr1-xTix)O3. Phys. Rev. B 84(18), 184302 (2011). https://doi.org/10.1103/physrevb.84.184302
C.-M. Wong, Y. Chen, H. Luo, J. Dai, K.-H. Lam et al., Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer. Ultrasonics 73, 181–186 (2017). https://doi.org/10.1016/j.ultras.2016.09.012
Y. Sun, L. Jiang, R. Chen, R. Li, H. Kang et al., Design and fabrication of 15-MHz ultrasonic transducers based on a textured Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 ceramic. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(11), 3095–3101 (2022). https://doi.org/10.1109/TUFFC.2022.3145882
Y. Quan, C. Fei, W. Ren, L. Wang, G. Niu et al., Lead-free KNN-based textured ceramics for high-frequency ultrasonic transducer application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(5), 1979–1987 (2021). https://doi.org/10.1109/TUFFC.2020.3039120
C.Y.L. Chao, Y.-P. Zheng, Y.-P. Huang, G.L.Y. Cheing, Biomechanical properties of the forefoot plantar soft tissue as measured by an optical coherence tomography-based air-jet indentation system and tissue ultrasound palpation system. Clin. Biomech. 25(6), 594–600 (2010). https://doi.org/10.1016/j.clinbiomech.2010.03.008
F. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic Press, New York, 2013)
A. Ng, J. Swanevelder, Resolution in ultrasound imaging. Continuing Educ. Anaesth. Crit. Care Pain. 11(5), 186–192 (2011). https://doi.org/10.1093/bjaceaccp/mkr030
H. Fujii, C. Nakaya, H. Takeuchi, T. Kondo, Y. Ishikawa, Acoustic properties of lens materials for ultrasonic probes. Jpn. J. Appl. Phys. 34(1R), 312 (1995). https://doi.org/10.1143/jjap.34.312
Q. Zhang, T. Ma, C. Wang, X. Liu, Y. Li et al., Transformable ultrasonic array transducer for multiscale imaging and beamforming. IEEE Trans. Ind. Electron. 69(3), 3078–3087 (2022). https://doi.org/10.1109/TIE.2021.3065592
J. Shriki, Ultrasound physics. Crit. Care Clin. 30(1), 1–24 (2014). https://doi.org/10.1016/j.ccc.2013.08.004
J. Baranger, O. Villemain, G. Goudot, A. Dizeux, H. Le Blay et al., The fundamental mechanisms of the Korotkoff sounds generation. Sci. Adv. 9(40), eadi4252 (2023). https://doi.org/10.1126/sciadv.adi4252
Y. Wu, Y. Liu, Z. Huang, X. Wang, Z. Jin et al., Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5(11), 1336–1347 (2021). https://doi.org/10.1038/s41551-021-00779-w
W. Wang, Y. Shi, W. Chai, K.W.K. Tang, I. Pyatnitskiy et al., H-bonded organic frameworks as ultrasound-programmable delivery platform. Nature 638(8050), 401–410 (2025). https://doi.org/10.1038/s41586-024-08401-0
Z. Bai, Z. Li, Y. Shao, Subcellular cavitation bubbles induce cellular mechanolysis and collective wound healing in ultrasound-inflicted cell ablation. Adv. Sci. 12(11), 2410760 (2025). https://doi.org/10.1002/advs.202410760
W.D. O’Brien Jr., Ultrasound–biophysics mechanisms. Prog. Biophys. Mol. Biol. 93(1–3), 212–255 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.010
J.C. Bamber, Ultrasonic Properties of Tissues (CRC Press, Boca Raton, 2020), pp.57–88
B. Wang, Z. Yin, X. You, H. Peng, Y. Jiang, Thyroid-targeted nano-bombs empower HIFU for graves’ disease. Adv. Sci. 12(11), 2414597 (2025). https://doi.org/10.1002/advs.202414597
Y. Zhu, K. Deng, J. Zhou, C. Lai, Z. Ma et al., Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 15(1), 1123 (2024). https://doi.org/10.1038/s41467-024-45437-2
J.W. Jenne, T. Preusser, M. Günther, High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z. Für Med. Phys. 22(4), 311–322 (2012). https://doi.org/10.1016/j.zemedi.2012.07.001
S. Seyedmirzaei Sarraf, F. Rokhsar Talabazar, I. Namli, M. Maleki, A. Sheibani Aghdam et al., Fundamentals, biomedical applications and future potential of micro-scale cavitation—a review. Lab Chip 22(12), 2237–2258 (2022). https://doi.org/10.1039/d2lc00169a
X. Han, F. Wang, J. Shen, S. Chen, P. Xiao et al., Ultrasound nanobubble coupling agent for effective noninvasive deep-layer drug delivery. Adv. Mater. 36(3), e2306993 (2024). https://doi.org/10.1002/adma.202306993
Y. Pan, Y. Li, Y. Li, X. Zheng, C. Zou et al., Nanodroplet-coated microbubbles used in sonothrombolysis with two-step cavitation strategy. Adv. Healthc. Mater. 12(6), e2202281 (2023). https://doi.org/10.1002/adhm.202202281
J. Huang, L. Zhang, J. Zheng, Y. Lin, X. Leng et al., Microbubbles-assisted ultrasonication to promote tumor accumulation of therapeutics and modulation of tumor microenvironment for enhanced cancer treatments. Biomaterials 299, 122181 (2023). https://doi.org/10.1016/j.biomaterials.2023.122181
C. Constans, H. Ahnine, M. Santin, S. Lehericy, M. Tanter et al., Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier. J. Control. Release 318, 223–231 (2020). https://doi.org/10.1016/j.jconrel.2019.12.006
A. Yildirim, N.T. Blum, A.P. Goodwin, Colloids, nanops, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 9(9), 2572–2594 (2019). https://doi.org/10.7150/thno.32424
A.F.H. Lum, M.A. Borden, P.A. Dayton, D.E. Kruse, S.I. Simon et al., Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J. Control. Release 111(1–2), 128–134 (2006). https://doi.org/10.1016/j.jconrel.2005.11.006
C.-C. Yu, A. Shah, N. Amiri, C. Marcus, M.O.G. Nayeem et al., A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Adv. Mater. 35(23), e2300066 (2023). https://doi.org/10.1002/adma.202300066
F. Zou, Y. Luo, W. Zhuang, T. Xu, A fully integrated conformal wearable ultrasound patch for continuous sonodynamic therapy. Adv. Mater. 36(39), 2409528 (2024). https://doi.org/10.1002/adma.202409528
W. Lyu, Y. Ma, S. Chen, H. Li, P. Wang et al., Flexible ultrasonic patch for accelerating chronic wound healing. Adv. Healthc. Mater. 10(19), e2100785 (2021). https://doi.org/10.1002/adhm.202100785
H. Yoon, J.-H. Kim, D. Sadat, A. Barrett, S.H. Ko et al., Decoding tissue biomechanics using conformable electronic devices. Nat. Rev. Mater. 10(1), 4–27 (2025). https://doi.org/10.1038/s41578-024-00729-3
R.S. Singh, M.O. Culjat, S.P. Vampola, K. Williams, Z.D. Taylor et al., P3D-6 simulation, fabrication, and characterization of a novel flexible, conformal ultrasound transducer array, in 2007 IEEE Ultrasonics Symposium Proceedings. October 28–31, 2007, New York, NY, USA (IEEE, 2007), pp. 1824–1827. https://doi.org/10.1109/ULTSYM.2007.459
P. Kabakov, T. Kim, Z. Cheng, X. Jiang, S. Zhang, The versatility of piezoelectric composites. Annu. Rev. Mater. Res. 53, 165–193 (2023). https://doi.org/10.1146/annurev-matsci-080921-092839
S. Gupta, W.T. Navaraj, L. Lorenzelli, R. Dahiya, Ultra-thin chips for high-performance flexible electronics. NPJ Flex. Electron. 2, 8 (2018). https://doi.org/10.1038/s41528-018-0021-5
S. Joshi, S. Yazadi, V. Henneken, R. Dekker, R. Sanders, Conformable body patches for ultrasound applications, in 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC). December 2–4, 2015, Singapore (IEEE, 2015), pp. 1–4. https://doi.org/10.1109/EPTC.2015.7412278
Q. Zhu, L. Zhang, H. Liu, T. Chen, L. Sun et al., A piezoelectric micro-machined ultrasonic transducer array based on flexible substrate, in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). April 22–26, 2018, Singapore (IEEE, 2018), pp. 345–348. https://doi.org/10.1109/NEMS.2018.8556929
P. Jin, J. Fu, F. Wang, Y. Zhang, P. Wang et al., A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7(40), eabg2507 (2021). https://doi.org/10.1126/sciadv.abg2507
X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16(15), 1902827 (2020). https://doi.org/10.1002/smll.201902827
S. Selvarajan, A. Kim, S.H. Song, Biodegradable piezoelectric transducer for powering transient implants. IEEE Access 8, 68219–68225 (2020). https://doi.org/10.1109/ACCESS.2020.298599
H. Jin, Z. Zheng, Z. Cui, Y. Jiang, G. Chen et al., A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring. Nat. Commun. 14(1), 4692 (2023). https://doi.org/10.1038/s41467-023-40181-5
S. Miao, X. Cao, M. Lu, X. Liu, Tailoring micro/nano-materials with special wettability for biomedical devices. Biomed. Tech. 2, 15–30 (2023). https://doi.org/10.1016/j.bmt.2022.11.005
X. Zhang, M. Lu, X. Cao, Y. Zhao, Functional microneedles for wearable electronics. Smart Medicine 2(1), e20220023 (2023). https://doi.org/10.1002/SMMD.20220023
L. Zhen, Z. Liu, Z. Liu, Q. Wang, J. Liu et al., High-density flexible piezoelectric sensor array with double working modes. IEEE Sens. J. 23(5), 5270–5277 (2023). https://doi.org/10.1109/JSEN.2023.3236969
H. Liu, J. Geng, Q. Zhu, L. Zhang, F. Wang et al., Flexible ultrasonic transducer array with bulk PZT for adjuvant treatment of bone injury. Sensors 20(1), 86 (2019). https://doi.org/10.3390/s20010086
C. Peng, M. Chen, H.K. Sim, Y. Zhu, X. Jiang, Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor. IEEE Sens. J. 21(3), 2642–2650 (2020). https://doi.org/10.1109/JSEN.2020.3021923
K. Keller, C. Leitner, C. Baumgartner, L. Benini, F. Greco, Fully printed flexible ultrasound transducer for medical applications. Adv. Mater. Technol. 8(18), 2300577 (2023). https://doi.org/10.1002/admt.202300577
B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26(37), 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
H. Hu, Y. Ma, X. Gao, D. Song, M. Li et al., Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue. Nat. Biomed. Eng. 7(10), 1321–1334 (2023). https://doi.org/10.1038/s41551-023-01038-w
T.F. de Oliveira, C.N. Pai, M.Y. Matuda, J.C. Adamowski, F. Buiochi, Development of a 2.25 MHz flexible array ultrasonic transducer. Res. Biomed. Eng. 35(1), 27–37 (2019). https://doi.org/10.1007/s42600-019-00006-1
M. State, P.J. Brands, F.N. van de Vosse, Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers. Ultrasonics 50(4–5), 458–466 (2010). https://doi.org/10.1016/j.ultras.2009.10.004
Y.X. Kato, S. Furukawa, K. Samejima, N. Hironaka, M. Kashino, Photosensitive-polyimide based method for fabricating various neural electrode architectures. Front. Neuroeng. 5, 11 (2012). https://doi.org/10.3389/fneng.2012.00011
D.-C. Pang, C.-M. Chang, Development of a novel transparent flexible capacitive micromachined ultrasonic transducer. Sensors 17(6), 1443 (2017). https://doi.org/10.3390/s17061443
M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai et al., Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100(11), 114318 (2006). https://doi.org/10.1063/1.2401312
S.G. Kirtania, A.W. Elger, M.R. Hasan, A. Wisniewska, K. Sekhar et al., Flexible antennas: a review. Micromachines 11(9), 847 (2020). https://doi.org/10.3390/mi11090847
T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. 13(1), 1–12 (2022). https://doi.org/10.1038/s41467-022-33457-9
W. Liu, C. Zhu, D. Wu, Flexible and stretchable ultrasonic transducer array conformed to complex surfaces. IEEE Electron Device Lett. 42(2), 240–243 (2021). https://doi.org/10.1109/LED.2020.3045037
S. Gong, B. Zhang, J. Zhang, Z.L. Wang, K. Ren, Biocompatible poly(lactic acid-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 30(14), 1908724 (2020). https://doi.org/10.1002/adfm.201908724
E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller III. et al., Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. U. S. A. 115(5), 909–914 (2018). https://doi.org/10.1073/pnas.1710874115
E.J. Curry, T.T. Le, R. Das, K. Ke, E.M. Santorella et al., Biodegradable nanofiber-based piezoelectric transducer. Proc. Natl. Acad. Sci. U. S. A. 117(1), 214–220 (2020). https://doi.org/10.1073/pnas.1910343117
M.T. Chorsi, T.T. Le, F. Lin, T. Vinikoor, R. Das et al., Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Sci. Adv. 9(24), eadg6075 (2023). https://doi.org/10.1126/sciadv.adg6075
H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu et al., 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020). https://doi.org/10.1038/s41467-020-15316-7
R. Tutika, A.B.M.T. Haque, M.D. Bartlett, Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun. Mater. 2, 64 (2021). https://doi.org/10.1038/s43246-021-00169-4
G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6(2), 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
A. Leber, C. Dong, R. Chandran, T. Das Gupta, N. Bartolomei et al., Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3(6), 316–326 (2020). https://doi.org/10.1038/s41928-020-0415-y
H. Choi, Y. Luo, G. Olson, P. Won, J.H. Shin et al., Highly stretchable and strain-insensitive liquid metal based elastic kirigami electrodes (LM-eKE). Adv. Funct. Mater. 33(30), 2301388 (2023). https://doi.org/10.1002/adfm.202301388
S.R. Khan, S.K. Pavuluri, G. Cummins, M.P.Y. Desmulliez, Wireless power transfer techniques for implantable medical devices: a review. Sensors 20(12), 3487 (2020). https://doi.org/10.3390/s20123487
M. Song, P. Belov, P. Kapitanova, Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 4(2), 021102 (2017). https://doi.org/10.1063/1.4981396
O. Saha, E. Andersen, S. Roundy, A self-biased magnetoelectric wireless power transfer receiver targeting biomedical implants. Sens. Actuators A Phys. 360, 114558 (2023). https://doi.org/10.1016/j.sna.2023.114558
E. So, P. Yeon, E.J. Chichilnisky, A. Arbabian, An RF-ultrasound relay for adaptive wireless powering across tissue interfaces. IEEE J. Solid State Circuits 57(11), 3429–3441 (2022). https://doi.org/10.1016/j.matt.2022.08.016
X. Liu, Y. Wang, G. Wang, Y. Ma, Z. Zheng et al., An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 5(12), 4315–4331 (2022). https://doi.org/10.1016/j.matt.2022.08.016
S. Zhou, G. Park, K. Longardner, M. Lin, B. Qi et al., Clinical validation of a wearable ultrasound sensor of blood pressure. Nat. Biomed. Eng. 9(6), 865–881 (2025). https://doi.org/10.1038/s41551-024-01279-3
D.K. Piech, B.C. Johnson, K. Shen, M.M. Ghanbari, K.Y. Li et al., A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4(2), 207–222 (2020). https://doi.org/10.1038/s41551-020-0518-9
J.R. Sempionatto, M. Lin, L. Yin, E. De la Paz, K. Pei et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5(7), 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
S. Chi, Y. Li, T. Ye, J. Kang, Z. Xiang et al., Energy reconversion of ultrasound on a piezoelectric hydrogel promotes ROS/CO generation and wound self-closure for infected chronic wound healing. Matter 8(3), 101989 (2025). https://doi.org/10.1016/j.matt.2025.101989
Y. Yi, J. Song, P. Zhou, Y. Shu, P. Liang et al., An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr. Polym. 334, 122039 (2024). https://doi.org/10.1016/j.carbpol.2024.122039
Y. Jo, S.-M. Lee, T. Jung, G. Park, C. Lee et al., General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. Adv. Sci. 9(34), 2202345 (2022). https://doi.org/10.1002/advs.202202345
E. Matt, M. Mitterwallner, S. Radjenovic, D. Grigoryeva, A. Weber et al., Ultrasound neuromodulation with transcranial pulse stimulation in Alzheimer disease: a randomized clinical trial. JAMA Netw. Open 8(2), e2459170 (2025). https://doi.org/10.1001/jamanetworkopen.2024.59170
X. Hou, J. Jing, Y. Jiang, X. Huang, Q. Xian et al., Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat. Commun. 15(1), 2253 (2024). https://doi.org/10.1038/s41467-024-46461-y
H. Xue, J. Jin, X. Huang, Z. Tan, Y. Zeng et al., Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat. Commun. 16(1), 2650 (2025). https://doi.org/10.1038/s41467-025-58075-z
J. Xu, H. Cai, Z. Wu, X. Li, C. Tian et al., Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 14(1), 869 (2023). https://doi.org/10.1038/s41467-023-36581-2
Y. Meng, R.M. Reilly, R.C. Pezo, M. Trudeau, A. Sahgal et al., MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci. Transl. Med. 13(615), eabj4011 (2021). https://doi.org/10.1126/scitranslmed.abj4011
S. Li, J. Xu, R. Li, Y. Wang, M. Zhang et al., Stretchable electronic facial masks for sonophoresis. ACS Nano 16(4), 5961–5974 (2022). https://doi.org/10.1021/acsnano.1c11181
X. Meng, X. Xiao, S. Jeon, D. Kim, B.-J. Park et al., An ultrasound-driven bioadhesive triboelectric nanogenerator for instant wound sealing and electrically accelerated healing in emergencies. Adv. Mater. 35(12), 2209054 (2023). https://doi.org/10.1002/adma.202209054
Z. Chen, J. Du, Y. Wang, Z. Li, W. Song et al., Fully integrated multifunctional flexible ultrasonic–electric-coupled patches for advancing wound care paradigms. Adv. Funct. Mater. 35(24), 2425025 (2025). https://doi.org/10.1002/adfm.202425025
H. Liu, S. Ding, X. Lin, S. Wang, Y. Wang et al., Bone fracture healing under the intervention of a stretchable ultrasound array. ACS Nano 18(30), 19549–19560 (2024). https://doi.org/10.1021/acsnano.4c02426
Y.-C. Chu, J. Lim, A. Chien, C.-C. Chen, J.-L. Wang, Activation of mechanosensitive ion channels by ultrasound. Ultrasound Med. Biol. 48(10), 1981–1994 (2022). https://doi.org/10.1016/j.ultrasmedbio.2022.06.008
Z. Qiu, S. Kala, J. Guo, Q. Xian, J. Zhu et al., Targeted neurostimulation in mouse brains with non-invasive ultrasound. Cell Rep. 32(7), 108033 (2020). https://doi.org/10.1016/j.celrep.2020.108033
J.T. Hacker, A.R. Slegaitis, S.W. Stephenson, Development of a wearable ultrasonic auricular vagus nerve stimulator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71(7), 757–762 (2023). https://doi.org/10.1109/TUFFC.2023.3343915
P. Chen, C. Xu, P. Wu, K. Liu, F. Chen et al., Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair. ACS Nano 16(10), 16513–16528 (2022). https://doi.org/10.1021/acsnano.2c05818
Z. Hu, Y. Yang, L. Yang, Y. Gong, C. Chukwu, D. Ye, Y. Yue, J. Yuan, A.V. Kravitz, H. Chen, Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Proc. Natl. Acad. Sci. U. S. A. 121(26), e2402200121 (2024)
W. Liu, W. Chen, C. Zhu, D. Wu, Design and micromachining of a stretchable two-dimensional ultrasonic array. Micro Nano Eng. 13, 100096 (2021). https://doi.org/10.1016/j.mne.2021.100096
S. Mohammadpourfazeli, S. Arash, A. Ansari, S. Yang, K. Mallick et al., Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 13(1), 370–387 (2022). https://doi.org/10.1039/d2ra06774a
C. Wang, X. Chen, L. Wang, M. Makihata, H.-C. Liu et al., Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377(6605), 517–523 (2022). https://doi.org/10.1126/science.abo2542
X. Gao, X. Chen, M. Lin, W. Yue, H. Hu et al., A wearable echomyography system based on a single transducer. Nat. Electron. 7(11), 1035–1046 (2024). https://doi.org/10.1038/s41928-024-01271-4
C. Wang, B. Qi, M. Lin, Z. Zhang, M. Makihata et al., Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5(7), 749–758 (2021). https://doi.org/10.1038/s41551-021-00763-4