Prioritized Na+ Adsorption-Driven Cationic Electrostatic Repulsion Enables Highly Reversible Zinc Anodes at Low Temperatures
Corresponding Author: Minghua Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 47
Abstract
Aqueous zinc metal batteries (AZMBs) are promising candidates for renewable energy storage, yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth. Although organic additives can enhance the antifreeze properties of electrolytes, their weak polarity diminishes ionic conductivity, and their flammability poses safety concerns, undermining the inherent advantages of aqueous systems. Herein, we present a cost-effective and highly stable Na2SO4 additive introduced into a Zn(ClO4)2-based electrolyte to create an organic-free antifreeze electrolyte. Through Raman spectroscopy, in situ optical microscopy, density functional theory computations, and molecular dynamics simulations, we demonstrate that Na+ ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn2+ deposition through preferential adsorption and electrostatic interactions. As a result, the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at − 40 °C with 61% depth of discharge, and the Zn||PANI cells retained an ultrahigh capacity retention of 91% even after 8000 charge/discharge cycles at − 40 °C. This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.
Highlights:
1 The introduction of low-cost, low-reduction-potential Na+ into aqueous Zn-based battery electrolytes suppresses Zn2+ aggregation at the anode interface through preferential Na+ adsorption and inter-cationic electrostatic repulsion, thereby enabling homogeneous Zn deposition and significantly enhanced low-temperature reversibility of Zn anodes.
2 Na+ with low ionic potential spontaneously adsorbs at the anode–electrolyte interface, effectively reducing solvated water molecules and suppressing parasitic reactions, thus significantly improving the Coulombic efficiency of aqueous zinc metal batteries under low temperatures.
3 At a low temperature of − 40 °C, the Zn||Zn cells maintained stable plating/stripping cycles for over 2500 h, and the Zn||PANI full cell exhibited excellent low-temperature performance with over 8000 charge–discharge cycles and a high capacity retention of more than 90%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- G. Liang, C. Zhi, A reversible Zn-metal battery. Nat. Nanotechnol. 16(8), 854–855 (2021). https://doi.org/10.1038/s41565-021-00908-1
- Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
- M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
- X. Zhao, X. Liang, Y. Li, Q. Chen, M. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
- K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13(8), 2203708 (2023). https://doi.org/10.1002/aenm.202203708
- Y. Sui, M. Yu, Y. Xu, X. Ji, Low-temperature aqueous batteries: challenges and opportunities. J. Electrochem. Soc. 169(3), 030537 (2022). https://doi.org/10.1149/1945-7111/ac53cd
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- K. Qu, X. Lu, N. Jiang, J. Wang, Z. Tao et al., Eutectic electrolytes convoying low-temperature metal-ion batteries. ACS Energy Lett. 9(3), 1192–1209 (2024). https://doi.org/10.1021/acsenergylett.4c00113
- X. Lu, Z. Liu, A. Amardeep, Z. Wu, L. Tao et al., Ultra-stable zinc metal anodes at − 20 °C through eutectic solvation sheath in chlorine-functionalized eutectic electrolytes with 1, 3-dioxolane. Angew. Chem. Int. Ed. 62(33), e202307475 (2023). https://doi.org/10.1002/anie.202307475
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
- X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
- D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), 2103195 (2021). https://doi.org/10.1002/smll.202103195
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable Hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
- X. Lin, G. Zhou, M.J. Robson, J. Yu, S.C.T. Kwok et al., Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 32(14), 2109322 (2022). https://doi.org/10.1002/adfm.202109322
- G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
- L. Jiang, D. Dong, Y.-C. Lu, Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, e9120003 (2022). https://doi.org/10.26599/nre.2022.9120003
- G. Ma, L. Miao, W. Yuan, K. Qiu, M. Liu et al., Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chem. Sci. 13(38), 11320–11329 (2022). https://doi.org/10.1039/d2sc04143j
- Y. Sun, B. Liu, L. Liu, J. Lang, J. Qiu, A low-concentration and high ionic conductivity aqueous electrolyte toward ultralow-temperature zinc-ion hybrid capacitors. Small Struct. 4(7), 2200345 (2023). https://doi.org/10.1002/sstr.202200345
- M. Han, J. Huang, X. Xie, T.C. Li, J. Huang et al., Hydrated eutectic electrolyte with ligand-oriented solvation shell to boost the stability of zinc battery. Adv. Funct. Mater. 32(25), 2110957 (2022). https://doi.org/10.1002/adfm.202110957
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- H. Li, S. Li, R. Hou, Y. Rao, S. Guo et al., Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 53(15), 7742–7783 (2024). https://doi.org/10.1039/d4cs00343h
- Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- L. Miao, Z. Xiao, D. Shi, M. Wu, D. Liu et al., A universal descriptor in determining H2 evolution activity for dilute aqueous Zn batteries. Adv. Funct. Mater. 33(47), 2306952 (2023). https://doi.org/10.1002/adfm.202306952
- N. Dubouis, A. Serva, R. Berthin, G. Jeanmairet, B. Porcheron et al., Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3(8), 656–663 (2020). https://doi.org/10.1038/s41929-020-0482-5
- A. Serva, N. Dubouis, A. Grimaud, M. Salanne, Confining water in ionic and organic solvents to tune its adsorption and reactivity at electrified interfaces. Acc. Chem. Res. 54(4), 1034–1042 (2021). https://doi.org/10.1021/acs.accounts.0c00795
- H. Tang, N. Hu, L. Ma, H. Weng, D. Huang et al., Interfacial dual-modulation via cationic electrostatic shielding and anionic preferential adsorption toward planar and reversible zinc electrodeposition. Adv. Funct. Mater. 34(38), 2402484 (2024). https://doi.org/10.1002/adfm.202402484
- J. Cao, Y. Jin, H. Wu, Y. Yue, D. Zhang et al., Enhancing zinc anode stability with gallium ion-induced electrostatic shielding and oriented plating. Adv. Energy Mater. 15(6), 2403175 (2025). https://doi.org/10.1002/aenm.202403175
- Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
- X. Xu, X. Feng, M. Li, J. Yin, F. Li et al., Tailoring the solvation shells of dual metal ions for high-performance aqueous zinc ion batteries. Chem. Eng. J. 478, 147313 (2023). https://doi.org/10.1016/j.cej.2023.147313
- Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
- Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34(37), e2203104 (2022). https://doi.org/10.1002/adma.202203104
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
- S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013). https://doi.org/10.1093/bioinformatics/btt055
- S. Izadi, A.V. Onufriev, Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145(7), 074501 (2016). https://doi.org/10.1063/1.4960175
- J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
- Z. Li, L.F. Song, P. Li, K.M. Merz Jr., Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Theory Comput. 16(7), 4429–4442 (2020). https://doi.org/10.1021/acs.jctc.0c00194
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161(8), 082503 (2024). https://doi.org/10.1063/5.0216272
- F. Neese, Software update: the ORCA program system: version 5.0. Wires Comput. Mol. Sci. 12(5), e1606 (2022). https://doi.org/10.1002/wcms.1606
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/physrevb.49.14251
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008). https://doi.org/10.1107/s0021889808012016
- F. Neese, F. Wennmohs, U. Becker, C. Riplinger, The ORCA quantum chemistry program package. J. Chem. Phys. 152(22), 224108 (2020). https://doi.org/10.1063/5.0004608
- Q. Zhang, Y. Lu, X. Liu, W. Xie, J. Chen, Nonaggregated anions enable the undercooled aqueous electrolyte for low-temperature applications. J. Am. Chem. Soc. 146(18), 12743–12749 (2024). https://doi.org/10.1021/jacs.4c02462
- C. Li, H. Xu, L. Ni, B. Qin, Y. Ma et al., Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives. Adv. Energy Mater. 13(40), 2301758 (2023). https://doi.org/10.1002/aenm.202301758
- Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- E.R. Cooper, M. Li, I. Gentle, Q. Xia, R. Knibbe, A deeper understanding of metal nucleation and growth in rechargeable metal batteries through theory and experiment. Angew. Chem. 135(51), e202309247 (2023). https://doi.org/10.1002/ange.202309247
- Y. Li, J. Cai, J. Zhang, Z. Chen, G. Wang et al., An unexpected electrochemical performance enabled by in situ formed quasi-metal-semiconductor heterojunction with innumerous P-type anti-barrier layer. Adv. Energy Mater. 13(14), 2204114 (2023). https://doi.org/10.1002/aenm.202204114
- J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36(11), 2310623 (2024). https://doi.org/10.1002/adma.202310623
- Q. Dong, H. Ao, Z. Qin, Z. Xu, J. Ye et al., Synergistic chaotropic effect and cathode interface thermal release effect enabling ultralow temperature aqueous zinc battery. Small 18(44), 2203347 (2022). https://doi.org/10.1002/smll.202203347
- M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63(38), e202407012 (2024). https://doi.org/10.1002/anie.202407012
References
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
G. Liang, C. Zhi, A reversible Zn-metal battery. Nat. Nanotechnol. 16(8), 854–855 (2021). https://doi.org/10.1038/s41565-021-00908-1
Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
X. Zhao, X. Liang, Y. Li, Q. Chen, M. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13(8), 2203708 (2023). https://doi.org/10.1002/aenm.202203708
Y. Sui, M. Yu, Y. Xu, X. Ji, Low-temperature aqueous batteries: challenges and opportunities. J. Electrochem. Soc. 169(3), 030537 (2022). https://doi.org/10.1149/1945-7111/ac53cd
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
K. Qu, X. Lu, N. Jiang, J. Wang, Z. Tao et al., Eutectic electrolytes convoying low-temperature metal-ion batteries. ACS Energy Lett. 9(3), 1192–1209 (2024). https://doi.org/10.1021/acsenergylett.4c00113
X. Lu, Z. Liu, A. Amardeep, Z. Wu, L. Tao et al., Ultra-stable zinc metal anodes at − 20 °C through eutectic solvation sheath in chlorine-functionalized eutectic electrolytes with 1, 3-dioxolane. Angew. Chem. Int. Ed. 62(33), e202307475 (2023). https://doi.org/10.1002/anie.202307475
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), 2103195 (2021). https://doi.org/10.1002/smll.202103195
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable Hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
X. Lin, G. Zhou, M.J. Robson, J. Yu, S.C.T. Kwok et al., Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 32(14), 2109322 (2022). https://doi.org/10.1002/adfm.202109322
G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
L. Jiang, D. Dong, Y.-C. Lu, Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, e9120003 (2022). https://doi.org/10.26599/nre.2022.9120003
G. Ma, L. Miao, W. Yuan, K. Qiu, M. Liu et al., Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chem. Sci. 13(38), 11320–11329 (2022). https://doi.org/10.1039/d2sc04143j
Y. Sun, B. Liu, L. Liu, J. Lang, J. Qiu, A low-concentration and high ionic conductivity aqueous electrolyte toward ultralow-temperature zinc-ion hybrid capacitors. Small Struct. 4(7), 2200345 (2023). https://doi.org/10.1002/sstr.202200345
M. Han, J. Huang, X. Xie, T.C. Li, J. Huang et al., Hydrated eutectic electrolyte with ligand-oriented solvation shell to boost the stability of zinc battery. Adv. Funct. Mater. 32(25), 2110957 (2022). https://doi.org/10.1002/adfm.202110957
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
H. Li, S. Li, R. Hou, Y. Rao, S. Guo et al., Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 53(15), 7742–7783 (2024). https://doi.org/10.1039/d4cs00343h
Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
L. Miao, Z. Xiao, D. Shi, M. Wu, D. Liu et al., A universal descriptor in determining H2 evolution activity for dilute aqueous Zn batteries. Adv. Funct. Mater. 33(47), 2306952 (2023). https://doi.org/10.1002/adfm.202306952
N. Dubouis, A. Serva, R. Berthin, G. Jeanmairet, B. Porcheron et al., Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3(8), 656–663 (2020). https://doi.org/10.1038/s41929-020-0482-5
A. Serva, N. Dubouis, A. Grimaud, M. Salanne, Confining water in ionic and organic solvents to tune its adsorption and reactivity at electrified interfaces. Acc. Chem. Res. 54(4), 1034–1042 (2021). https://doi.org/10.1021/acs.accounts.0c00795
H. Tang, N. Hu, L. Ma, H. Weng, D. Huang et al., Interfacial dual-modulation via cationic electrostatic shielding and anionic preferential adsorption toward planar and reversible zinc electrodeposition. Adv. Funct. Mater. 34(38), 2402484 (2024). https://doi.org/10.1002/adfm.202402484
J. Cao, Y. Jin, H. Wu, Y. Yue, D. Zhang et al., Enhancing zinc anode stability with gallium ion-induced electrostatic shielding and oriented plating. Adv. Energy Mater. 15(6), 2403175 (2025). https://doi.org/10.1002/aenm.202403175
Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
X. Xu, X. Feng, M. Li, J. Yin, F. Li et al., Tailoring the solvation shells of dual metal ions for high-performance aqueous zinc ion batteries. Chem. Eng. J. 478, 147313 (2023). https://doi.org/10.1016/j.cej.2023.147313
Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34(37), e2203104 (2022). https://doi.org/10.1002/adma.202203104
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013). https://doi.org/10.1093/bioinformatics/btt055
S. Izadi, A.V. Onufriev, Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145(7), 074501 (2016). https://doi.org/10.1063/1.4960175
J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
Z. Li, L.F. Song, P. Li, K.M. Merz Jr., Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Theory Comput. 16(7), 4429–4442 (2020). https://doi.org/10.1021/acs.jctc.0c00194
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161(8), 082503 (2024). https://doi.org/10.1063/5.0216272
F. Neese, Software update: the ORCA program system: version 5.0. Wires Comput. Mol. Sci. 12(5), e1606 (2022). https://doi.org/10.1002/wcms.1606
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/physrevb.49.14251
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008). https://doi.org/10.1107/s0021889808012016
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, The ORCA quantum chemistry program package. J. Chem. Phys. 152(22), 224108 (2020). https://doi.org/10.1063/5.0004608
Q. Zhang, Y. Lu, X. Liu, W. Xie, J. Chen, Nonaggregated anions enable the undercooled aqueous electrolyte for low-temperature applications. J. Am. Chem. Soc. 146(18), 12743–12749 (2024). https://doi.org/10.1021/jacs.4c02462
C. Li, H. Xu, L. Ni, B. Qin, Y. Ma et al., Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives. Adv. Energy Mater. 13(40), 2301758 (2023). https://doi.org/10.1002/aenm.202301758
Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
E.R. Cooper, M. Li, I. Gentle, Q. Xia, R. Knibbe, A deeper understanding of metal nucleation and growth in rechargeable metal batteries through theory and experiment. Angew. Chem. 135(51), e202309247 (2023). https://doi.org/10.1002/ange.202309247
Y. Li, J. Cai, J. Zhang, Z. Chen, G. Wang et al., An unexpected electrochemical performance enabled by in situ formed quasi-metal-semiconductor heterojunction with innumerous P-type anti-barrier layer. Adv. Energy Mater. 13(14), 2204114 (2023). https://doi.org/10.1002/aenm.202204114
J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36(11), 2310623 (2024). https://doi.org/10.1002/adma.202310623
Q. Dong, H. Ao, Z. Qin, Z. Xu, J. Ye et al., Synergistic chaotropic effect and cathode interface thermal release effect enabling ultralow temperature aqueous zinc battery. Small 18(44), 2203347 (2022). https://doi.org/10.1002/smll.202203347
M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63(38), e202407012 (2024). https://doi.org/10.1002/anie.202407012