Nanostructured Graphene Surfaces Promote Different Stages of Bone Cell Differentiation
Corresponding Author: K. Ostrikov
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 47
Abstract
Nanostructured graphene films were used as platforms for the differentiation of Saos-2 cells into bone-like cells. The films were grown using the plasma-enhanced chemical vapor deposition method, which allowed the production of both vertically and horizontally aligned carbon nanowalls (CNWs). Modifications of the technique allowed control of the density of the CNWs and their orientation after the transfer process. The influence of two different topographies on cell attachment, proliferation, and differentiation was investigated. First, the transferred graphene surfaces were shown to be noncytotoxic and were able to support cell adhesion and growth for over 7 days. Second, early cell differentiation (identified by cellular alkaline phosphatase release) was found to be enhanced on the horizontally aligned CNW surfaces, whereas mineralization (identified by cellular calcium production), a later stage of bone cell differentiation, was stimulated by the presence of the vertical CNWs on the surfaces. These results show that the graphene coatings, grown using the presented method, are biocompatible. And their topographies have an impact on cell behavior, which can be useful in tissue engineering applications.
Highlights:
1 Horizontally and vertically oriented carbon nanowalls (CNWs) have diverse influences on cell behavior.
2 The graphene-based topographies are nontoxic and support cell adhesion and growth.
3 Early cell differentiation was observed on the hybrid graphene layer surfaces. Later cell differentiation was stimulated by the CNW films.
4 The synergy between the CNWs and differentiation medium provides enhanced mineralization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.M. Cross, A. Thakur, N.A. Jalili, M. Detamore, A.K. Gaharwar, Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater. 42, 2–17 (2016). https://doi.org/10.1016/j.actbio.2016.06.023
- R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6), 573–588 (1999). https://doi.org/10.1016/S0142-9612(98)00209-9
- M.J. Dalby, N. Gadegaard, M.O. Riehle, C.D.W. Wilkinson, A.S.G. Curtis, Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36(10), 2005–2015 (2004). https://doi.org/10.1016/j.biocel.2004.03.001
- A.S.G. Curtis, N. Gadegaard, M.J. Dalby, M.O. Riehle, C.D.W. Wilkinson, G. Aitchison, Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobiosci. 3(1), 61–65 (2004). https://doi.org/10.1109/TNB.2004.824276
- F.F. Borghi, A.E. Rider, S. Kumar, Z.J. Han, D. Haylock, K. Ostrikov, Emerging stem cell controls: nanomaterials and plasma effects. J. Nanomater. 2013, 329139 (2013). https://doi.org/10.1155/2013/329139
- T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2017). https://doi.org/10.1007/s40820-016-0103-7
- Y. Chen, J. Ni, H. Wu, R. Zhang, C. Zhao, W. Chen, F. Zhang, S. Zhang, X. Zhang, Study of cell behaviors on anodized TiO2 nanotube arrays with coexisting multi-size diameters. Nano-Micro Lett. 8(1), 61–69 (2016). https://doi.org/10.1007/s40820-015-0062-4
- C.D. Bandara, S. Singh, I.O. Afara, A. Wolff, T. Tesfamichael, K. Ostrikov, A. Oloyede, Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9(8), 6746–6760 (2017). https://doi.org/10.1021/acsami.6b13666
- K. Saha, J.F. Pollock, D.V. Schaffer, K.E. Healy, Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11(4), 381–387 (2007). https://doi.org/10.1016/j.cbpa.2007.05.030
- G.H. Altman, R.L. Horan, I. Martin, J. Farhadi, P.R.H. Stark, V. Volloch, J.C. Richmond, G. Vunjak-Novakovic, D.L. Kaplan, Cell differentiation by mechanical stress. FASEB J. 16(2), 270–272 (2002). https://doi.org/10.1096/fj.01-0656fje
- M.J. Dalby, N. Gadegaard, C.D.W. Wilkinson, The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J. Biomed. Mater. Res. Part A 84(4), 973–979 (2008). https://doi.org/10.1002/jbm.a.31409
- S. Ryoo, Y. Kim, M. Kim, D. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11), 6587–6598 (2010). https://doi.org/10.1021/nn1018279
- G.-Y. Chen, D.W.-P. Pang, S.-M. Hwang, H.-Y. Tuan, Y.-C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.071
- H. Shen, L. Zhang, M. Liu, Z. Zhang, Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012). https://doi.org/10.7150/thno.3642
- A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review. Colloid Surf. B Biointerfaces 111, 188–202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022
- Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9(3), 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
- Z.Q. Yan, W. Zhang, The development of graphene-based devices for cell biology research. Front. Mater. Sci. 8(2), 107–122 (2014). https://doi.org/10.1007/s11706-014-0228-x
- K. Kostarelos, K.S. Novoselov, Exploring the interface of graphene and biology. Science 344(6181), 261–263 (2014). https://doi.org/10.1126/science.1246736
- N. Dubey, R. Bentini, I. Islam, T. Cao, A.H. Castro Neto, V. Rosa, Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015, 804213 (2015). https://doi.org/10.1155/2015/804213
- A. Sasidharan, L.S. Panchakarla, P. Chandran, D. Menon, S. Nair, C.N.R. Rao et al., Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3, 2461–2464 (2011). https://doi.org/10.1039/c1nr10172b
- W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang, C.T. Lim, K.P. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9), 7334–7341 (2011). https://doi.org/10.1021/nn202190c
- O. Akhavan, E. Ghaderi, Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B 1, 6291–6301 (2013). https://doi.org/10.1039/c3tb21085e
- O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59, 200–211 (2013). https://doi.org/10.1016/j.carbon.2013.03.010
- M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15), 4323–4329 (2010). https://doi.org/10.1016/j.carbon.2010.07.045
- T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011). https://doi.org/10.1021/nn200500h
- W. Qi, W. Yuan, J. Yan, H. Wang, Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-l-lysine composite films. J. Mater. Chem. B 2(33), 5461–5467 (2014). https://doi.org/10.1039/C4TB00856A
- A. Solanki, S.T.D. Chueng, P.T. Yin, R. Kappera, M. Chhowalla, K.B. Lee, Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv. Mater. 25(38), 5477–5482 (2013). https://doi.org/10.1002/adma.201302219
- S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36), 263–267 (2011). https://doi.org/10.1002/adma.201101503
- J. Kim, W.-G. Bae, S. Park, Y.J. Kim, I. Jo et al., Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns. 2D Mater. 3(3), 035013 (2016). https://doi.org/10.1088/2053-1583/3/3/035013
- O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014). https://doi.org/10.1016/j.carbon.2013.09.015
- T.C.O. Marsi, T.G. Santos, C. Pacheco-Soares, E.J. Corat, F.R. Marciano, A.O. Lobo, Biomineralization of superhydrophilic vertically aligned carbon nanotubes. Langmuir 28(9), 4413–4424 (2012). https://doi.org/10.1021/la300111k
- H. Watanabe, H. Kondo, Y. Okamoto, M. Hiramatsu, M. Sekine, Y. Baba, H. Masaru, Carbon nanowall scaffold to control culturing of cervical cancer cells. Appl. Phys. Lett. 105(24), 244105 (2014). https://doi.org/10.1063/1.4902054
- Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14(1), 64–67 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G
- M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004). https://doi.org/10.1063/1.1762702
- D.H. Seo, S. Kumar, K. Ostrikov, Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic. J. Mater. Chem. 21, 16339–16343 (2011). https://doi.org/10.1039/c1jm13835a
- D.H. Seo, S. Kumar, A.E. Rider, Z. Han, K. Ostrikov, Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation. Opt. Mater. Express 2(6), 700–707 (2012). https://doi.org/10.1364/OME.2.000700
- S. Kumar, I. Levchenko, M. Keidar, K. Ostrikov, Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon. Appl. Phys. Lett. 97, 151503 (2010). https://doi.org/10.1063/1.3502562
- T. van der Laan, S. Kumar, K. Ostrikov, Water-mediated and instantaneous transfer of graphene grown at 220 °C enabled by a plasma. Nanoscale 7, 20564–20570 (2015). https://doi.org/10.1039/C5NR06365E
- Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao et al., Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device. Adv. Mater. 30(8), 1704839 (2018). https://doi.org/10.1002/adma.201704839
- S. Pineda, F.F. Borghi, D.H. Seo, S. Yick, M. Lawn, T. van der Laan, Z.J. Han, K.K. Ostrikov, Multifunctional graphene micro-islands: rapid, low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications. Biosens. Bioelectron. 89, 437–443 (2017). https://doi.org/10.1016/j.bios.2016.04.072
- M. Prideaux, A.R. Wijenayaka, D.D. Kumarasinghe, R.T. Ormsby, A. Evdokiou, D.M. Findlay, G.J. Atkins, SaOS2 osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif. Tissue Int. 95(2), 183–193 (2014). https://doi.org/10.1007/s00223-014-9879-y
- E.M. Czekanska, M.J. Stoddart, J.R. Ralphs, R.G. Richards, J.S. Hayes, A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. Part A 102(8), 2636–2643 (2014). https://doi.org/10.1002/jbm.a.34937
- H.J. Princ, A.K. Braat, D. Gawlitta, W.J. Dhert, D.A. Egan et al., In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res. 12(2), 428–440 (2014). https://doi.org/10.1016/j.scr.2013.12.001
- S. Ghosh, S.R. Polaki, N. Kumar, S. Amirthapandian, M. Kamruddin, K. Ostrikov, Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017). https://doi.org/10.3762/bjnano.8.166
- A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J. Mater. Chem. 8, 2875–2879 (1998). https://doi.org/10.1039/a805841e
- P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons. Carbon 20(5), 427–431 (1982). https://doi.org/10.1016/0008-6223(82)90043-4
- Y. Wang, D.C. Alsmeyer, R.L. Mccreery, Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2(5), 557–563 (1990). https://doi.org/10.1021/cm00011a018
- S. Niyogi, E. Bekyarova, M.E. Itkis, H. Zhang, K. Shepperd et al., Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 406–4066 (2010). https://doi.org/10.1021/nl1021128
- E.C. Stancu, A.-M. Stanciuc, S. Vizireanu, C. Luculescu, L. Moldovan, A. Achour, G. Dinescu, Plasma functionalization of carbon nanowalls and its effect on attachment of fibroblast-like cells. J. Phys D-Appl. Phys. 47, 265203 (2014). https://doi.org/10.1088/0022-3727/47/26/265203
- E.C. Stancu, M.D. Ionita, S. Vizireanu, A.M. Stanciuc, L. Moldovan, G. Dinescu, Wettability properties of carbon nanowalls layers deposited by a radiofrequency plasma beam discharge. Mater. Sci. Eng. B 169(1–3), 119–122 (2010). https://doi.org/10.1016/j.mseb.2010.01.062
- Z. Bo, Y. Tian, Z. Han, S. Wu, S. Zhang, J. Yan, K. Cen, K. Ostrikov, Tuneable fluidics within graphene nanogaps for water purification and energy storage. Nanoscale Horizons 2, 89–98 (2017). https://doi.org/10.1039/C6NH00167J
- J.M. Schakenraad, H.J. Busscher, C.R. Wildevuur, J. Arends, Thermodynamic aspects of cell spreading on solid substrata. Cell Biophys. 13(1), 75–91 (1988). https://doi.org/10.1007/BF02797367
- T.A. Horbett, M.B. Schway, Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate–ethylmethacrylate copolymers. J. Biomed. Mater. Res. 22(9), 763–793 (1988). https://doi.org/10.1002/jbm.820220903
- S. Ghosh, G. Xiong, T.S. Fisher, B. Han, Guidance of cell adhesion and migration by graphitic nanopetals on carbon fibers. Mater. Lett. 184, 211–215 (2016). https://doi.org/10.1016/j.matlet.2016.08.077
- R. Ion, S. Vizireanu, C.E. Stancu, C. Luculescu, A. Cimpean, G. Dinescu, Surface plasma functionalization influences macrophage behavior on carbon nanowalls. Mater. Sci. Eng. C 48, 118–125 (2015). https://doi.org/10.1016/j.msec.2014.11.064
References
L.M. Cross, A. Thakur, N.A. Jalili, M. Detamore, A.K. Gaharwar, Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater. 42, 2–17 (2016). https://doi.org/10.1016/j.actbio.2016.06.023
R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6), 573–588 (1999). https://doi.org/10.1016/S0142-9612(98)00209-9
M.J. Dalby, N. Gadegaard, M.O. Riehle, C.D.W. Wilkinson, A.S.G. Curtis, Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36(10), 2005–2015 (2004). https://doi.org/10.1016/j.biocel.2004.03.001
A.S.G. Curtis, N. Gadegaard, M.J. Dalby, M.O. Riehle, C.D.W. Wilkinson, G. Aitchison, Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobiosci. 3(1), 61–65 (2004). https://doi.org/10.1109/TNB.2004.824276
F.F. Borghi, A.E. Rider, S. Kumar, Z.J. Han, D. Haylock, K. Ostrikov, Emerging stem cell controls: nanomaterials and plasma effects. J. Nanomater. 2013, 329139 (2013). https://doi.org/10.1155/2013/329139
T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2017). https://doi.org/10.1007/s40820-016-0103-7
Y. Chen, J. Ni, H. Wu, R. Zhang, C. Zhao, W. Chen, F. Zhang, S. Zhang, X. Zhang, Study of cell behaviors on anodized TiO2 nanotube arrays with coexisting multi-size diameters. Nano-Micro Lett. 8(1), 61–69 (2016). https://doi.org/10.1007/s40820-015-0062-4
C.D. Bandara, S. Singh, I.O. Afara, A. Wolff, T. Tesfamichael, K. Ostrikov, A. Oloyede, Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9(8), 6746–6760 (2017). https://doi.org/10.1021/acsami.6b13666
K. Saha, J.F. Pollock, D.V. Schaffer, K.E. Healy, Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11(4), 381–387 (2007). https://doi.org/10.1016/j.cbpa.2007.05.030
G.H. Altman, R.L. Horan, I. Martin, J. Farhadi, P.R.H. Stark, V. Volloch, J.C. Richmond, G. Vunjak-Novakovic, D.L. Kaplan, Cell differentiation by mechanical stress. FASEB J. 16(2), 270–272 (2002). https://doi.org/10.1096/fj.01-0656fje
M.J. Dalby, N. Gadegaard, C.D.W. Wilkinson, The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J. Biomed. Mater. Res. Part A 84(4), 973–979 (2008). https://doi.org/10.1002/jbm.a.31409
S. Ryoo, Y. Kim, M. Kim, D. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11), 6587–6598 (2010). https://doi.org/10.1021/nn1018279
G.-Y. Chen, D.W.-P. Pang, S.-M. Hwang, H.-Y. Tuan, Y.-C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.071
H. Shen, L. Zhang, M. Liu, Z. Zhang, Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012). https://doi.org/10.7150/thno.3642
A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review. Colloid Surf. B Biointerfaces 111, 188–202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022
Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9(3), 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
Z.Q. Yan, W. Zhang, The development of graphene-based devices for cell biology research. Front. Mater. Sci. 8(2), 107–122 (2014). https://doi.org/10.1007/s11706-014-0228-x
K. Kostarelos, K.S. Novoselov, Exploring the interface of graphene and biology. Science 344(6181), 261–263 (2014). https://doi.org/10.1126/science.1246736
N. Dubey, R. Bentini, I. Islam, T. Cao, A.H. Castro Neto, V. Rosa, Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015, 804213 (2015). https://doi.org/10.1155/2015/804213
A. Sasidharan, L.S. Panchakarla, P. Chandran, D. Menon, S. Nair, C.N.R. Rao et al., Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3, 2461–2464 (2011). https://doi.org/10.1039/c1nr10172b
W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang, C.T. Lim, K.P. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9), 7334–7341 (2011). https://doi.org/10.1021/nn202190c
O. Akhavan, E. Ghaderi, Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B 1, 6291–6301 (2013). https://doi.org/10.1039/c3tb21085e
O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59, 200–211 (2013). https://doi.org/10.1016/j.carbon.2013.03.010
M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15), 4323–4329 (2010). https://doi.org/10.1016/j.carbon.2010.07.045
T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011). https://doi.org/10.1021/nn200500h
W. Qi, W. Yuan, J. Yan, H. Wang, Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-l-lysine composite films. J. Mater. Chem. B 2(33), 5461–5467 (2014). https://doi.org/10.1039/C4TB00856A
A. Solanki, S.T.D. Chueng, P.T. Yin, R. Kappera, M. Chhowalla, K.B. Lee, Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv. Mater. 25(38), 5477–5482 (2013). https://doi.org/10.1002/adma.201302219
S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36), 263–267 (2011). https://doi.org/10.1002/adma.201101503
J. Kim, W.-G. Bae, S. Park, Y.J. Kim, I. Jo et al., Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns. 2D Mater. 3(3), 035013 (2016). https://doi.org/10.1088/2053-1583/3/3/035013
O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014). https://doi.org/10.1016/j.carbon.2013.09.015
T.C.O. Marsi, T.G. Santos, C. Pacheco-Soares, E.J. Corat, F.R. Marciano, A.O. Lobo, Biomineralization of superhydrophilic vertically aligned carbon nanotubes. Langmuir 28(9), 4413–4424 (2012). https://doi.org/10.1021/la300111k
H. Watanabe, H. Kondo, Y. Okamoto, M. Hiramatsu, M. Sekine, Y. Baba, H. Masaru, Carbon nanowall scaffold to control culturing of cervical cancer cells. Appl. Phys. Lett. 105(24), 244105 (2014). https://doi.org/10.1063/1.4902054
Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14(1), 64–67 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G
M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004). https://doi.org/10.1063/1.1762702
D.H. Seo, S. Kumar, K. Ostrikov, Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic. J. Mater. Chem. 21, 16339–16343 (2011). https://doi.org/10.1039/c1jm13835a
D.H. Seo, S. Kumar, A.E. Rider, Z. Han, K. Ostrikov, Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation. Opt. Mater. Express 2(6), 700–707 (2012). https://doi.org/10.1364/OME.2.000700
S. Kumar, I. Levchenko, M. Keidar, K. Ostrikov, Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon. Appl. Phys. Lett. 97, 151503 (2010). https://doi.org/10.1063/1.3502562
T. van der Laan, S. Kumar, K. Ostrikov, Water-mediated and instantaneous transfer of graphene grown at 220 °C enabled by a plasma. Nanoscale 7, 20564–20570 (2015). https://doi.org/10.1039/C5NR06365E
Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao et al., Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device. Adv. Mater. 30(8), 1704839 (2018). https://doi.org/10.1002/adma.201704839
S. Pineda, F.F. Borghi, D.H. Seo, S. Yick, M. Lawn, T. van der Laan, Z.J. Han, K.K. Ostrikov, Multifunctional graphene micro-islands: rapid, low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications. Biosens. Bioelectron. 89, 437–443 (2017). https://doi.org/10.1016/j.bios.2016.04.072
M. Prideaux, A.R. Wijenayaka, D.D. Kumarasinghe, R.T. Ormsby, A. Evdokiou, D.M. Findlay, G.J. Atkins, SaOS2 osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif. Tissue Int. 95(2), 183–193 (2014). https://doi.org/10.1007/s00223-014-9879-y
E.M. Czekanska, M.J. Stoddart, J.R. Ralphs, R.G. Richards, J.S. Hayes, A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. Part A 102(8), 2636–2643 (2014). https://doi.org/10.1002/jbm.a.34937
H.J. Princ, A.K. Braat, D. Gawlitta, W.J. Dhert, D.A. Egan et al., In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res. 12(2), 428–440 (2014). https://doi.org/10.1016/j.scr.2013.12.001
S. Ghosh, S.R. Polaki, N. Kumar, S. Amirthapandian, M. Kamruddin, K. Ostrikov, Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017). https://doi.org/10.3762/bjnano.8.166
A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J. Mater. Chem. 8, 2875–2879 (1998). https://doi.org/10.1039/a805841e
P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons. Carbon 20(5), 427–431 (1982). https://doi.org/10.1016/0008-6223(82)90043-4
Y. Wang, D.C. Alsmeyer, R.L. Mccreery, Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2(5), 557–563 (1990). https://doi.org/10.1021/cm00011a018
S. Niyogi, E. Bekyarova, M.E. Itkis, H. Zhang, K. Shepperd et al., Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 406–4066 (2010). https://doi.org/10.1021/nl1021128
E.C. Stancu, A.-M. Stanciuc, S. Vizireanu, C. Luculescu, L. Moldovan, A. Achour, G. Dinescu, Plasma functionalization of carbon nanowalls and its effect on attachment of fibroblast-like cells. J. Phys D-Appl. Phys. 47, 265203 (2014). https://doi.org/10.1088/0022-3727/47/26/265203
E.C. Stancu, M.D. Ionita, S. Vizireanu, A.M. Stanciuc, L. Moldovan, G. Dinescu, Wettability properties of carbon nanowalls layers deposited by a radiofrequency plasma beam discharge. Mater. Sci. Eng. B 169(1–3), 119–122 (2010). https://doi.org/10.1016/j.mseb.2010.01.062
Z. Bo, Y. Tian, Z. Han, S. Wu, S. Zhang, J. Yan, K. Cen, K. Ostrikov, Tuneable fluidics within graphene nanogaps for water purification and energy storage. Nanoscale Horizons 2, 89–98 (2017). https://doi.org/10.1039/C6NH00167J
J.M. Schakenraad, H.J. Busscher, C.R. Wildevuur, J. Arends, Thermodynamic aspects of cell spreading on solid substrata. Cell Biophys. 13(1), 75–91 (1988). https://doi.org/10.1007/BF02797367
T.A. Horbett, M.B. Schway, Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate–ethylmethacrylate copolymers. J. Biomed. Mater. Res. 22(9), 763–793 (1988). https://doi.org/10.1002/jbm.820220903
S. Ghosh, G. Xiong, T.S. Fisher, B. Han, Guidance of cell adhesion and migration by graphitic nanopetals on carbon fibers. Mater. Lett. 184, 211–215 (2016). https://doi.org/10.1016/j.matlet.2016.08.077
R. Ion, S. Vizireanu, C.E. Stancu, C. Luculescu, A. Cimpean, G. Dinescu, Surface plasma functionalization influences macrophage behavior on carbon nanowalls. Mater. Sci. Eng. C 48, 118–125 (2015). https://doi.org/10.1016/j.msec.2014.11.064