Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties
Corresponding Author: Wenzhuo Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 160
Abstract
The low-dimensional, highly anisotropic geometries, and superior mechanical properties of one-dimensional (1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-film materials. Such capability enables unprecedented possibilities for probing intriguing physics and materials science in the 1D limit. Among the techniques for introducing controlled strains in 1D materials, nanoimprinting with embossed substrates attracts increased attention due to its capability to parallelly form nanomaterials into wrinkled structures with controlled periodicities, amplitudes, orientations at large scale with nanoscale resolutions. Here, we systematically investigated the strain-engineered anisotropic optical properties in Te nanowires through introducing a controlled strain field using a resist-free thermally assisted nanoimprinting process. The magnitude of induced strains can be tuned by adjusting the imprinting pressure, the nanowire diameter, and the patterns on the substrates. The observed Raman spectra from the chiral-chain lattice of 1D Te reveal the strong lattice vibration response under the strain. Our results suggest the potential of 1D Te as a promising candidate for flexible electronics, deformable optoelectronics, and wearable sensors. The experimental platform can also enable the exquisite mechanical control in other nanomaterials using substrate-induced, on-demand, and controlled strains.
Highlights:
1 Exquisite strain engineering in 1D chiral semiconductor.
2 Facile nanoimprinting induced tensile strain in Te nanowire.
3 Intriguing and tunable optical properties of 1D Te nanowire by strain engineering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005). https://doi.org/10.1038/nmat1403
- R.N. Barnett, U. Landman, Cluster-derived structures and conductance fluctuations in nanowires. Nature 387, 788–791 (1997). https://doi.org/10.1038/42904
- E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997). https://doi.org/10.1126/science.277.5334.1971
- C. Herring, J.K. Galt, Elastic and plastic properties of very small metal specimens. Phys. Rev. 85, 1060–1061 (1952). https://doi.org/10.1103/PhysRev.85.1060.2
- J. Song, X. Wang, E. Riedo, Z.L. Wang, Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005). https://doi.org/10.1021/nl051334v
- M.J. Gordon, T. Baron, F. Dhalluin, P. Gentile, P. Ferret, Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525–529 (2009). https://doi.org/10.1021/nl802556d
- R.A. Minamisawa, M.J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K.K. Bourdelle, H. Sigg, Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nat. Commun. 3, 1096 (2012). https://doi.org/10.1038/ncomms2102
- M.W. Larsson, J.B. Wagner, M. Wallin, P. Håkansson, L.E. Fröberg, L. Samuelson, L.R. Wallenberg, Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18, 015504 (2006). https://doi.org/10.1088/0957-4484/18/1/015504
- R. Adelung, O.C. Aktas, J. Franc, A. Biswas, R. Kunz et al., Strain-controlled growth of nanowires within thin-film cracks. Nat. Mater. 3, 375–379 (2004). https://doi.org/10.1038/nmat1128
- A. Nakamura, K. Matsunaga, J. Tohma, T. Yamamoto, Y. Ikuhara, Conducting nanowires in insulating ceramics. Nat. Mater. 2, 453–456 (2003). https://doi.org/10.1038/nmat920
- G. Cheng, C. Miao, Q. Qin, J. Li, F. Xu et al., Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat. Nanotechnol. 10, 687–691 (2015). https://doi.org/10.1038/nnano.2015.135
- Q. Qin, S. Yin, G. Cheng, X. Li, T.-H. Chang et al., Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 6, 5983 (2015). https://doi.org/10.1038/ncomms6983
- G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372–377 (2007). https://doi.org/10.1038/nnano.2007.150
- I.A. Goldthorpe, A.F. Marshall, P.C. McIntyre, Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett. 8, 4081–4086 (2008). https://doi.org/10.1021/nl802408y
- G. Signorello, E. Lörtscher, P.A. Khomyakov, S. Karg, D.L. Dheeraj et al., Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 5, 3655 (2014). https://doi.org/10.1038/ncomms4655
- J. Diao, K. Gall, M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656–660 (2003). https://doi.org/10.1038/nmat977
- J. Johansson, L.S. Karlsson, C. Patrik, T. Svensson, T. Mårtensson, B.A. Wacaser et al., Structural properties of 〈111〉B-oriented III–V nanowires. Nat. Mater. 5, 574–580 (2006). https://doi.org/10.1038/nmat1677
- D.K. Ferry, Nanowires in nanoelectronics. Science 319, 579–580 (2008). https://doi.org/10.1126/science.1154446
- K. Tomioka, M. Yoshimura, T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012). https://doi.org/10.1038/nature11293
- N.S. Malvankar, M. Vargas, K.P. Nevin, A.E. Franks, C. Leang et al., Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011). https://doi.org/10.1038/nnano.2011.119
- C. Feng, S. Wang, L. Yin, X. Li, M. Yao et al., Significant strain-induced orbital reconstruction and strong interfacial magnetism in TiNi(Nb)/ferromagnet/oxide heterostructures via oxygen manipulation. Adv. Funct. Mater. 28, 1803335 (2018). https://doi.org/10.1002/adfm.201803335
- P.E. Kremer, A.C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, B.D. Gerardot, Strain-tunable quantum dot embedded in a nanowire antenna. Phys. Rev. B 90, 201408 (2014). https://doi.org/10.1103/PhysRevB.90.201408
- P. Krogstrup, N.L.B. Ziino, W. Chang, S.M. Albrecht, M.H. Madsen et al., Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015). https://doi.org/10.1038/nmat4176
- A. Smogunov, A. Dal Corso, A. Delin, R. Weht, E. Tosatti, Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nat. Nanotechnol. 3, 22–25 (2008). https://doi.org/10.1038/nnano.2007.419
- A. Bezryadin, C.N. Lau, M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000). https://doi.org/10.1038/35010060
- K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies et al., Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010). https://doi.org/10.1038/nmat2835
- S. Xu, B.J. Hansen, Z.L. Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010). https://doi.org/10.1038/ncomms1098
- G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005). https://doi.org/10.1038/nbt1138
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
- W. Wu, Y. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22, 4711–4715 (2010). https://doi.org/10.1002/adma.201001925
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). https://doi.org/10.1126/science.1234855
- W. Wu, Z.L. Wang, Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett. 11, 2779–2785 (2011). https://doi.org/10.1021/nl201074a
- T. Ling, D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu et al., Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8, 1509 (2017). https://doi.org/10.1038/s41467-017-01872-y
- M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
- L. Bu, S. Guo, X. Zhang, X. Shen, D. Su et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016). https://doi.org/10.1038/ncomms11850
- R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
- W. Wu, C. Pan, Y. Zhang, X. Wen, Z.L. Wang, Piezotronics and piezo-phototronics—from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013). https://doi.org/10.1016/j.nantod.2013.11.002
- Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 11, 3151–3155 (2011). https://doi.org/10.1021/nl201233u
- C. Marini, D. Chermisi, M. Lavagnini, D. Di Castro, C. Petrillo et al., High-pressure phases of crystalline tellurium: a combined Raman and ab initio study. Phys. Rev. B 86, 064103 (2012). https://doi.org/10.1103/PhysRevB.86.064103
- D. Shiri, Y. Kong, A. Buin, M.P. Anantram, Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008). https://doi.org/10.1063/1.2973208
- H.S. Park, Surface stress effects on the critical buckling strains of silicon nanowires. Comput. Mater. Sci. 51, 396–401 (2012). https://doi.org/10.1016/j.commatsci.2011.07.059
- F. Salazar, A. Trejo-Baños, A. Miranda, L.A. Pérez, M. Cruz-Irisson, Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study. J. Mol. Model. 25, 338 (2019). https://doi.org/10.1007/s00894-019-4239-5
- M.N. Esfahani, Surface stress effects on the mechanical properties of silicon nanowires: a molecular dynamics simulation. J. Appl. Phys. 125, 135101 (2019). https://doi.org/10.1063/1.5089613
- H. Zhang, K.-Y. Fung, Y. Zhuang, K. Cao, J. Song, A. Hu, Y. Lu, Fracture of a silicon nanowire at ultra-large elastic strain. Acta Mech. 230, 1441–1449 (2019). https://doi.org/10.1007/s00707-017-2015-0
- M. Wölz, M. Ramsteiner, V.M. Kaganer, O. Brandt, L. Geelhaar, H. Riechert, Strain engineering of nanowire multi-quantum well demonstrated by raman spectroscopy. Nano Lett. 13, 4053–4059 (2013). https://doi.org/10.1021/nl401306q
- M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). https://doi.org/10.1038/381678a0
- W. Michael Cai, L. Juyoung, K. Pilgyu, C. Jonghyun, K. Peter, Y. Keong, N. SungWoo, 2D Mater. 4, 022002 (1996)
- H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. 104, 15607–15612 (2007). https://doi.org/10.1073/pnas.0702927104
- S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
- R. Rafael, C.-G. Andrés, C. Emmanuele, G. Francisco, Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 27, 313201 (2015). https://doi.org/10.1088/0953-8984/27/31/313201
- D.Y. Khang, J.A. Rogers, H.H. Lee, Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 19, 1526–1536 (2009). https://doi.org/10.1002/adfm.200801065
- W.H. Koo, S.M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photonics 4, 222 (2010). https://doi.org/10.1038/nphoton.2010.7
- C. Feng, Y. Li, L. Wang, Y. Cao, M. Yao et al., Giant strain control of antiferromagnetic moment in metallic FeMn by tuning exchange spring structure. Adv. Funct. Mater. 30, 1909708 (2020). https://doi.org/10.1002/adfm.201909708
- L. Wang, C. Feng, Y. Li, F. Meng, S. Wang et al., Switchable magnetic anisotropy of ferromagnets by dual-ion-manipulated orbital engineering. ACS Appl. Mater. Interfaces. 11, 32475–32480 (2019). https://doi.org/10.1021/acsami.9b09342
- T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433
- S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9, 3214–3219 (2009). https://doi.org/10.1021/nl901450q
- P. Gerd, C.-G. Andres, B. Michele, S.J.V.D.Z. Herre, A.S. Gary, K. Agnieszka, H. Thomas, S. Christian, K. Tobias, 2D Mater. 2, 015006 (2015)
- N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998). https://doi.org/10.1038/30193
- H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Correction: Corrigendum: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms9080
- Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5%3c550:AID-ANIE550%3e3.0.CO;2-G
- S. Jin, Y. Wang, M. Motlag, S. Gao, J. Xu, Q. Nian, W. Wu, G.J. Cheng, Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators. Adv. Mater. 30, 1705840 (2018). https://doi.org/10.1002/adma.201705840
- S. Jin, Z. Zhou, E.S.A. Sakr, M. Motlag, X. Huang et al., Scalable nanoshaping of hierarchical metallic patterns with multiplex laser shock imprinting using soft optical disks. Small 15, 1900481 (2019). https://doi.org/10.1002/smll.201900481
- K. Hölz, E. Schaudy, J. Lietard, M.M. Somoza, Multi-level patterning nucleic acid photolithography. Nat. Commun. 10, 3805 (2019). https://doi.org/10.1038/s41467-019-11670-3
- T. Ito, S. Okazaki, Pushing the limits of lithography. Nature 406, 1027–1031 (2000). https://doi.org/10.1038/35023233
- M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, T. Šikola, Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 8, 9640 (2018). https://doi.org/10.1038/s41598-018-28037-1
- S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996). https://doi.org/10.1126/science.272.5258.85
- L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007). https://doi.org/10.1002/adma.200600882
- L.J. Guo, Recent progress in nanoimprint technology and its applications. J. Phys. D-Appl. Phys. 37, R123–R141 (2004). https://doi.org/10.1088/0022-3727/37/11/R01
- S.Y. Chou, C. Keimel, J. Gu, Ultrafast and direct imprint of nanostructures in silicon. Nature 417, 835–837 (2002). https://doi.org/10.1038/nature00792
- P.R. Krauss, S.Y. Chou, Nano-compact disks with 400 Gbit/in2400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe. Appl. Phys. Lett. 71, 3174–3176 (1997). https://doi.org/10.1063/1.120280
- L.T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, Resistless nanoimprinting in metal for plasmonic nanostructures. Small 9, 3778–3783 (2013). https://doi.org/10.1002/smll.201300168
- Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu et al., Hybrid nanoimprint–soft lithography with sub-15 nm resolution. Nano Lett. 9, 2306–2310 (2009). https://doi.org/10.1021/nl9004892
- S.Y. Chou, P.R. Krauss, Imprint lithography with sub-10 nm feature size and high throughput. Microelectron. Eng. 35, 237–240 (1997). https://doi.org/10.1016/S0167-9317(96)00097-4
- A. von Hippel, Structure and conductivity in the VIb group of the periodic system. J. Chem. Phys. 16, 372–380 (1948). https://doi.org/10.1063/1.1746893
- G. Arlt, P. Quadflieg, Electronic displacement in tellurium by mechanical strain. Phys. Status Solidi (B) 32, 687–689 (1969). https://doi.org/10.1002/pssb.19690320220
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- Y. Wang, R. de Souza Borges Ferreira, R. Wang, G. Qiu, G. Li et al., Data-driven and probabilistic learning of the process–structure–property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy 57, 480–491 (2019). https://doi.org/10.1016/j.nanoen.2018.12.065
- S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, Y. Pei, Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016). https://doi.org/10.1038/ncomms10287
- T.I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee et al., High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25, 2920–2925 (2013). https://doi.org/10.1002/adma.201300657
- Y. Wang, R. Wang, S. Wan, Q. Wang, M.J. Kim, D. Ding, W. Wu, Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures 3, 011001 (2019). https://doi.org/10.1088/2399-1984/aaf76f
- S. Gao, Y. Wang, R. Wang, W. Wu, Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics. Semicond. Sci. Technol. 32, 104004 (2017). https://doi.org/10.1088/1361-6641/aa8605
- W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47, 7203–7212 (2018)
- J. Ibers, Tellurium in a twist. Nat. Chem. 1, 508 (2009). https://doi.org/10.1038/nchem.350
- M. Wu, Y. Wang, S. Gao, R. Wang, Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 56, 693–699 (2019). https://doi.org/10.1016/j.nanoen.2018.12.003
- A. Ben-Moshe, A.O. Govorov, G. Markovich, Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013). https://doi.org/10.1002/anie.201207489
- L. Zheng, X. Qiu, Z. Zhang, D. Zhu, Y. Xu, Solvothermal synthesis, crystal structure and luminescence property of a new 1D organic amine templated europium sulfate with helical chains. Inorg. Chem. Commun. 14, 906–909 (2011). https://doi.org/10.1016/j.inoche.2011.03.027
- X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
- Y. Sun, B. Sun, J. He, G. Yang, C. Wang, Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nat. Commun. 11, 647 (2020). https://doi.org/10.1038/s41467-019-14244-5
- A. Aziz, T. Zhang, Y.-H. Lin, F. Daneshvar, H.-J. Sue, M.E. Welland, 1D copper nanowires for flexible printable electronics and high ampacity wires. Nanoscale 9, 13104–13111 (2017). https://doi.org/10.1039/C7NR02478A
- H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
- Z. Lou, G. Shen, Flexible photodetectors based on 1D inorganic nanostructures. Adv. Sci. 3, 1500287 (2016). https://doi.org/10.1002/advs.201500287
- W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
- P. Song, H. Qin, H.-L. Gao, H.-P. Cong, S.-H. Yu, Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat. Commun. 9, 2786 (2018). https://doi.org/10.1038/s41467-018-05238-w
- H.-S. Qian, S.-H. Yu, J.-Y. Gong, L.-B. Luo, L.-F. Fei, High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22, 3830–3835 (2006). https://doi.org/10.1021/la053021l
- J.-W. Liu, J. Xu, W. Hu, J.-L. Yang, S.-H. Yu, Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2, 167–170 (2016). https://doi.org/10.1002/cnma.201500206
- K. Min-Seok, M. Xing-Hua, C. Ki-Hyun, J. Seung-Yeol, H. Kahyun, S. Yun-Mo, A generalized crystallographic description of all tellurium nanostructures. Adv. Mater. 30, 1702701 (2018). https://doi.org/10.1002/adma.201702701
- A.S. Pine, G. Dresselhaus, Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4, 356–371 (1971). https://doi.org/10.1103/PhysRevB.4.356
- A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy. Nano Lett. 3, 1229–1233 (2003). https://doi.org/10.1021/nl0344209
- A.R. Tao, J. Huang, P. Yang, Langmuir–Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008). https://doi.org/10.1021/ar8000525
- J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014). https://doi.org/10.1002/anie.201408298
- K. Ariga, Y. Yamauchi, T. Mori, J.P. Hill, 25th anniversary article: what can be done with the langmuir-blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25, 6477–6512 (2013). https://doi.org/10.1002/adma.201302283
- C. Tian, H.-P. Ji, C.-Y. Zong, C.-H. Lu, Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication. Chin. Chem. Lett. 26, 15–20 (2015). https://doi.org/10.1016/j.cclet.2014.10.003
- A.J. Baca, J.-H. Ahn, Y. Sun, M.A. Meitl, E. Menard et al., Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008). https://doi.org/10.1002/anie.200703238
- F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5, 672–678 (2011). https://doi.org/10.1021/nn103189z
- X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7, 8891–8898 (2013). https://doi.org/10.1021/nn403378g
- L. Kleinman, Deformation potentials in silicon. I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962). https://doi.org/10.1103/PhysRev.128.2614
- Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017). https://doi.org/10.1021/acs.nanolett.7b01717
- W. Harrison, Elementary electronic structure (revised edition). (World Scientific Publishing Company, 2004)
- Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P.D. Ye, Auxetic black phosphorus: a 2D material with negative Poisson’s ratio. Nano Lett. 16, 6701–6708 (2016). https://doi.org/10.1021/acs.nanolett.6b03607
- J.-W. Jiang, T. Chang, X. Guo, H.S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene. Nano Lett. 16, 5286–5290 (2016). https://doi.org/10.1021/acs.nanolett.6b02538
- D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003). https://doi.org/10.1021/nl0345062
- G. Kresse, J. Furthmüller, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J. Klimeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009). https://doi.org/10.1088/0953-8984/22/2/022201
References
B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005). https://doi.org/10.1038/nmat1403
R.N. Barnett, U. Landman, Cluster-derived structures and conductance fluctuations in nanowires. Nature 387, 788–791 (1997). https://doi.org/10.1038/42904
E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997). https://doi.org/10.1126/science.277.5334.1971
C. Herring, J.K. Galt, Elastic and plastic properties of very small metal specimens. Phys. Rev. 85, 1060–1061 (1952). https://doi.org/10.1103/PhysRev.85.1060.2
J. Song, X. Wang, E. Riedo, Z.L. Wang, Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005). https://doi.org/10.1021/nl051334v
M.J. Gordon, T. Baron, F. Dhalluin, P. Gentile, P. Ferret, Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525–529 (2009). https://doi.org/10.1021/nl802556d
R.A. Minamisawa, M.J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K.K. Bourdelle, H. Sigg, Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nat. Commun. 3, 1096 (2012). https://doi.org/10.1038/ncomms2102
M.W. Larsson, J.B. Wagner, M. Wallin, P. Håkansson, L.E. Fröberg, L. Samuelson, L.R. Wallenberg, Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18, 015504 (2006). https://doi.org/10.1088/0957-4484/18/1/015504
R. Adelung, O.C. Aktas, J. Franc, A. Biswas, R. Kunz et al., Strain-controlled growth of nanowires within thin-film cracks. Nat. Mater. 3, 375–379 (2004). https://doi.org/10.1038/nmat1128
A. Nakamura, K. Matsunaga, J. Tohma, T. Yamamoto, Y. Ikuhara, Conducting nanowires in insulating ceramics. Nat. Mater. 2, 453–456 (2003). https://doi.org/10.1038/nmat920
G. Cheng, C. Miao, Q. Qin, J. Li, F. Xu et al., Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat. Nanotechnol. 10, 687–691 (2015). https://doi.org/10.1038/nnano.2015.135
Q. Qin, S. Yin, G. Cheng, X. Li, T.-H. Chang et al., Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 6, 5983 (2015). https://doi.org/10.1038/ncomms6983
G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372–377 (2007). https://doi.org/10.1038/nnano.2007.150
I.A. Goldthorpe, A.F. Marshall, P.C. McIntyre, Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett. 8, 4081–4086 (2008). https://doi.org/10.1021/nl802408y
G. Signorello, E. Lörtscher, P.A. Khomyakov, S. Karg, D.L. Dheeraj et al., Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 5, 3655 (2014). https://doi.org/10.1038/ncomms4655
J. Diao, K. Gall, M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656–660 (2003). https://doi.org/10.1038/nmat977
J. Johansson, L.S. Karlsson, C. Patrik, T. Svensson, T. Mårtensson, B.A. Wacaser et al., Structural properties of 〈111〉B-oriented III–V nanowires. Nat. Mater. 5, 574–580 (2006). https://doi.org/10.1038/nmat1677
D.K. Ferry, Nanowires in nanoelectronics. Science 319, 579–580 (2008). https://doi.org/10.1126/science.1154446
K. Tomioka, M. Yoshimura, T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012). https://doi.org/10.1038/nature11293
N.S. Malvankar, M. Vargas, K.P. Nevin, A.E. Franks, C. Leang et al., Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011). https://doi.org/10.1038/nnano.2011.119
C. Feng, S. Wang, L. Yin, X. Li, M. Yao et al., Significant strain-induced orbital reconstruction and strong interfacial magnetism in TiNi(Nb)/ferromagnet/oxide heterostructures via oxygen manipulation. Adv. Funct. Mater. 28, 1803335 (2018). https://doi.org/10.1002/adfm.201803335
P.E. Kremer, A.C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, B.D. Gerardot, Strain-tunable quantum dot embedded in a nanowire antenna. Phys. Rev. B 90, 201408 (2014). https://doi.org/10.1103/PhysRevB.90.201408
P. Krogstrup, N.L.B. Ziino, W. Chang, S.M. Albrecht, M.H. Madsen et al., Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015). https://doi.org/10.1038/nmat4176
A. Smogunov, A. Dal Corso, A. Delin, R. Weht, E. Tosatti, Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nat. Nanotechnol. 3, 22–25 (2008). https://doi.org/10.1038/nnano.2007.419
A. Bezryadin, C.N. Lau, M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000). https://doi.org/10.1038/35010060
K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies et al., Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010). https://doi.org/10.1038/nmat2835
S. Xu, B.J. Hansen, Z.L. Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010). https://doi.org/10.1038/ncomms1098
G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005). https://doi.org/10.1038/nbt1138
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
W. Wu, Y. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22, 4711–4715 (2010). https://doi.org/10.1002/adma.201001925
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). https://doi.org/10.1126/science.1234855
W. Wu, Z.L. Wang, Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett. 11, 2779–2785 (2011). https://doi.org/10.1021/nl201074a
T. Ling, D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu et al., Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8, 1509 (2017). https://doi.org/10.1038/s41467-017-01872-y
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
L. Bu, S. Guo, X. Zhang, X. Shen, D. Su et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016). https://doi.org/10.1038/ncomms11850
R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
W. Wu, C. Pan, Y. Zhang, X. Wen, Z.L. Wang, Piezotronics and piezo-phototronics—from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013). https://doi.org/10.1016/j.nantod.2013.11.002
Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 11, 3151–3155 (2011). https://doi.org/10.1021/nl201233u
C. Marini, D. Chermisi, M. Lavagnini, D. Di Castro, C. Petrillo et al., High-pressure phases of crystalline tellurium: a combined Raman and ab initio study. Phys. Rev. B 86, 064103 (2012). https://doi.org/10.1103/PhysRevB.86.064103
D. Shiri, Y. Kong, A. Buin, M.P. Anantram, Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008). https://doi.org/10.1063/1.2973208
H.S. Park, Surface stress effects on the critical buckling strains of silicon nanowires. Comput. Mater. Sci. 51, 396–401 (2012). https://doi.org/10.1016/j.commatsci.2011.07.059
F. Salazar, A. Trejo-Baños, A. Miranda, L.A. Pérez, M. Cruz-Irisson, Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study. J. Mol. Model. 25, 338 (2019). https://doi.org/10.1007/s00894-019-4239-5
M.N. Esfahani, Surface stress effects on the mechanical properties of silicon nanowires: a molecular dynamics simulation. J. Appl. Phys. 125, 135101 (2019). https://doi.org/10.1063/1.5089613
H. Zhang, K.-Y. Fung, Y. Zhuang, K. Cao, J. Song, A. Hu, Y. Lu, Fracture of a silicon nanowire at ultra-large elastic strain. Acta Mech. 230, 1441–1449 (2019). https://doi.org/10.1007/s00707-017-2015-0
M. Wölz, M. Ramsteiner, V.M. Kaganer, O. Brandt, L. Geelhaar, H. Riechert, Strain engineering of nanowire multi-quantum well demonstrated by raman spectroscopy. Nano Lett. 13, 4053–4059 (2013). https://doi.org/10.1021/nl401306q
M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). https://doi.org/10.1038/381678a0
W. Michael Cai, L. Juyoung, K. Pilgyu, C. Jonghyun, K. Peter, Y. Keong, N. SungWoo, 2D Mater. 4, 022002 (1996)
H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. 104, 15607–15612 (2007). https://doi.org/10.1073/pnas.0702927104
S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
R. Rafael, C.-G. Andrés, C. Emmanuele, G. Francisco, Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 27, 313201 (2015). https://doi.org/10.1088/0953-8984/27/31/313201
D.Y. Khang, J.A. Rogers, H.H. Lee, Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 19, 1526–1536 (2009). https://doi.org/10.1002/adfm.200801065
W.H. Koo, S.M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photonics 4, 222 (2010). https://doi.org/10.1038/nphoton.2010.7
C. Feng, Y. Li, L. Wang, Y. Cao, M. Yao et al., Giant strain control of antiferromagnetic moment in metallic FeMn by tuning exchange spring structure. Adv. Funct. Mater. 30, 1909708 (2020). https://doi.org/10.1002/adfm.201909708
L. Wang, C. Feng, Y. Li, F. Meng, S. Wang et al., Switchable magnetic anisotropy of ferromagnets by dual-ion-manipulated orbital engineering. ACS Appl. Mater. Interfaces. 11, 32475–32480 (2019). https://doi.org/10.1021/acsami.9b09342
T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433
S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9, 3214–3219 (2009). https://doi.org/10.1021/nl901450q
P. Gerd, C.-G. Andres, B. Michele, S.J.V.D.Z. Herre, A.S. Gary, K. Agnieszka, H. Thomas, S. Christian, K. Tobias, 2D Mater. 2, 015006 (2015)
N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998). https://doi.org/10.1038/30193
H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Correction: Corrigendum: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms9080
Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5%3c550:AID-ANIE550%3e3.0.CO;2-G
S. Jin, Y. Wang, M. Motlag, S. Gao, J. Xu, Q. Nian, W. Wu, G.J. Cheng, Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators. Adv. Mater. 30, 1705840 (2018). https://doi.org/10.1002/adma.201705840
S. Jin, Z. Zhou, E.S.A. Sakr, M. Motlag, X. Huang et al., Scalable nanoshaping of hierarchical metallic patterns with multiplex laser shock imprinting using soft optical disks. Small 15, 1900481 (2019). https://doi.org/10.1002/smll.201900481
K. Hölz, E. Schaudy, J. Lietard, M.M. Somoza, Multi-level patterning nucleic acid photolithography. Nat. Commun. 10, 3805 (2019). https://doi.org/10.1038/s41467-019-11670-3
T. Ito, S. Okazaki, Pushing the limits of lithography. Nature 406, 1027–1031 (2000). https://doi.org/10.1038/35023233
M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, T. Šikola, Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 8, 9640 (2018). https://doi.org/10.1038/s41598-018-28037-1
S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996). https://doi.org/10.1126/science.272.5258.85
L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007). https://doi.org/10.1002/adma.200600882
L.J. Guo, Recent progress in nanoimprint technology and its applications. J. Phys. D-Appl. Phys. 37, R123–R141 (2004). https://doi.org/10.1088/0022-3727/37/11/R01
S.Y. Chou, C. Keimel, J. Gu, Ultrafast and direct imprint of nanostructures in silicon. Nature 417, 835–837 (2002). https://doi.org/10.1038/nature00792
P.R. Krauss, S.Y. Chou, Nano-compact disks with 400 Gbit/in2400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe. Appl. Phys. Lett. 71, 3174–3176 (1997). https://doi.org/10.1063/1.120280
L.T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, Resistless nanoimprinting in metal for plasmonic nanostructures. Small 9, 3778–3783 (2013). https://doi.org/10.1002/smll.201300168
Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu et al., Hybrid nanoimprint–soft lithography with sub-15 nm resolution. Nano Lett. 9, 2306–2310 (2009). https://doi.org/10.1021/nl9004892
S.Y. Chou, P.R. Krauss, Imprint lithography with sub-10 nm feature size and high throughput. Microelectron. Eng. 35, 237–240 (1997). https://doi.org/10.1016/S0167-9317(96)00097-4
A. von Hippel, Structure and conductivity in the VIb group of the periodic system. J. Chem. Phys. 16, 372–380 (1948). https://doi.org/10.1063/1.1746893
G. Arlt, P. Quadflieg, Electronic displacement in tellurium by mechanical strain. Phys. Status Solidi (B) 32, 687–689 (1969). https://doi.org/10.1002/pssb.19690320220
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
Y. Wang, R. de Souza Borges Ferreira, R. Wang, G. Qiu, G. Li et al., Data-driven and probabilistic learning of the process–structure–property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy 57, 480–491 (2019). https://doi.org/10.1016/j.nanoen.2018.12.065
S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, Y. Pei, Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016). https://doi.org/10.1038/ncomms10287
T.I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee et al., High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25, 2920–2925 (2013). https://doi.org/10.1002/adma.201300657
Y. Wang, R. Wang, S. Wan, Q. Wang, M.J. Kim, D. Ding, W. Wu, Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures 3, 011001 (2019). https://doi.org/10.1088/2399-1984/aaf76f
S. Gao, Y. Wang, R. Wang, W. Wu, Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics. Semicond. Sci. Technol. 32, 104004 (2017). https://doi.org/10.1088/1361-6641/aa8605
W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47, 7203–7212 (2018)
J. Ibers, Tellurium in a twist. Nat. Chem. 1, 508 (2009). https://doi.org/10.1038/nchem.350
M. Wu, Y. Wang, S. Gao, R. Wang, Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 56, 693–699 (2019). https://doi.org/10.1016/j.nanoen.2018.12.003
A. Ben-Moshe, A.O. Govorov, G. Markovich, Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013). https://doi.org/10.1002/anie.201207489
L. Zheng, X. Qiu, Z. Zhang, D. Zhu, Y. Xu, Solvothermal synthesis, crystal structure and luminescence property of a new 1D organic amine templated europium sulfate with helical chains. Inorg. Chem. Commun. 14, 906–909 (2011). https://doi.org/10.1016/j.inoche.2011.03.027
X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
Y. Sun, B. Sun, J. He, G. Yang, C. Wang, Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nat. Commun. 11, 647 (2020). https://doi.org/10.1038/s41467-019-14244-5
A. Aziz, T. Zhang, Y.-H. Lin, F. Daneshvar, H.-J. Sue, M.E. Welland, 1D copper nanowires for flexible printable electronics and high ampacity wires. Nanoscale 9, 13104–13111 (2017). https://doi.org/10.1039/C7NR02478A
H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
Z. Lou, G. Shen, Flexible photodetectors based on 1D inorganic nanostructures. Adv. Sci. 3, 1500287 (2016). https://doi.org/10.1002/advs.201500287
W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
P. Song, H. Qin, H.-L. Gao, H.-P. Cong, S.-H. Yu, Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat. Commun. 9, 2786 (2018). https://doi.org/10.1038/s41467-018-05238-w
H.-S. Qian, S.-H. Yu, J.-Y. Gong, L.-B. Luo, L.-F. Fei, High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22, 3830–3835 (2006). https://doi.org/10.1021/la053021l
J.-W. Liu, J. Xu, W. Hu, J.-L. Yang, S.-H. Yu, Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2, 167–170 (2016). https://doi.org/10.1002/cnma.201500206
K. Min-Seok, M. Xing-Hua, C. Ki-Hyun, J. Seung-Yeol, H. Kahyun, S. Yun-Mo, A generalized crystallographic description of all tellurium nanostructures. Adv. Mater. 30, 1702701 (2018). https://doi.org/10.1002/adma.201702701
A.S. Pine, G. Dresselhaus, Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4, 356–371 (1971). https://doi.org/10.1103/PhysRevB.4.356
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy. Nano Lett. 3, 1229–1233 (2003). https://doi.org/10.1021/nl0344209
A.R. Tao, J. Huang, P. Yang, Langmuir–Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008). https://doi.org/10.1021/ar8000525
J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014). https://doi.org/10.1002/anie.201408298
K. Ariga, Y. Yamauchi, T. Mori, J.P. Hill, 25th anniversary article: what can be done with the langmuir-blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25, 6477–6512 (2013). https://doi.org/10.1002/adma.201302283
C. Tian, H.-P. Ji, C.-Y. Zong, C.-H. Lu, Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication. Chin. Chem. Lett. 26, 15–20 (2015). https://doi.org/10.1016/j.cclet.2014.10.003
A.J. Baca, J.-H. Ahn, Y. Sun, M.A. Meitl, E. Menard et al., Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008). https://doi.org/10.1002/anie.200703238
F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5, 672–678 (2011). https://doi.org/10.1021/nn103189z
X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7, 8891–8898 (2013). https://doi.org/10.1021/nn403378g
L. Kleinman, Deformation potentials in silicon. I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962). https://doi.org/10.1103/PhysRev.128.2614
Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017). https://doi.org/10.1021/acs.nanolett.7b01717
W. Harrison, Elementary electronic structure (revised edition). (World Scientific Publishing Company, 2004)
Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P.D. Ye, Auxetic black phosphorus: a 2D material with negative Poisson’s ratio. Nano Lett. 16, 6701–6708 (2016). https://doi.org/10.1021/acs.nanolett.6b03607
J.-W. Jiang, T. Chang, X. Guo, H.S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene. Nano Lett. 16, 5286–5290 (2016). https://doi.org/10.1021/acs.nanolett.6b02538
D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003). https://doi.org/10.1021/nl0345062
G. Kresse, J. Furthmüller, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J. Klimeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009). https://doi.org/10.1088/0953-8984/22/2/022201