Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode
Corresponding Author: Ji-Myon Lee
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 18
Abstract
The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) ·3 H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25–35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles–graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm−1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene.
Highlights:
1 A green, simple, and novel approach was used for hybridization of chemical vapor deposition (CVD) graphene with 10 wt% tin-doped ITO nanoparticles.
2 A unique architecture with monodisperse 23–35 nm ITO nanoparticles over graphene was constructed to form a stable organic-free solution of ITO.
3 High improvements on optoelectrical properties with 28.2% in electrical conductivity relative to individual CVD graphene and more than 85% optical transmittance in the visible range were achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016). https://doi.org/10.1016/j.mattod.2015.10.002
- Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008). https://doi.org/10.1021/nn800459e
- R.K. de Castro, J.R. Araujo, R. Valaski, L.O.O. Costa, B.S. Archanjo, B. Fragneaud, M. Cremona, C.A. Achete, New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 273, 509–518 (2015). https://doi.org/10.1016/j.cej.2015.03.092
- B. Marta, C. Leordean, T. Istvan, L. Botiz, S. Astilean, Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Appl. Surf. Sci. 363, 613–618 (2016). https://doi.org/10.1016/j.apsusc.2015.11.265
- H. Kim, I. Song, C. Park, M. Son, M. Song et al., Copper vapor-assisted chemical vapor deposition for high quality and metal-free single layer graphene on amorphous SiO2 substrate. ACS Nano 7(8), 6575–6582 (2013). https://doi.org/10.1021/nn402847w
- L. Wang, Z. Yang, Y. Cui, B. Wei, S. Xu, J. Sheng, M. Wang, Y. Zhu, W. Fei, Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci. Rep. 7, 41896 (2017). https://doi.org/10.1038/srep41896
- A. Hazarika, B.K. Deka, D.Y. Kim, K. Kong, Y.B. Park, H.W. Park, Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Sci. Rep. 7, 40386 (2017). https://doi.org/10.1038/srep40386
- Z. Xu, Z. Ao, D. Chu, A. Younis, C.M. Li, S. Li, Reversible hydrophobic to hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci. Rep. 4, 6450 (2014). https://doi.org/10.1038/srep06450
- S.S. Han, L.Y. Liu, Y.K. Shan, F. Yang, D.Z. Li, Research of graphene/antireflection nanostructure composite transparent conducting films. J. Inorg. Mater. 32(2), 197–202 (2017). https://doi.org/10.15541/jim20160310
- X. Zheng, W. Chen, G. Wan, Y. Yu, S. Qin, J. Fang, F. Wang, X.A. Zhang, The Raman redshift of graphene impacted by gold nanoparticles. AIP Adv. 5(5), 057133 (2015). https://doi.org/10.1063/1.4921316
- H. Seo, H.D. Yun, S.Y. Kwon, I.C. Bang, Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer. Nano Lett. 16(2), 932–938 (2016). https://doi.org/10.1021/acs.nanolett.5b03832
- X. Chen, L. Zhang, S. Chen, Large area CVD growth of graphene. Syanth. Met. 210, 95–108 (2015). https://doi.org/10.1016/j.synthmet.2015.07.005
- K. Kim, J. Kim, B.G. Hyun, S. Ji, S.Y. Kim, S. Kim, B.W. An, J.U. Park, Stretchable and transparent electrodes based on in-plane structures. Nanoscale 7(35), 14577–14594 (2015). https://doi.org/10.1039/C5NR04341G
- J. Park, J. Kim, K. Kim, S.Y. Kim, W.H. Cheong et al., Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8(20), 10591–10597 (2016). https://doi.org/10.1039/C6NR01468B
- M.S. Lee, J. Kim, J. Park, J.U. Park, Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Lett. Nanoscale Res. (2015). https://doi.org/10.1186/s11671-015-0748-z
- D. Lee, H. Lee, Y. Ahn, Y. Jeong, D.Y. Lee, Y. Lee, Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5(17), 7750–7755 (2013). https://doi.org/10.1039/c3nr02320f
- A.L. Gorkina, A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova et al., Transparent and conductive hybrid graphene/carbon nanotube films. Carbon 100, 501–507 (2016). https://doi.org/10.1016/j.carbon.2016.01.035
- Q. Shi, Y. Cha, Y. Song, J.I. Lee, C. Zhu, X. Li, M.K. Song, D. Du, Y. Lin, 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale 8(34), 15414–15447 (2016). https://doi.org/10.1039/C6NR04770J
- L. Liu, Y. Cheng, X. Zhang, Y. Shan, X. Zhang, W. Wang, D. Li, Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf. Coat. Technol. 325(25), 611–616 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.072
- S.H. Kim, W.I. Choi, K.H. Kim, D.J. Yang, S. Heo, D.J. Yun, Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes. Sci. Rep. 6, 33074 (2016). https://doi.org/10.1038/srep33074
- L. Khalil, N.M. Julkapli, W.A. Yehye, W.J. Basirun, S.K. Bhargava, Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced Raman scattering biosensor. Materials 9(6), 406 (2016). https://doi.org/10.3390/ma9060406
- S. Xu, B. Man, S. Jiang, J. Wang, J. Wei et al., Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015). https://doi.org/10.1021/acsami.5b02303
- Z. Yang, K. Qian, J. Lv, W. Yan, J. Liu et al., Encapsulation of Fe3O4 nanoparticles into N, S co-doped graphene sheets with greatly enhanced electrochemical performance. Sci. Rep. 6, 27957 (2016). https://doi.org/10.1038/srep27957
- Y. Meng, F. Su, Y. Chen, Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Sci. Rep. 6, 31246 (2016). https://doi.org/10.1038/srep31246
- B.W. An, B.G. Hyun, S.Y. Kim, M. Kim, M.S. Lee et al., Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett. 14(11), 6322–6328 (2014). https://doi.org/10.1021/nl502755y
- S. Han, F. Yang, L. Liu, M. Zhou, Y. Shan, D. Li, Direct growth of special-shape graphene on different templates by remote catalyzation of Cu nanoparticles. J. Mater. Sci. Technol. 33(8), 800–806 (2017). https://doi.org/10.1016/j.jmst.2016.06.029
- A. Jana, E. Scheer, S. Polarz, Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8(1), 688–714 (2017). https://doi.org/10.3762/bjnano.8.74
- A. Klechikov, J. Sun, G. Hu, M. Zheng, T. Wagberg, A.V. Talyzin, Graphene decorated with metal nanoparticles: hydrogen sorption and related artefacts. Microporous Mesoporous Mater. 250, 27–34 (2017). https://doi.org/10.1016/j.micromeso.2017.05.014
- J.E. Johns, J.M.P. Alaboson, S. Patwardhan, C.R. Ryder, G.C. Schatz, M.C. Hersam, Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. J. Am. Chem. Soc. 135(48), 18121–18125 (2013). https://doi.org/10.1021/ja408248z
- R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011). https://doi.org/10.1021/ja107719u
- P.Y. Chen, M. Liu, T.M. Valentin, Z. Wang, R.S. Steinberg, J. Sodhi, I.Y. Wong, R.H. Hurt, Hierarchical metal oxide topographies replicated from highly textured graphene oxide by intercalation templating. ACS Nano 10(12), 10869–10879 (2016). https://doi.org/10.1021/acsnano.6b05179
- R. Rana, J. Chakraborty, S.K. Tripathi, M. Nasim, Study of conducting ITO thin film deposition on flexible polyimide substrate using spray pyrolysis. J. Nanostruct. Chem. 6(1), 65–74 (2016). https://doi.org/10.1007/s40097-015-0177-7
- B.C. Yadav, A. Kaushlendra, S. Satyendra, T.P. Yadav, Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J. Mater. Sci. Mater. Electron. 27(5), 4172–4179 (2016). https://doi.org/10.1007/s10854-016-4279-x
- J. Liu, Y. Yi, Y. Zhou, H. Cai, Highly stretchable and flexible graphene/ITO hybrid transparent electrode. Nanoscale Res. Lett. 11(1), 108 (2016). https://doi.org/10.1186/s11671-016-1323-y
- B. Zou, C. Walker, K. Wang, V. Tileli, O. Shaforost, N.M. Harrison, N. Klein, N.M. Alford, P.K. Petrov, Growth of epitaxial oxide thin films on graphene. Sci. Rep. 6, 31511 (2016). https://doi.org/10.1038/srep31511
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6(2), 195–200 (2010). https://doi.org/10.1002/smll.200901173
- X. Liu, C.Z. Wang, M. Hupalo, H.Q. Lin, K.M. Ho, M.C. Tringides, Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3(1), 79–111 (2013). https://doi.org/10.3390/cryst3010079
- X. Liu, C.Z. Wang, M. Hupalo, W.C. Lu, M.C. Tringides, Y.X. Yao, K.M. Ho, Metals on graphene: correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 14(25), 9157–9166 (2012). https://doi.org/10.1039/c2cp40527j
- F. Ruffino, F. Giannazzo, A review on metal nanoparticles nucleation and growth on/in graphene. Crystals 7(7), 219 (2017). https://doi.org/10.3390/cryst7070219
- J.F. Dai, G.J. Wang, L. Ma, C.K. Wu, Surface properties of graphene: relationship to graphene-polymer composites. Rev. Adv. Mater. Sci. 40(1), 60–71 (2015)
- S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films. Langmuir 25(18), 11078–11081 (2009). https://doi.org/10.1021/la901402f
- Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z. Shen, C.S. Bhatia, H. Yang, Surface energy engineering of graphene. Langmuir 26(6), 3798–3802 (2010). https://doi.org/10.1021/la100231u
- E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, ITO films on glass substrate by sol-gel technique: synthesis, characterization and optical properties. J. Sol–Gel. Sci. Technol. 50(3), 337–347 (2009). https://doi.org/10.1007/s10971-009-1931-4
- M.J. Alam, D.C. Cameron, Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol-gel process. Surf. Coat. Technol. 144, 776–780 (2001). https://doi.org/10.1016/S0257-8972(01)01183-5
- C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N.R. Armstrong, Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions. Langmuir 18(2), 450–457 (2002). https://doi.org/10.1021/la011101t
- B. Pujilaksono, U. Klement, L. Nyborg, U. Jelvestam, S. Hill, D. Burgard, X-ray photoelectron spectroscopy studies of indium tin oxide nanocrystalline powder. Mater. Charact. 54(1), 1–7 (2005). https://doi.org/10.1016/j.matchar.2004.09.008
- A.W.C. Lin, N.R. Armstrong, T. Kuwana, X-ray photoelectron/auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal. Chem. 49(8), 1228–1235 (1977). https://doi.org/10.1021/ac50016a042
- A. Thogersen, M. Rein, E. Monakhov, J. Mayandi, S. Diplas, Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films. J. Appl. Phys. 109(11), 113532–113540 (2011). https://doi.org/10.1063/1.3587174
- J. Park, W.C. Mitchel, S. Elhamri, L. Grazulis, J. Hoelscher, K. Mahalingam, C. Hwang, S.K. Mo, J. Lee, Observation of the intrinsic bandgap behaviour in as-grown epitaxial twisted graphene. Nat. Commun. 6(6), 5677 (2015). https://doi.org/10.1038/ncomms6677
- Z.H. Li, Y.P. Ke, D.Y. Ren, Effects of heat treatment on morphological, optical and electrical properties of ITO films by sol-gel technique. Trans. Nonferrous Met. Soc. China 18(2), 366–371 (2008). https://doi.org/10.1016/S1003-6326(08)60064-3
- M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering. J. Mater. Sci. Mater. Electron. 24(2), 467–474 (2013). https://doi.org/10.1007/s10854-012-0768-8
- H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44(7), 1018–1021 (2013). https://doi.org/10.1002/jrs.4312
- Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, Z.X. Shen, The effect of vacuum annealing on graphene. J. Raman Spectrosc. 41(5), 479–483 (2010). https://doi.org/10.1002/jrs.2485
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
- A. Jorio, Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. ISRN Nanotechnol. 2012(3), 234216–234231 (2012). https://doi.org/10.5402/2012/234216
- M. Bousa, G. Anagnostopoulos, E.D. Corro, K. Drogowska, J. Pekarek et al., Stress and charge transfer in uniaxially strained CVD graphene. Phys. Status Solidi B 253(12), 1–7 (2016). https://doi.org/10.1002/pssb.201600233
- W.X. Wang, S.H. Liang, T. Yu, D.H. Li, Y.B. Li, X.F. Han, The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109(7), 501–505 (2011). https://doi.org/10.1063/1.3536670
- D.F. Swinehart, The Beer-Lambert law. J. Chem. Educ. 39(7), 333 (1962). https://doi.org/10.1021/ed039p333
- L. Kocsis, P. Herman, A. Eke, The modified Beer-Lambert law revisited. Phys. Med. Biol. 51(5), 91–98 (2006). https://doi.org/10.1088/0031-9155/51/5/N02
References
S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016). https://doi.org/10.1016/j.mattod.2015.10.002
Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008). https://doi.org/10.1021/nn800459e
R.K. de Castro, J.R. Araujo, R. Valaski, L.O.O. Costa, B.S. Archanjo, B. Fragneaud, M. Cremona, C.A. Achete, New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 273, 509–518 (2015). https://doi.org/10.1016/j.cej.2015.03.092
B. Marta, C. Leordean, T. Istvan, L. Botiz, S. Astilean, Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Appl. Surf. Sci. 363, 613–618 (2016). https://doi.org/10.1016/j.apsusc.2015.11.265
H. Kim, I. Song, C. Park, M. Son, M. Song et al., Copper vapor-assisted chemical vapor deposition for high quality and metal-free single layer graphene on amorphous SiO2 substrate. ACS Nano 7(8), 6575–6582 (2013). https://doi.org/10.1021/nn402847w
L. Wang, Z. Yang, Y. Cui, B. Wei, S. Xu, J. Sheng, M. Wang, Y. Zhu, W. Fei, Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci. Rep. 7, 41896 (2017). https://doi.org/10.1038/srep41896
A. Hazarika, B.K. Deka, D.Y. Kim, K. Kong, Y.B. Park, H.W. Park, Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Sci. Rep. 7, 40386 (2017). https://doi.org/10.1038/srep40386
Z. Xu, Z. Ao, D. Chu, A. Younis, C.M. Li, S. Li, Reversible hydrophobic to hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci. Rep. 4, 6450 (2014). https://doi.org/10.1038/srep06450
S.S. Han, L.Y. Liu, Y.K. Shan, F. Yang, D.Z. Li, Research of graphene/antireflection nanostructure composite transparent conducting films. J. Inorg. Mater. 32(2), 197–202 (2017). https://doi.org/10.15541/jim20160310
X. Zheng, W. Chen, G. Wan, Y. Yu, S. Qin, J. Fang, F. Wang, X.A. Zhang, The Raman redshift of graphene impacted by gold nanoparticles. AIP Adv. 5(5), 057133 (2015). https://doi.org/10.1063/1.4921316
H. Seo, H.D. Yun, S.Y. Kwon, I.C. Bang, Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer. Nano Lett. 16(2), 932–938 (2016). https://doi.org/10.1021/acs.nanolett.5b03832
X. Chen, L. Zhang, S. Chen, Large area CVD growth of graphene. Syanth. Met. 210, 95–108 (2015). https://doi.org/10.1016/j.synthmet.2015.07.005
K. Kim, J. Kim, B.G. Hyun, S. Ji, S.Y. Kim, S. Kim, B.W. An, J.U. Park, Stretchable and transparent electrodes based on in-plane structures. Nanoscale 7(35), 14577–14594 (2015). https://doi.org/10.1039/C5NR04341G
J. Park, J. Kim, K. Kim, S.Y. Kim, W.H. Cheong et al., Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8(20), 10591–10597 (2016). https://doi.org/10.1039/C6NR01468B
M.S. Lee, J. Kim, J. Park, J.U. Park, Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Lett. Nanoscale Res. (2015). https://doi.org/10.1186/s11671-015-0748-z
D. Lee, H. Lee, Y. Ahn, Y. Jeong, D.Y. Lee, Y. Lee, Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5(17), 7750–7755 (2013). https://doi.org/10.1039/c3nr02320f
A.L. Gorkina, A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova et al., Transparent and conductive hybrid graphene/carbon nanotube films. Carbon 100, 501–507 (2016). https://doi.org/10.1016/j.carbon.2016.01.035
Q. Shi, Y. Cha, Y. Song, J.I. Lee, C. Zhu, X. Li, M.K. Song, D. Du, Y. Lin, 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale 8(34), 15414–15447 (2016). https://doi.org/10.1039/C6NR04770J
L. Liu, Y. Cheng, X. Zhang, Y. Shan, X. Zhang, W. Wang, D. Li, Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf. Coat. Technol. 325(25), 611–616 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.072
S.H. Kim, W.I. Choi, K.H. Kim, D.J. Yang, S. Heo, D.J. Yun, Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes. Sci. Rep. 6, 33074 (2016). https://doi.org/10.1038/srep33074
L. Khalil, N.M. Julkapli, W.A. Yehye, W.J. Basirun, S.K. Bhargava, Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced Raman scattering biosensor. Materials 9(6), 406 (2016). https://doi.org/10.3390/ma9060406
S. Xu, B. Man, S. Jiang, J. Wang, J. Wei et al., Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015). https://doi.org/10.1021/acsami.5b02303
Z. Yang, K. Qian, J. Lv, W. Yan, J. Liu et al., Encapsulation of Fe3O4 nanoparticles into N, S co-doped graphene sheets with greatly enhanced electrochemical performance. Sci. Rep. 6, 27957 (2016). https://doi.org/10.1038/srep27957
Y. Meng, F. Su, Y. Chen, Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Sci. Rep. 6, 31246 (2016). https://doi.org/10.1038/srep31246
B.W. An, B.G. Hyun, S.Y. Kim, M. Kim, M.S. Lee et al., Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett. 14(11), 6322–6328 (2014). https://doi.org/10.1021/nl502755y
S. Han, F. Yang, L. Liu, M. Zhou, Y. Shan, D. Li, Direct growth of special-shape graphene on different templates by remote catalyzation of Cu nanoparticles. J. Mater. Sci. Technol. 33(8), 800–806 (2017). https://doi.org/10.1016/j.jmst.2016.06.029
A. Jana, E. Scheer, S. Polarz, Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8(1), 688–714 (2017). https://doi.org/10.3762/bjnano.8.74
A. Klechikov, J. Sun, G. Hu, M. Zheng, T. Wagberg, A.V. Talyzin, Graphene decorated with metal nanoparticles: hydrogen sorption and related artefacts. Microporous Mesoporous Mater. 250, 27–34 (2017). https://doi.org/10.1016/j.micromeso.2017.05.014
J.E. Johns, J.M.P. Alaboson, S. Patwardhan, C.R. Ryder, G.C. Schatz, M.C. Hersam, Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. J. Am. Chem. Soc. 135(48), 18121–18125 (2013). https://doi.org/10.1021/ja408248z
R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011). https://doi.org/10.1021/ja107719u
P.Y. Chen, M. Liu, T.M. Valentin, Z. Wang, R.S. Steinberg, J. Sodhi, I.Y. Wong, R.H. Hurt, Hierarchical metal oxide topographies replicated from highly textured graphene oxide by intercalation templating. ACS Nano 10(12), 10869–10879 (2016). https://doi.org/10.1021/acsnano.6b05179
R. Rana, J. Chakraborty, S.K. Tripathi, M. Nasim, Study of conducting ITO thin film deposition on flexible polyimide substrate using spray pyrolysis. J. Nanostruct. Chem. 6(1), 65–74 (2016). https://doi.org/10.1007/s40097-015-0177-7
B.C. Yadav, A. Kaushlendra, S. Satyendra, T.P. Yadav, Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J. Mater. Sci. Mater. Electron. 27(5), 4172–4179 (2016). https://doi.org/10.1007/s10854-016-4279-x
J. Liu, Y. Yi, Y. Zhou, H. Cai, Highly stretchable and flexible graphene/ITO hybrid transparent electrode. Nanoscale Res. Lett. 11(1), 108 (2016). https://doi.org/10.1186/s11671-016-1323-y
B. Zou, C. Walker, K. Wang, V. Tileli, O. Shaforost, N.M. Harrison, N. Klein, N.M. Alford, P.K. Petrov, Growth of epitaxial oxide thin films on graphene. Sci. Rep. 6, 31511 (2016). https://doi.org/10.1038/srep31511
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6(2), 195–200 (2010). https://doi.org/10.1002/smll.200901173
X. Liu, C.Z. Wang, M. Hupalo, H.Q. Lin, K.M. Ho, M.C. Tringides, Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3(1), 79–111 (2013). https://doi.org/10.3390/cryst3010079
X. Liu, C.Z. Wang, M. Hupalo, W.C. Lu, M.C. Tringides, Y.X. Yao, K.M. Ho, Metals on graphene: correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 14(25), 9157–9166 (2012). https://doi.org/10.1039/c2cp40527j
F. Ruffino, F. Giannazzo, A review on metal nanoparticles nucleation and growth on/in graphene. Crystals 7(7), 219 (2017). https://doi.org/10.3390/cryst7070219
J.F. Dai, G.J. Wang, L. Ma, C.K. Wu, Surface properties of graphene: relationship to graphene-polymer composites. Rev. Adv. Mater. Sci. 40(1), 60–71 (2015)
S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films. Langmuir 25(18), 11078–11081 (2009). https://doi.org/10.1021/la901402f
Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z. Shen, C.S. Bhatia, H. Yang, Surface energy engineering of graphene. Langmuir 26(6), 3798–3802 (2010). https://doi.org/10.1021/la100231u
E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, ITO films on glass substrate by sol-gel technique: synthesis, characterization and optical properties. J. Sol–Gel. Sci. Technol. 50(3), 337–347 (2009). https://doi.org/10.1007/s10971-009-1931-4
M.J. Alam, D.C. Cameron, Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol-gel process. Surf. Coat. Technol. 144, 776–780 (2001). https://doi.org/10.1016/S0257-8972(01)01183-5
C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N.R. Armstrong, Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions. Langmuir 18(2), 450–457 (2002). https://doi.org/10.1021/la011101t
B. Pujilaksono, U. Klement, L. Nyborg, U. Jelvestam, S. Hill, D. Burgard, X-ray photoelectron spectroscopy studies of indium tin oxide nanocrystalline powder. Mater. Charact. 54(1), 1–7 (2005). https://doi.org/10.1016/j.matchar.2004.09.008
A.W.C. Lin, N.R. Armstrong, T. Kuwana, X-ray photoelectron/auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal. Chem. 49(8), 1228–1235 (1977). https://doi.org/10.1021/ac50016a042
A. Thogersen, M. Rein, E. Monakhov, J. Mayandi, S. Diplas, Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films. J. Appl. Phys. 109(11), 113532–113540 (2011). https://doi.org/10.1063/1.3587174
J. Park, W.C. Mitchel, S. Elhamri, L. Grazulis, J. Hoelscher, K. Mahalingam, C. Hwang, S.K. Mo, J. Lee, Observation of the intrinsic bandgap behaviour in as-grown epitaxial twisted graphene. Nat. Commun. 6(6), 5677 (2015). https://doi.org/10.1038/ncomms6677
Z.H. Li, Y.P. Ke, D.Y. Ren, Effects of heat treatment on morphological, optical and electrical properties of ITO films by sol-gel technique. Trans. Nonferrous Met. Soc. China 18(2), 366–371 (2008). https://doi.org/10.1016/S1003-6326(08)60064-3
M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering. J. Mater. Sci. Mater. Electron. 24(2), 467–474 (2013). https://doi.org/10.1007/s10854-012-0768-8
H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44(7), 1018–1021 (2013). https://doi.org/10.1002/jrs.4312
Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, Z.X. Shen, The effect of vacuum annealing on graphene. J. Raman Spectrosc. 41(5), 479–483 (2010). https://doi.org/10.1002/jrs.2485
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
A. Jorio, Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. ISRN Nanotechnol. 2012(3), 234216–234231 (2012). https://doi.org/10.5402/2012/234216
M. Bousa, G. Anagnostopoulos, E.D. Corro, K. Drogowska, J. Pekarek et al., Stress and charge transfer in uniaxially strained CVD graphene. Phys. Status Solidi B 253(12), 1–7 (2016). https://doi.org/10.1002/pssb.201600233
W.X. Wang, S.H. Liang, T. Yu, D.H. Li, Y.B. Li, X.F. Han, The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109(7), 501–505 (2011). https://doi.org/10.1063/1.3536670
D.F. Swinehart, The Beer-Lambert law. J. Chem. Educ. 39(7), 333 (1962). https://doi.org/10.1021/ed039p333
L. Kocsis, P. Herman, A. Eke, The modified Beer-Lambert law revisited. Phys. Med. Biol. 51(5), 91–98 (2006). https://doi.org/10.1088/0031-9155/51/5/N02