Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip
Corresponding Author: Zhiyuan Hu
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 16
Abstract
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger’s sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger’s sequencing to be a routine test before performing targeted cancer therapy.
Highlights:
1 Discovering not only the existence of specific EGFR multi-mutations occurred in minority of EGFR-mutated cells which may be covered by the noises from majority of un-mutated cells, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells.
2 Trapping and identifying EGFR-expressed single cells to exclude interferences from EGFR-unexpressed cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.G. Paez, P.A. Jänne, J.C. Lee, S. Tracy, H. Greulich et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676), 1497–1500 (2004). https://doi.org/10.1126/science.1099314
- J. Richard, C. Sainsbury, G. Needham, J. Farndon, A. Malcolm, A. Harris, Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 329(8547), 1398–1402 (1987). https://doi.org/10.1016/S0140-6736(87)90593-9
- M. Prewett, P. Rockwell, R. Rockwell, N.A. Giorgio, J. Mendelsohn, H.I. Scher, N.I. Goldstein, The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphas. Tumor Immunol. 19(6), 419–427 (1996). https://doi.org/10.1097/00002371-199611000-00006
- N. Bardeesy, R.A. De Pinho, Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2(12), 897–909 (2002). https://doi.org/10.1038/nrc949
- A. Levitzki, A. Gazit, Tyrosine kinase inhibition: an approach to drug development. Science 267(5205), 1782–1788 (1995). https://doi.org/10.1126/science.7892601
- M.G. Kris, R.B. Natale, R.S. Herbst, T.J. Lynch Jr., D. Prager et al., Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16), 2149–2158 (2003). https://doi.org/10.1001/jama.290.16.2149
- A. Gazdar, Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(1), 24–31 (2009). https://doi.org/10.1038/onc.2009.198
- R. Sordella, D.W. Bell, D.A. Haber, J. Settleman, Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687), 1163–1167 (2004). https://doi.org/10.1126/science.1101637
- H. Greulich, T.-H. Chen, W. Feng, P.A. Jänne, J.V. Alvarez et al., Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2(11), e313 (2005). https://doi.org/10.1371/journal.pmed.0020313
- C.-H. Yun, K.E. Mengwasser, A.V. Toms, M.S. Woo, H. Greulich, K.-K. Wong, M. Meyerson, M.J. Eck, The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. 105(6), 2070–2075 (2008). https://doi.org/10.1073/pnas.0709662105
- L.V. Sequist, R.G. Martins, D. Spigel, S.M. Grunberg, A. Spira et al., First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26(15), 2442–2449 (2008). https://doi.org/10.1200/JCO.2007.14.8494
- R. Rosell, E. Carcereny, R. Gervais, A. Vergnenegre, B. Massuti et al., Erlotinib versus standard chemotherapy as first-line treatment for european patients with advanced EGFR mutation-positive non-small-cell lung cancer (eurtac): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13(3), 239–246 (2012). https://doi.org/10.1016/S1470-2045(11)70393-X
- L.V. Sequist, J.C.H. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31(27), 3327–3334 (2013). https://doi.org/10.1200/JCO.2012.44.2806
- J.R. Grandis, M.F. Melhem, E.L. Barnes, D.J. Tweardy, Quantitative immunohistochemical analysis of transforming growth factor-α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78(6), 1284–1292 (1996). https://doi.org/10.1002/(SICI)1097-0142(19960915)78:6<1284:AID-CNCR17>3.0.CO;2-X
- D. Atkins, K.-A. Reiffen, C.L. Tegtmeier, H. Winther, M.S. Bonato, S. Störkel, Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues variation in staining intensity due to choice of fixative and storage time of tissue sections. J. Histochem. Cytochem. 52(7), 893–901 (2004). https://doi.org/10.1369/jhc.3A6195.2004
- N. Matsuo, K. Azuma, K. Sakai, S. Hattori, A. Kawahara et al., Association of EGFR exon 19 deletion and EGFR-TKI treatment duration with frequency of T790M mutation in EGFR-mutant lung cancer patients. Sci. Rep. 6(4), 267–277 (2016). https://doi.org/10.1038/srep36458
- X. Tang, H. Shigematsu, B.N. Bekele, J.A. Roth, J.D. Minna, W.K. Hong, A.F. Gazdar, I.I. Wistuba, EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65(17), 7568–7572 (2005). https://doi.org/10.1158/0008-5472.CAN-05-1705
- S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003). http://cancerres.aacrjournals.org/content/63/18/5821
- D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
- X. Fan, F.B. Furnari, W.K. Cavenee, J.S. Castresana, Non-isotopic silver-stained SSCP is more sensitive than automated direct sequencing for the detection of PTEN mutations in a mixture of DNA extracted from normal and tumor cells. Int. J. Oncol. 18(5), 1023–1026 (2001). https://doi.org/10.3892/ijo.18.5.1023
- M. Geens, H. Van de Velde, G. De Block, E. Goossens, A. Van Steirteghem, H. Tournaye, The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. 22(3), 733–742 (2007). https://doi.org/10.1093/humrep/del418
- W. Bonner, H. Hulett, R. Sweet, L. Herzenberg, Fluorescence activated cell sorting. Rev. Sci. Instrum. 43(3), 404–409 (1972). https://doi.org/10.1063/1.1685647
- M.G. Roper, Cellular analysis using microfluidics. Anal. Chem. 88(1), 381–394 (2015). https://doi.org/10.1021/acs.analchem.5b04532
- C.E. Yoo, J.-M. Park, H.-S. Moon, J.-G. Joung, D.-S. Son et al., Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Sci. Rep. 6, 37392 (2016). https://doi.org/10.1038/srep37392
- D. Ren, Y. Xia, B. Wang, Z. You, Multiplexed analysis for anti-epidermal growth factor receptor tumor cell growth inhibition based on quantum dot probes. Anal. Chem. 88(8), 4318–4327 (2016). https://doi.org/10.1021/acs.analchem.5b04471
- Y. Yang, H.S. Rho, M. Stevens, A.G. Tibbe, H. Gardeniers, L.W. Terstappen, Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells. Lab Chip 15(22), 4331–4337 (2015). https://doi.org/10.1039/C5LC00816F
- D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13), 2156–2166 (2011). https://doi.org/10.1039/c1lc20128j
- Y. Zhang, Y. Tang, S. Sun, Z. Wang, W. Wu et al., Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87(19), 9761–9768 (2015). https://doi.org/10.1021/acs.analchem.5b01901
- T. Yeo, S.J. Tan, C.L. Lim, D.P.X. Lau, Y.W. Chua et al., Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016). https://doi.org/10.1038/srep22076
- Y. Fu, C. Li, S. Lu, W. Zhou, F. Tang, X.S. Xie, Y. Huang, Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. 112(38), 11923–11928 (2015). https://doi.org/10.1073/pnas.1513988112
- K.-I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, A.-L. Barabási, The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007). https://doi.org/10.1073/pnas.0701361104
- T.K. Yung, K.C. Chan, T.S. Mok, J. Tong, K.F. To, Y.M. Lo, Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital pcr in non-small cell lung cancer patients. Clin. Cancer Res. 15(6), 2076–2084 (2009). https://doi.org/10.1158/1078-0432.CCR-08-2622
- L. Zhang, X. Cui, K. Schmitt, R. Hubert, W. Navidi, N. Arnheim, Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. 89(13), 5847–5851 (1992). https://doi.org/10.1073/pnas.89.13.5847
- H.A. Hammond, L. Jin, Y. Zhong, C.T. Caskey, R. Chakraborty, Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55(1), 175–189 (1994). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918216/pdf/ajhg00040-0180.pdf
- S.S. Sridhar, L. Seymour, F.A. Shepherd, Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 4(7), 397–406 (2003). https://doi.org/10.1016/S1470-2045(03)01137-9
- H. Bai, Z. Wang, K. Chen, J. Zhao, J.J. Lee et al., Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J. Clin. Oncol. 30(25), 3077–3083 (2012). https://doi.org/10.1200/JCO.2011.39.3744
References
J.G. Paez, P.A. Jänne, J.C. Lee, S. Tracy, H. Greulich et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676), 1497–1500 (2004). https://doi.org/10.1126/science.1099314
J. Richard, C. Sainsbury, G. Needham, J. Farndon, A. Malcolm, A. Harris, Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 329(8547), 1398–1402 (1987). https://doi.org/10.1016/S0140-6736(87)90593-9
M. Prewett, P. Rockwell, R. Rockwell, N.A. Giorgio, J. Mendelsohn, H.I. Scher, N.I. Goldstein, The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphas. Tumor Immunol. 19(6), 419–427 (1996). https://doi.org/10.1097/00002371-199611000-00006
N. Bardeesy, R.A. De Pinho, Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2(12), 897–909 (2002). https://doi.org/10.1038/nrc949
A. Levitzki, A. Gazit, Tyrosine kinase inhibition: an approach to drug development. Science 267(5205), 1782–1788 (1995). https://doi.org/10.1126/science.7892601
M.G. Kris, R.B. Natale, R.S. Herbst, T.J. Lynch Jr., D. Prager et al., Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16), 2149–2158 (2003). https://doi.org/10.1001/jama.290.16.2149
A. Gazdar, Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(1), 24–31 (2009). https://doi.org/10.1038/onc.2009.198
R. Sordella, D.W. Bell, D.A. Haber, J. Settleman, Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687), 1163–1167 (2004). https://doi.org/10.1126/science.1101637
H. Greulich, T.-H. Chen, W. Feng, P.A. Jänne, J.V. Alvarez et al., Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2(11), e313 (2005). https://doi.org/10.1371/journal.pmed.0020313
C.-H. Yun, K.E. Mengwasser, A.V. Toms, M.S. Woo, H. Greulich, K.-K. Wong, M. Meyerson, M.J. Eck, The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. 105(6), 2070–2075 (2008). https://doi.org/10.1073/pnas.0709662105
L.V. Sequist, R.G. Martins, D. Spigel, S.M. Grunberg, A. Spira et al., First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26(15), 2442–2449 (2008). https://doi.org/10.1200/JCO.2007.14.8494
R. Rosell, E. Carcereny, R. Gervais, A. Vergnenegre, B. Massuti et al., Erlotinib versus standard chemotherapy as first-line treatment for european patients with advanced EGFR mutation-positive non-small-cell lung cancer (eurtac): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13(3), 239–246 (2012). https://doi.org/10.1016/S1470-2045(11)70393-X
L.V. Sequist, J.C.H. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31(27), 3327–3334 (2013). https://doi.org/10.1200/JCO.2012.44.2806
J.R. Grandis, M.F. Melhem, E.L. Barnes, D.J. Tweardy, Quantitative immunohistochemical analysis of transforming growth factor-α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78(6), 1284–1292 (1996). https://doi.org/10.1002/(SICI)1097-0142(19960915)78:6<1284:AID-CNCR17>3.0.CO;2-X
D. Atkins, K.-A. Reiffen, C.L. Tegtmeier, H. Winther, M.S. Bonato, S. Störkel, Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues variation in staining intensity due to choice of fixative and storage time of tissue sections. J. Histochem. Cytochem. 52(7), 893–901 (2004). https://doi.org/10.1369/jhc.3A6195.2004
N. Matsuo, K. Azuma, K. Sakai, S. Hattori, A. Kawahara et al., Association of EGFR exon 19 deletion and EGFR-TKI treatment duration with frequency of T790M mutation in EGFR-mutant lung cancer patients. Sci. Rep. 6(4), 267–277 (2016). https://doi.org/10.1038/srep36458
X. Tang, H. Shigematsu, B.N. Bekele, J.A. Roth, J.D. Minna, W.K. Hong, A.F. Gazdar, I.I. Wistuba, EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65(17), 7568–7572 (2005). https://doi.org/10.1158/0008-5472.CAN-05-1705
S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003). http://cancerres.aacrjournals.org/content/63/18/5821
D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
X. Fan, F.B. Furnari, W.K. Cavenee, J.S. Castresana, Non-isotopic silver-stained SSCP is more sensitive than automated direct sequencing for the detection of PTEN mutations in a mixture of DNA extracted from normal and tumor cells. Int. J. Oncol. 18(5), 1023–1026 (2001). https://doi.org/10.3892/ijo.18.5.1023
M. Geens, H. Van de Velde, G. De Block, E. Goossens, A. Van Steirteghem, H. Tournaye, The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. 22(3), 733–742 (2007). https://doi.org/10.1093/humrep/del418
W. Bonner, H. Hulett, R. Sweet, L. Herzenberg, Fluorescence activated cell sorting. Rev. Sci. Instrum. 43(3), 404–409 (1972). https://doi.org/10.1063/1.1685647
M.G. Roper, Cellular analysis using microfluidics. Anal. Chem. 88(1), 381–394 (2015). https://doi.org/10.1021/acs.analchem.5b04532
C.E. Yoo, J.-M. Park, H.-S. Moon, J.-G. Joung, D.-S. Son et al., Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Sci. Rep. 6, 37392 (2016). https://doi.org/10.1038/srep37392
D. Ren, Y. Xia, B. Wang, Z. You, Multiplexed analysis for anti-epidermal growth factor receptor tumor cell growth inhibition based on quantum dot probes. Anal. Chem. 88(8), 4318–4327 (2016). https://doi.org/10.1021/acs.analchem.5b04471
Y. Yang, H.S. Rho, M. Stevens, A.G. Tibbe, H. Gardeniers, L.W. Terstappen, Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells. Lab Chip 15(22), 4331–4337 (2015). https://doi.org/10.1039/C5LC00816F
D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13), 2156–2166 (2011). https://doi.org/10.1039/c1lc20128j
Y. Zhang, Y. Tang, S. Sun, Z. Wang, W. Wu et al., Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87(19), 9761–9768 (2015). https://doi.org/10.1021/acs.analchem.5b01901
T. Yeo, S.J. Tan, C.L. Lim, D.P.X. Lau, Y.W. Chua et al., Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016). https://doi.org/10.1038/srep22076
Y. Fu, C. Li, S. Lu, W. Zhou, F. Tang, X.S. Xie, Y. Huang, Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. 112(38), 11923–11928 (2015). https://doi.org/10.1073/pnas.1513988112
K.-I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, A.-L. Barabási, The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007). https://doi.org/10.1073/pnas.0701361104
T.K. Yung, K.C. Chan, T.S. Mok, J. Tong, K.F. To, Y.M. Lo, Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital pcr in non-small cell lung cancer patients. Clin. Cancer Res. 15(6), 2076–2084 (2009). https://doi.org/10.1158/1078-0432.CCR-08-2622
L. Zhang, X. Cui, K. Schmitt, R. Hubert, W. Navidi, N. Arnheim, Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. 89(13), 5847–5851 (1992). https://doi.org/10.1073/pnas.89.13.5847
H.A. Hammond, L. Jin, Y. Zhong, C.T. Caskey, R. Chakraborty, Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55(1), 175–189 (1994). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918216/pdf/ajhg00040-0180.pdf
S.S. Sridhar, L. Seymour, F.A. Shepherd, Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 4(7), 397–406 (2003). https://doi.org/10.1016/S1470-2045(03)01137-9
H. Bai, Z. Wang, K. Chen, J. Zhao, J.J. Lee et al., Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J. Clin. Oncol. 30(25), 3077–3083 (2012). https://doi.org/10.1200/JCO.2011.39.3744