Synthesis of Hierarchical SnO2 Nanowire–TiO2 Nanorod Brushes Anchored to Commercially Available FTO-coated Glass Substrates
Corresponding Author: Sheikh A. Akbar
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 33
Abstract
Growth of single-crystal SnO2 nanowires using a fluorine-doped SnO2 (FTO) thin film as both the source and substrate is demonstrated for the first time at relatively low temperature (580 °C) which preserves the integrity of the underlying glass support and improves scalability to devices. Furthermore, a microwave hydrothermal process is shown to grow TiO2 nanorods on these nanowires to create a hierarchical nanoheterostructure that will lead to efficient photogenerated charge carrier separation and rapid transport of electrons to the substrate. This process simplifies nanowire growth by using commercially available and widely used FTO substrates without the need for an additional upstream Sn source and can be used as a high surface area host structure to many other hierarchical structures.
Highlights:
1 Single-crystal SnO2 nanowires can be grown from polycrystalline thin films of fluorine-doped SnO2 (FTO) on glass substrates at a reduced temperature of 580 °C without the need for an upstream source powder.
2 A novel hierarchical nanobrush-like structure was designed to maximize the surface area of the photoactive material while aiding more efficient photogenerated charge carrier separation and extraction through the nanowire core for photocatalysis and dye-sensitized solar cells.
3 The SnO2 nanowires were used as an anchored 3D host to create a novel hierarchical nanobrush-like structure, and this immobilized structure was designed to maximize the surface area of the photoactive material while aiding more efficient photogenerated charge carrier separation and extraction through the nanowire core for photocatalysis and dye-sensitized solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko et al., Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens. Actuators B 118(1–2), 208 (2006). doi:10.1016/j.snb.2006.04.024
- I.H. Kadhim, H. Abu Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). doi:10.1007/s40820-015-0057-1
- V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25(13), 135701 (2014). doi:10.1088/0957-4484/25/13/135701
- Z. Yang, S. Gao, W. Li, V. Vlasko-Vlasov, U. Welp, W.-K. Kwok, T. Xu, Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties. ACS Appl. Mater. Interfaces 3, 1101 (2011). doi:10.1021/am1012408
- H. Malmbekk, L. Vines, E.V. Monakhov, B.G. Svensson, Hydrogen-related defects in boron doped p-type silicon. Phys. Status Solidi 8(8), 705–708 (2011). doi:10.1002/pssc.201000260
- W.-Q. Wu, B.-X. Lei, H.-S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su, D.-B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3, 1352 (2013). doi:10.1038/srep01352
- M. Gratzel, Review article photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607
- S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3488 (2013). doi:10.1039/c3ta01175e
- B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009). doi:10.1021/ja8078972
- Y. Liu, H. Wang, Y. Wang, H. Xu, M. Li, H. Shen, Substrate-free, large-scale, free-standing and two-side oriented single crystal TiO2 nanorod array films with photocatalytic properties. Chem. Commun. 47, 3790–3792 (2011). doi:10.1039/c0cc02800b
- C.Y. Zha, L.M. Shen, X.Y. Zhang, Y.F. Wang, B.A. Korgel, A. Gupta, N.Z. Bao, Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(1), 122–129 (2014). doi:10.1021/am404942n
- Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang et al., Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 5(10), 8412–8419 (2011). doi:10.1021/nn203315k
- C.M. Carney, S.A. Akbar, Y. Cai, S. Yoo, K.H. Sandhage, Reactive conversion of polycrystalline SnO2 into single-crystal nanofiber arrays at low oxygen partial pressure. J. Mater. Res. 23, 2639–2644 (2011). doi:10.1557/JMR.2008.0321
- D.R. Miller, R.E. Williams, S.A. Akbar, P.A. Morris, D.W. Mccomb, STEM-cathodoluminescence of SnO2 nanowires and powders. Sens. Actuators B 240, 193–203 (2017). doi:10.1016/j.snb.2016.08.145
- S.H. Luo, Q. Wan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin, P.K. Chu, Photoluminescence properties of SnO2 nanowhiskers grown by thermal evaporation. Prog. Solid State Chem. 33, 287–292 (2005). doi:10.1016/j.progsolidstchem.2005.11.008
- M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012). doi:10.3390/s120607207
- T. Rakshit, S. Santra, I. Manna, S.K. Ray, The smallest organocatalyst in highly enantioselective direct aldol reaction in wet solvent-free conditions. RSC Adv. 4, 36749–36756 (2014). doi:10.1039/c4ra02690j
- L. Mazeina, Y.N. Picard, S.M. Prokes, Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires. Cryst. Growth Des. 9(2), 1164–1169 (2009). doi:10.1021/cg800993b
- Y.-C. Her, C.-K. Chiang, S.-T. Jean, S.-L. Huang, Self-catalytic growth of hierarchical In2O3 nanostructures on SnO2 nanowires and their CO sensing properties. CrystEngComm 14, 1296–1300 (2012). doi:10.1039/C1CE06086D
- A. Kar, M.A. Stroscio, M. Meyyappan, D.J. Gosztola, G.P. Wiederrecht, M. Dutta, Tailoring the surface properties and carrier dynamics in SnO2 nanowires. Nanotechnology 22(28), 285709 (2011). doi:10.1088/0957-4484/22/28/285709
- S. Mathur, S. Barth, Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 Heterostructures. Small 3, 2070–2075 (2007). doi:10.1002/smll.200700213
- W.D. Yu, X.M. Li, X.D. Gao, Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology 16(12), 2770 (2005). doi:10.1088/0957-4484/16/12/004
References
M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko et al., Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens. Actuators B 118(1–2), 208 (2006). doi:10.1016/j.snb.2006.04.024
I.H. Kadhim, H. Abu Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). doi:10.1007/s40820-015-0057-1
V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25(13), 135701 (2014). doi:10.1088/0957-4484/25/13/135701
Z. Yang, S. Gao, W. Li, V. Vlasko-Vlasov, U. Welp, W.-K. Kwok, T. Xu, Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties. ACS Appl. Mater. Interfaces 3, 1101 (2011). doi:10.1021/am1012408
H. Malmbekk, L. Vines, E.V. Monakhov, B.G. Svensson, Hydrogen-related defects in boron doped p-type silicon. Phys. Status Solidi 8(8), 705–708 (2011). doi:10.1002/pssc.201000260
W.-Q. Wu, B.-X. Lei, H.-S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su, D.-B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3, 1352 (2013). doi:10.1038/srep01352
M. Gratzel, Review article photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607
S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3488 (2013). doi:10.1039/c3ta01175e
B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009). doi:10.1021/ja8078972
Y. Liu, H. Wang, Y. Wang, H. Xu, M. Li, H. Shen, Substrate-free, large-scale, free-standing and two-side oriented single crystal TiO2 nanorod array films with photocatalytic properties. Chem. Commun. 47, 3790–3792 (2011). doi:10.1039/c0cc02800b
C.Y. Zha, L.M. Shen, X.Y. Zhang, Y.F. Wang, B.A. Korgel, A. Gupta, N.Z. Bao, Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(1), 122–129 (2014). doi:10.1021/am404942n
Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang et al., Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 5(10), 8412–8419 (2011). doi:10.1021/nn203315k
C.M. Carney, S.A. Akbar, Y. Cai, S. Yoo, K.H. Sandhage, Reactive conversion of polycrystalline SnO2 into single-crystal nanofiber arrays at low oxygen partial pressure. J. Mater. Res. 23, 2639–2644 (2011). doi:10.1557/JMR.2008.0321
D.R. Miller, R.E. Williams, S.A. Akbar, P.A. Morris, D.W. Mccomb, STEM-cathodoluminescence of SnO2 nanowires and powders. Sens. Actuators B 240, 193–203 (2017). doi:10.1016/j.snb.2016.08.145
S.H. Luo, Q. Wan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin, P.K. Chu, Photoluminescence properties of SnO2 nanowhiskers grown by thermal evaporation. Prog. Solid State Chem. 33, 287–292 (2005). doi:10.1016/j.progsolidstchem.2005.11.008
M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012). doi:10.3390/s120607207
T. Rakshit, S. Santra, I. Manna, S.K. Ray, The smallest organocatalyst in highly enantioselective direct aldol reaction in wet solvent-free conditions. RSC Adv. 4, 36749–36756 (2014). doi:10.1039/c4ra02690j
L. Mazeina, Y.N. Picard, S.M. Prokes, Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires. Cryst. Growth Des. 9(2), 1164–1169 (2009). doi:10.1021/cg800993b
Y.-C. Her, C.-K. Chiang, S.-T. Jean, S.-L. Huang, Self-catalytic growth of hierarchical In2O3 nanostructures on SnO2 nanowires and their CO sensing properties. CrystEngComm 14, 1296–1300 (2012). doi:10.1039/C1CE06086D
A. Kar, M.A. Stroscio, M. Meyyappan, D.J. Gosztola, G.P. Wiederrecht, M. Dutta, Tailoring the surface properties and carrier dynamics in SnO2 nanowires. Nanotechnology 22(28), 285709 (2011). doi:10.1088/0957-4484/22/28/285709
S. Mathur, S. Barth, Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 Heterostructures. Small 3, 2070–2075 (2007). doi:10.1002/smll.200700213
W.D. Yu, X.M. Li, X.D. Gao, Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology 16(12), 2770 (2005). doi:10.1088/0957-4484/16/12/004