Nitrogen-Doped Carbon Nanotube-Supported Pd Catalyst for Improved Electrocatalytic Performance toward Ethanol Electrooxidation
Corresponding Author: Zailai Xie
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 28
Abstract
In this study, hydrothermal carbonization (HTC) was applied for surface functionalization of carbon nanotubes (CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt% were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs. Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping (Pd/HTC-CNTs). Further experiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0) loading and increased the binding energy.
Highlights:
1 Hydrothermal carbonization (HTC) enabled the deposition of an N-doped carbon layer on the surface of carbon nanotubes (CNTs).
2 Nitrogen-doped CNTs facilitated the uniform distribution of Pd nanoparticles.
3 The interaction between nitrogen in the CNTs and Pd favored the existence of metallic Pd in the catalysts.
4 Pd/HTC-N1.67%CNTs showed the highest specific activity toward ethanol oxidation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105(2), 283–296 (2002). doi:10.1016/S0378-7753(01)00954-5
- Z. Zhang, C. Zhang, J. Sun, T. Kou, Q. Bai, Y. Wang, Y. Ding, Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. 1(11), 3620–3628 (2013). doi:10.1039/c3ta01464a
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). doi:10.1038/nature11115
- L. Yu, J. Xi, CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int. J. Hydrogen Energy 37(21), 15938–15947 (2012). doi:10.1016/j.ijhydene.2012.08.063
- Y.H. Chu, Y.G. Shul, Combinatorial investigation of Pt–Ru–Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int. J. Hydrogen Energy 35(20), 11261–11270 (2010). doi:10.1016/j.ijhydene.2010.07.062
- Y. Zhou, C. Liu, J. Liu, X. Cai, Y. Lu, H. Zhang, X. Sun, S. Wang, Self-decoration of PtNi alloy nanoparticles on multi-walled carbon nanotubes for highly efficient methanol electro-oxidation. Nano-Micro Lett. 8(4), 371–380 (2016). doi:10.1007/s40820-016-0096-2
- C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly ordered pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater. 19(23), 4256–4259 (2007). doi:10.1002/adma.200602911
- T. Maiyalagan, K. Scott, Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J. Power Sources 195(16), 5246–5251 (2010). doi:10.1016/j.jpowsour.2010.03.022
- F. Zhu, M. Wang, Y. He, G. Ma, Z. Zhang, X. Wang, A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 148, 291–301 (2014). doi:10.1016/j.electacta.2014.10.062
- X. Wang, F. Zhu, Y. He, M. Wang, Z. Zhang, Z. Ma, R. Li, Highly active carbon supported ternary PdSnPtx (x = 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J. Colloid Interface Sci. 468, 200–210 (2016). doi:10.1016/j.jcis.2016.01.068
- X. Wang, G. Ma, F. Zhu, N. Lin, B. Tang, Z. Zhang, Preparation and characterization of micro-arc-induced Pd/TM(TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation. Electrochim. Acta 114, 500–508 (2013). doi:10.1016/j.electacta.2013.10.049
- B. Yoon, C.M. Wai, Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications. J. Am. Chem. Soc. 127(49), 17174–17175 (2005). doi:10.1021/ja055530f
- O. Winjobi, Z. Zhang, C. Liang, W. Li, Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim. Acta 55(13), 4217–4221 (2010). doi:10.1016/j.electacta.2010.02.062
- F. Hu, G. Cui, Z. Wei, P.K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes. Electrochem. Commun. 10(9), 1303–1306 (2008). doi:10.1016/j.elecom.2008.06.019
- M.M.O. Thotiyl, T.R. Kumar, S. Sampath, Pd supported on titanium nitride for efficient ethanol oxidation. J. Phys. Chem. C 114(41), 17934–17941 (2010). doi:10.1021/jp1038514
- R. Li, Z. Ma, F. Zhang, H. Meng, M. Wang, X.-Q. Bao, B. Tang, X. Wang, Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation. Electrochim. Acta 220, 193–204 (2016). doi:10.1016/j.electacta.2016.10.105
- Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44(10), 3295–3346 (2015). doi:10.1039/c4cs00492b
- D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576–591 (2014). doi:10.1039/c3ee43463j
- W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int. J. Hydrogen Energy 38(22), 9370–9386 (2013). doi:10.1016/j.ijhydene.2012.12.095
- R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, M. Muhler, PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim. Acta 54(17), 4208–4215 (2009). doi:10.1016/j.electacta.2009.02.073
- H. Jin, T. Xiong, Y. Li, X. Xu, M. Li, Y. Wang, Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass. Chem. Commun. 50(84), 12637–12640 (2014). doi:10.1039/c4cc06206j
- C.E. Chan-Thaw, A. Villa, G.M. Veith, L. Prati, Identifying the role of N-heteroatom location in the activity of metal catalysts for alcohol oxidation. ChemCatChem 7(8), 1338–1346 (2015). doi:10.1002/cctc.201402951
- J. Chang, X. Sun, L. Feng, W. Xing, X. Qin, G. Shao, Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. J. Power Sources 239, 94–102 (2013). doi:10.1016/j.jpowsour.2013.03.066
- Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B 79(1), 89–99 (2008). doi:10.1016/j.apcatb.2007.09.047
- E. Antolini, Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew. Sust. Energy Rev. 58, 34–51 (2016). doi:10.1016/j.rser.2015.12.330
- M. Sevilla, L. Yu, L. Zhao, C.O. Ania, M.-M. Titiricic, Surface modification of CNTs with N-Doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain. Chem. Eng. 2(4), 1049–1055 (2014). doi:10.1021/sc500069h
- Q.-L. Zhang, J.-N. Zheng, T.-Q. Xu, A.-J. Wang, J. Wei, J.-R. Chen, J.-J. Feng, Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation. Electrochim. Acta 132, 551–560 (2014). doi:10.1016/j.electacta.2014.03.159
- Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54(8), 2203–2208 (2009). doi:10.1016/j.electacta.2008.10.034
- J.-N. Zheng, L.-L. He, F.-Y. Chen, A.-J. Wang, M.-W. Xue, J.-J. Feng, A facile general strategy for synthesis of palladium-based bimetallic alloyed nanodendrites with enhanced electrocatalytic performance for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2(32), 12899–12906 (2014). doi:10.1039/C4TA01647E
- F. Zhu, G. Ma, Z. Bai, R. Hang, B. Tang, Z. Zhang, X. Wang, High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 242, 610–620 (2013). doi:10.1016/j.jpowsour.2013.05.145
- W. Li, Y. Huang, D. Tang, T. Zhang, Y. Wang, A new composite support for Pd catalysts for ethylene glycol electrooxidation in alkaline solution: effect of (Ru, Sn)O2 solid solution. Electrochim. Acta 174, 178–184 (2015). doi:10.1016/j.electacta.2015.05.166
- H. Chen, Y. Huang, D. Tang, T. Zhang, Y. Wang, Ethanol oxidation on Pd/C promoted with CaSiO3 in alkaline medium. Electrochim. Acta 158, 18–23 (2015). doi:10.1016/j.electacta.2015.01.103
- J. Zhao, M. Shao, D. Yan, S. Zhang, Z. Lu et al., A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J. Mater. Chem. A 1(19), 5840–5846 (2013). doi:10.1039/c3ta10588a
- P. Wu, Y. Huang, L. Kang, M. Wu, Y. Wang, Multisource synergistic electrocatalytic oxidation effect of strongly coupled PdM (M = Sn, Pb)/N-doped graphene nanocomposite on small organic molecules. Sci. Rep. 5, 14173 (2015). doi:10.1038/srep14173
- G. Yang, Y. Chen, Y. Zhou, Y. Tang, T. Lu, Preparation of carbon supported Pd–P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 12(3), 492–495 (2010). doi:10.1016/j.elecom.2010.01.029
- K.S. Kim, A.F. Gossmann, N. Winograd, X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal. Chem. 46(2), 197–200 (1974). doi:10.1021/ac60338a037
- R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick et al., Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 5(5), 2740–2753 (2015). doi:10.1021/acscatal.5b00094
- L. Chen, X. Cui, Y. Wang, M. Wang, F. Cui et al., One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions. Chem. Asian J. 9(10), 2915–2920 (2014). doi:10.1002/asia.201402334
- X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of “clean” and well-dispersive pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133(11), 3693–3695 (2011). doi:10.1021/ja110313d
References
C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105(2), 283–296 (2002). doi:10.1016/S0378-7753(01)00954-5
Z. Zhang, C. Zhang, J. Sun, T. Kou, Q. Bai, Y. Wang, Y. Ding, Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. 1(11), 3620–3628 (2013). doi:10.1039/c3ta01464a
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). doi:10.1038/nature11115
L. Yu, J. Xi, CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int. J. Hydrogen Energy 37(21), 15938–15947 (2012). doi:10.1016/j.ijhydene.2012.08.063
Y.H. Chu, Y.G. Shul, Combinatorial investigation of Pt–Ru–Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int. J. Hydrogen Energy 35(20), 11261–11270 (2010). doi:10.1016/j.ijhydene.2010.07.062
Y. Zhou, C. Liu, J. Liu, X. Cai, Y. Lu, H. Zhang, X. Sun, S. Wang, Self-decoration of PtNi alloy nanoparticles on multi-walled carbon nanotubes for highly efficient methanol electro-oxidation. Nano-Micro Lett. 8(4), 371–380 (2016). doi:10.1007/s40820-016-0096-2
C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly ordered pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater. 19(23), 4256–4259 (2007). doi:10.1002/adma.200602911
T. Maiyalagan, K. Scott, Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J. Power Sources 195(16), 5246–5251 (2010). doi:10.1016/j.jpowsour.2010.03.022
F. Zhu, M. Wang, Y. He, G. Ma, Z. Zhang, X. Wang, A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 148, 291–301 (2014). doi:10.1016/j.electacta.2014.10.062
X. Wang, F. Zhu, Y. He, M. Wang, Z. Zhang, Z. Ma, R. Li, Highly active carbon supported ternary PdSnPtx (x = 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J. Colloid Interface Sci. 468, 200–210 (2016). doi:10.1016/j.jcis.2016.01.068
X. Wang, G. Ma, F. Zhu, N. Lin, B. Tang, Z. Zhang, Preparation and characterization of micro-arc-induced Pd/TM(TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation. Electrochim. Acta 114, 500–508 (2013). doi:10.1016/j.electacta.2013.10.049
B. Yoon, C.M. Wai, Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications. J. Am. Chem. Soc. 127(49), 17174–17175 (2005). doi:10.1021/ja055530f
O. Winjobi, Z. Zhang, C. Liang, W. Li, Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim. Acta 55(13), 4217–4221 (2010). doi:10.1016/j.electacta.2010.02.062
F. Hu, G. Cui, Z. Wei, P.K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes. Electrochem. Commun. 10(9), 1303–1306 (2008). doi:10.1016/j.elecom.2008.06.019
M.M.O. Thotiyl, T.R. Kumar, S. Sampath, Pd supported on titanium nitride for efficient ethanol oxidation. J. Phys. Chem. C 114(41), 17934–17941 (2010). doi:10.1021/jp1038514
R. Li, Z. Ma, F. Zhang, H. Meng, M. Wang, X.-Q. Bao, B. Tang, X. Wang, Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation. Electrochim. Acta 220, 193–204 (2016). doi:10.1016/j.electacta.2016.10.105
Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44(10), 3295–3346 (2015). doi:10.1039/c4cs00492b
D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576–591 (2014). doi:10.1039/c3ee43463j
W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int. J. Hydrogen Energy 38(22), 9370–9386 (2013). doi:10.1016/j.ijhydene.2012.12.095
R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, M. Muhler, PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim. Acta 54(17), 4208–4215 (2009). doi:10.1016/j.electacta.2009.02.073
H. Jin, T. Xiong, Y. Li, X. Xu, M. Li, Y. Wang, Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass. Chem. Commun. 50(84), 12637–12640 (2014). doi:10.1039/c4cc06206j
C.E. Chan-Thaw, A. Villa, G.M. Veith, L. Prati, Identifying the role of N-heteroatom location in the activity of metal catalysts for alcohol oxidation. ChemCatChem 7(8), 1338–1346 (2015). doi:10.1002/cctc.201402951
J. Chang, X. Sun, L. Feng, W. Xing, X. Qin, G. Shao, Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. J. Power Sources 239, 94–102 (2013). doi:10.1016/j.jpowsour.2013.03.066
Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B 79(1), 89–99 (2008). doi:10.1016/j.apcatb.2007.09.047
E. Antolini, Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew. Sust. Energy Rev. 58, 34–51 (2016). doi:10.1016/j.rser.2015.12.330
M. Sevilla, L. Yu, L. Zhao, C.O. Ania, M.-M. Titiricic, Surface modification of CNTs with N-Doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain. Chem. Eng. 2(4), 1049–1055 (2014). doi:10.1021/sc500069h
Q.-L. Zhang, J.-N. Zheng, T.-Q. Xu, A.-J. Wang, J. Wei, J.-R. Chen, J.-J. Feng, Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation. Electrochim. Acta 132, 551–560 (2014). doi:10.1016/j.electacta.2014.03.159
Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54(8), 2203–2208 (2009). doi:10.1016/j.electacta.2008.10.034
J.-N. Zheng, L.-L. He, F.-Y. Chen, A.-J. Wang, M.-W. Xue, J.-J. Feng, A facile general strategy for synthesis of palladium-based bimetallic alloyed nanodendrites with enhanced electrocatalytic performance for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2(32), 12899–12906 (2014). doi:10.1039/C4TA01647E
F. Zhu, G. Ma, Z. Bai, R. Hang, B. Tang, Z. Zhang, X. Wang, High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 242, 610–620 (2013). doi:10.1016/j.jpowsour.2013.05.145
W. Li, Y. Huang, D. Tang, T. Zhang, Y. Wang, A new composite support for Pd catalysts for ethylene glycol electrooxidation in alkaline solution: effect of (Ru, Sn)O2 solid solution. Electrochim. Acta 174, 178–184 (2015). doi:10.1016/j.electacta.2015.05.166
H. Chen, Y. Huang, D. Tang, T. Zhang, Y. Wang, Ethanol oxidation on Pd/C promoted with CaSiO3 in alkaline medium. Electrochim. Acta 158, 18–23 (2015). doi:10.1016/j.electacta.2015.01.103
J. Zhao, M. Shao, D. Yan, S. Zhang, Z. Lu et al., A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J. Mater. Chem. A 1(19), 5840–5846 (2013). doi:10.1039/c3ta10588a
P. Wu, Y. Huang, L. Kang, M. Wu, Y. Wang, Multisource synergistic electrocatalytic oxidation effect of strongly coupled PdM (M = Sn, Pb)/N-doped graphene nanocomposite on small organic molecules. Sci. Rep. 5, 14173 (2015). doi:10.1038/srep14173
G. Yang, Y. Chen, Y. Zhou, Y. Tang, T. Lu, Preparation of carbon supported Pd–P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 12(3), 492–495 (2010). doi:10.1016/j.elecom.2010.01.029
K.S. Kim, A.F. Gossmann, N. Winograd, X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal. Chem. 46(2), 197–200 (1974). doi:10.1021/ac60338a037
R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick et al., Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 5(5), 2740–2753 (2015). doi:10.1021/acscatal.5b00094
L. Chen, X. Cui, Y. Wang, M. Wang, F. Cui et al., One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions. Chem. Asian J. 9(10), 2915–2920 (2014). doi:10.1002/asia.201402334
X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of “clean” and well-dispersive pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133(11), 3693–3695 (2011). doi:10.1021/ja110313d