An Overview of Carbon Nanotubes and Graphene for Biosensing Applications
Corresponding Author: Zanzan Zhu
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 25
Abstract
With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes (CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT- and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Holzinger, A. Le Goff, S. Cosnier, Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014). doi:10.3389/fchem.2014.00063
- S.H. Lee, J.H. Sung, T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng. 40(6), 1384–1397 (2012). doi:10.1007/s10439-011-0457-4
- R.P. Singh, Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. Sci. 2011, 1–30 (2011). doi:10.4061/2011/125487
- R.A.S. Luz, R.M. Iost, F.N. Crespilho, Nanomaterials for biosensors and implantable biodevices, in Nanobioelectrochemistry, ed. by F.N. Crespilho (Springer, Berlin, 2013), pp. 27–48. doi:10.1007/978-3-642-29250-7_2
- I.E. Tothill, Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J. 4(4), 361–374 (2011). doi:10.3920/WMJ2011.1318
- P. Pandey, M. Datta, B.D. Malhotra, Prospects of nanomaterials in biosensors. Anal. Lett. 41(2), 159–209 (2008). doi:10.1080/00032710701792620
- P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). doi:10.1007/s40820-015-0077-x
- A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011(1), 685081 (2011). doi:10.1155/2011/685081
- W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010). doi:10.1002/anie.200903463
- L. Agui, P. Yanez-Sedeno, J.M. Pingarron, Role of carbon nanotubes in electroanalytical chemistry: a review. Anal. Chim. Acta 622(1–2), 11–47 (2008). doi:10.1016/j.aca.2008.05.070
- D. Eder, Carbon nanotube-inorganic hybrids. Chem. Rev. 110(3), 1348–1385 (2010). doi:10.1021/cr800433k
- J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011). doi:10.1021/cm102406h
- K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006). doi:10.1007/s00216-006-0314-8
- X.P. Liu, Y.J. Deng, X.Y. Jin, L.G. Chen, J.H. Jiang, G.L. Shen, R.Q. Yu, Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Anal. Biochem. 389(1), 63–68 (2009). doi:10.1016/j.ab.2009.03.019
- T. Lin, V. Bajpai, T. Ji, L. Dai, Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003). doi:10.1071/CH02254
- H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes. Synth. Met. 141(1–2), 113–122 (2004). doi:10.1016/j.synthmet.2003.08.018
- K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005). doi:10.1002/smll.200400118
- L. Santiago-Rodríguez, G. Sánchez-Pomales, C.R. Cabrera, DNA-functionalized carbon nanotubes: synthesis, self-assembly, and applications. Isr. J. Chem. 50(3), 277–290 (2010). doi:10.1002/ijch.201000034
- R.C. Haddon, π-Electrons in three dimensional. Acc. Chem. Res. 21(6), 243–249 (1988). doi:10.1021/ar00150a005
- S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1105–1113 (2002). doi:10.1021/ar010155r
- D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003). doi:10.1002/chem.200304800
- E. Vázquez, M. Prato, Functionalization of carbon nanotubes for applications in materials science and nanomedicine. Pure Appl. Chem. 82(4), 853–861 (2010). doi:10.1351/PAC-CON-09-10-40
- P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4(6), 2911–2934 (2014). doi:10.1039/C3RA44906H
- Y. Zhang, Y. Wen, Y. Liu, D. Li, J. Li, Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochem. Commun. 6(11), 1180–1184 (2004). doi:10.1016/j.elecom.2004.09.016
- R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001). doi:10.1021/ja010172b
- R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. PNAS 100(9), 4984–4989 (2003). doi:10.1073/pnas.0837064100
- M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001). doi:10.1016/S0009-2614(01)00490-0
- N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, H. Dai, Noncovalent functionalization of carbon nanotubes by fluorescein—polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129(9), 2448–2449 (2007). doi:10.1021/ja068684j
- N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins. J. Chem. 2013, 1–18 (2013). doi:10.1155/2013/676815
- L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128–130(21), 37–46 (2006). doi:10.1016/j.cis.2006.11.007
- N. Gan, H. Jin, T. Li, L. Zheng, Fe(3)O(4)/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein. Int. J. Nanomedicine 6, 3259–3269 (2011). doi:10.2147/IJN.S26212
- N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010). doi:10.1039/b714449k
- D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008). doi:10.3390/s8031400
- J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanal 17(1), 7–14 (2005). doi:10.1002/elan.200403113
- A. Ruhal, J.S. Ruhal, S. Kumar, A. Kumar, Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor. Cell. Mol. Biol. 58(1), 15–20 (2012). doi:10.1170/t915
- Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanal 22(10), 1027–1036 (2010). doi:10.1002/elan.200900571
- C. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 332(1), 75–83 (2004). doi:10.1016/j.ab.2004.05.057
- Y.M. Lee, O.Y. Kwon, Y.J. Yoon, K. Ryu, Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnol. Lett. 28(1), 39–43 (2006). doi:10.1007/s10529-005-9685-8
- M.D. Rubianes, G.A. Rivas, Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanal 17(1), 73–78 (2005). doi:10.1002/elan.200403121
- P.J. Brrito, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioeletrochem. Bioenergy 41(1), 121–125 (1996). doi:10.1016/0302-4598(96)05078-7
- M.a.D. Rubianes, G.A. Rivas, Carbon nanotubes paste electrode. Electrochem. Commun. 5(8), 689–694 (2003). doi:10.1016/S1388-2481(03)00168-1
- W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29(6), 889–895 (2011). doi:10.1016/j.biotechadv.2011.07.007
- Z. Zhu, J. Wang, A. Munir, H.S. Zhou, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on bamboo shaped carbon nanotubes/chitosan matrix. Colloids Surf. A 385(1–3), 91–94 (2011). doi:10.1016/j.colsurfa.2011.05.047
- S. Hrapovic, Y. Liu, K.B. Male, J.H. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76(4), 1083–1088 (2004). doi:10.1021/ac035143t
- X. Wu, B. Zhao, P. Wu, H. Zhang, C. Cai, Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. J. Phys. Chem. B 113(40), 13365–13373 (2009). doi:10.1021/jp905632k
- Y. Wang, P.P. Joshi, K.L. Hobbs, M.B. Johnson, D.W. Schmidtke, Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22(23), 9776–9783 (2006). doi:10.1021/la060857v
- Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5), 5996–6022 (2012). doi:10.3390/s120505996
- F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43(16), 2113–2117 (2004). doi:10.1002/anie.200353275
- A. Ruhal, J.S. Rana, S. Kumar, A. Kumar, Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor. Cell. Mol. Biol. 58(1), 15–22 (2012). doi:10.1170/t915
- X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5(5), 408–411 (2003). doi:10.1016/S1388-2481(03)00076-6
- S.G. Wang, Q. Zhang, R. Wang, S.F. Yoon, J. Ahn, D.J. Yang, J.Z. Tian, J.Q. Li, Q. Zhou, Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5(9), 800–803 (2003). doi:10.1016/j.elecom.2003.07.007
- S. Roy, H. Vedala, W. Choi, Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology 17(4), S14–S18 (2006). doi:10.1088/0957-4484/17/4/003
- Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4(2), 191–195 (2004). doi:10.1021/nl0347233
- A.T. Ezhil Vilian, R. Madhu, S.-M. Chen, V. Veeramani, M. Sivakumar, Y.S. Huh, Y.-K. Han, Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. J. Mater. Chem. B 3(30), 6285–6292 (2015). doi:10.1039/C5TB00508F
- J. Wang, Survey and summary from DNA biosensors to gene chips. Nucleic Acids Res. 28(16), 3011–3016 (2000). doi:10.1093/nar/28.16.3011
- T.G. Drummond, M.G. Hill, J.K. Barton, Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003). doi:10.1038/nbt873
- P. He, Y. Xu, Y. Fang, Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim. Acta 152(3–4), 175–186 (2005). doi:10.1007/s00604-005-0445-1
- S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.-Y. Lee, T. Kawai, A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuator B 122(2), 672–682 (2007). doi:10.1016/j.snb.2006.06.014
- V.C. Diculescu, A.-M.C. Paquim, n.M.O. Brett, Electrochemical DNA sensors for detection of DNA damage. Sensors 5(6), 377–393 (2005). doi:10.3390/s5060377
- J. Li, Q. Liu, Y. Liu, S. Liu, S. Yao, DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem. 346(1), 107–114 (2005). doi:10.1016/j.ab.2005.07.037
- H. Cai, X. Cao, Y. Jiang, P. He, Y. Fang, Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375(2), 287–293 (2003). doi:10.1007/s00216-002-1652-9
- S. Niu, M. Zhao, R. Ren, S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using manganese(II)-Schiff base complex as hybridization indicator. J. Inorg. Biochem. 103(1), 43–49 (2009). doi:10.1016/j.jinorgbio.2008.09.001
- P. He, L. Dai, Aligned carbon nanotube-DNA electrochemical sensors. Chem. Commun. 3, 348–349 (2004). doi:10.1039/B313030B
- J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3(5), 597–602 (2003). doi:10.1021/nl0340677
- Y. Xu, X. Ye, L. Yang, P. He, Y. Fang, Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanal 18(15), 1471–1478 (2006). doi:10.1002/elan.200603544
- J.E. Weber, S. Pillai, M.K. Ram, A. Kumar, S.R. Singh, Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode. Mater. Sci. Eng. C 31(5), 821–825 (2011). doi:10.1016/j.msec.2010.12.009
- K. Guo, Y. Wang, H. Chen, J. Ji, S. Zhang, J. Kong, B. Liu, An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction. Electrochem. Commun. 13(7), 707–710 (2011). doi:10.1016/j.elecom.2011.04.016
- J.V. Veetil, K. Ye, Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 23(3), 517–531 (2007). doi:10.1021/bp0602395
- B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8), 6546–6561 (2012). doi:10.1021/nn3023969
- M.A. Aziz, S. Park, S. Jon, H. Yang, Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer. Chem. Commun. 25, 2610–2612 (2007). doi:10.1039/B701190C
- S.L.R. Gomes-Filho, A.C.M.S. Dias, M.M.S. Silva, B.V.M. Silva, R.F. Dutra, A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem. J. 109, 10–15 (2013). doi:10.1016/j.microc.2012.05.033
- Y. Wan, W. Deng, Y. Su, X. Zhu, C. Peng, H. Hu, H. Peng, S. Song, C. Fan, Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron. 30(1), 93–99 (2011). doi:10.1016/j.bios.2011.08.033
- B.S. Munge, J. Fisher, L.N. Millord, C.E. Krause, R.S. Dowd, J.F. Rusling, Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst 135(6), 1345–1350 (2010). doi:10.1039/c0an00028k
- I. Hafaiedh, S. Ameur, A. Abdelghani, Impedance spectroscopy of supported multiwalled carbon nanotubes for immunosensor applications. Nanomed. Nanotechnol. 6(3), 271–275 (2012). doi:10.4172/2157-7439.s2-002
- K. Lee, P.R. Nair, A. Scott, M.A. Alam, D.B. Janes, Device considerations for development of conductance-based biosensors. J. Appl. Phys. 105(10), 102046–102059 (2009). doi:10.1063/1.3116630
- S. Liu, X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4(8), e23 (2012). doi:10.1038/am.2012.42
- K. Besteman, J.-O. Lee, F.G. Wiertz, H.A. Heering, C. Dekker, Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3(6), 727–730 (2003). doi:10.1021/nl034139u
- H.-M. So, K. Won, Y.H. Kim, B.-K. Kim, B.H. Ryu, P.S. Na, H. Kim, J.-O. Lee, Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127(34), 11906–11907 (2005). doi:10.1021/ja053094r
- M.T. Martinez, Y.C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9(2), 530–536 (2009). doi:10.1021/nl8025604
- J. Oh, G. Yoo, Y.W. Chang, H.J. Kim, J. Jose, E. Kim, J.C. Pyun, K.H. Yoo, A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron. 50, 345–350 (2013). doi:10.1016/j.bios.2013.07.004
- H.G. Sudibya, J. Ma, X. Dong, S. Ng, L.J. Li, X.W. Liu, P. Chen, Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 48(15), 2723–2726 (2009). doi:10.1002/anie.200805514
- S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65(15), 1933–1950 (2013). doi:10.1016/j.addr.2013.07.015
- R. Yang, J. Jin, Y. Chen, N. Shao, H. Kang et al., Carbon nanotube-quenched fluorescent oligonucleotides- probes that fluoresce upon hybridization. J. Am. Chem. Soc. 130(26), 8351–8358 (2008). doi:10.1021/ja800604z
- A.A. Boghossian, J. Zhang, P.W. Barone, N.F. Reuel, J.H. Kim et al., Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4(7), 848–863 (2011). doi:10.1002/cssc.201100070
- D.A. Heller, E.S. Jeng, T.-K. Yeung, B.M. Martinez, A.E. Moll, J.B. Gastala, M.S. Strano, Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311(5760), 508–511 (2006). doi:10.1126/science.1120792
- K. Welsher, Z. Liu, D. Daranciang, H. Dai, Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8(2), 586–590 (2008). doi:10.1021/nl072949q
- Z. Chen, S.M. Tabakman, A.P. Goodwin, M.G. Kattah, D. Daranciang et al., Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26(11), 1285–1292 (2008). doi:10.1038/nbt.1501
- P. Goldberg-Oppenheimer, T. Hutter, B. Chen, J. Robertson, S. Hofmann, S. Mahajan, Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection. J. Phys. Chem. Lett. 3(23), 3486–3492 (2012). doi:10.1021/jz301333r
- N.P. Sardesai, J.C. Barron, J.F. Rusling, Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal. Chem. 83(17), 6698–6703 (2011). doi:10.1021/ac201292q
- Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212 (2011). doi:10.1016/j.tibtech.2011.01.008
- Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). doi:10.1038/nature04235
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). doi:10.1073/pnas.0502848102
- S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97(1), 016801–016804 (2006). doi:10.1103/PhysRevLett.97.016801
- D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39(8), 3157–3180 (2010). doi:10.1039/b923596e
- Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11(4), 889–892 (2009). doi:10.1016/j.elecom.2009.02.013
- M. Pumera, Graphene in biosensing. Mater. Today 14(7-8), 308–315 (2011). doi:10.1016/S1369-7021(11)70160-2
- G. Gao, D. Liu, S. Tang, C. Huang, M. He, Y. Guo, X. Sun, B. Gao, Heat-initiated chemical functionalization of graphene. Sci. Rep. 6, 20034 (2016). doi:10.1038/srep20034
- L. Tang, Y. Wang, J. Li, The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 44(19), 6954–6980 (2015). doi:10.1039/C4CS00519H
- L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.1002/adfm.200900377
- D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012). doi:10.1021/cr300115g
- T.J. Davies, M.E. Hyde, R.G. Compton, Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44(32), 5121–5126 (2005). doi:10.1002/anie.200462750
- Y. Liu, Y. Liu, H. Feng, Y. Wu, L. Joshi, X. Zeng, J. Li, Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens. Bioelectron. 35(1), 63–68 (2012). doi:10.1016/j.bios.2012.02.007
- L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem. Commun. 46(32), 5882–5884 (2010). doi:10.1039/c0cc01212b
- Q. Zhang, Y. Qiao, F. Hao, L. Zhang, S. Wu, Y. Li, J. Li, X.-M. Song, Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur. J. 16(27), 8133–8139 (2010). doi:10.1002/chem.201000684
- C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81(6), 2378–2382 (2009). doi:10.1021/ac802193c
- Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9), 6158–6160 (2010). doi:10.1021/la100886x
- K.P. Prathish, M.M. Barsan, D. Geng, X. Sun, C.M.A. Brett, Chemically modified graphene and nitrogen-doped graphene: electrochemical characterisation and sensing applications. Electrochim. Acta 114, 533–542 (2013)
- M.M. Barsan, M. David, M. Florescu, L. Tugulea, C.M. Brett, A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99, 46–52 (2014). doi:10.1016/j.bioelechem.2014.06.004
- Y. Zhang, J. Zhang, X. Huang, X. Zhou, H. Wu, S. Guo, Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8(1), 154–159 (2012). doi:10.1002/smll.201101695
- Q. Wang, X. Cui, J. Chen, X. Zheng, C. Liu et al., Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv. 2(15), 6245–6249 (2012). doi:10.1039/c2ra20425h
- Y. Luo, F.-Y. Kong, C. Li, J.-J. Shi, W.-X. Lv, W. Wang, One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sens. Actuator B 234, 625–632 (2016). doi:10.1016/j.snb.2016.05.046
- M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, W. Tang, Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuator B 190, 707–714 (2014). doi:10.1016/j.snb.2013.09.054
- J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum. Biosens. Bioelectron. 83, 68–76 (2016). doi:10.1016/j.bios.2016.04.040
- F.J.V. Gomez, A. Martín, M.F. Silva, A. Escarpa, Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim. Acta 182(11), 1925–1931 (2015). doi:10.1007/s00604-015-1520-x
- L. Zhu, L. Luo, Z. Wang, DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens. Bioelectron. 35(1), 507–511 (2012). doi:10.1016/j.bios.2012.03.026
- Q. Wang, J. Lei, S. Deng, L. Zhang, H. Ju, Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem. Commun. 49(9), 916–918 (2013). doi:10.1039/C2CC37664D
- M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009). doi:10.1021/ac900136z
- A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011). doi:10.1021/nn200091p
- Z. Zhang, L. Luo, G. Chen, Y. Ding, D. Deng, C. Fan, Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing. Biosens. Bioelectron. 60(15), 161–166 (2014). doi:10.1016/j.bios.2014.03.067
- T. Wei, W. Tu, B. Zhao, Y. Lan, J. Bao, Z. Dai, Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates. Sci. Rep. 4, 3982 (2014). doi:10.1038/srep03982
- K. Liu, J.J. Zhang, C. Wang, J.J. Zhu, Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens. Bioelectron. 26(8), 3627–3632 (2011). doi:10.1016/j.bios.2011.02.018
- X. Chen, P. Qin, J. Li, Z. Yang, Z. Wen, Z. Jian, J. Zhao, X. Hu, Xa Jiao, Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim. Acta 182(1), 369–376 (2015). doi:10.1007/s00604-014-1331-5
- S.K. Mishra, A.K. Srivastava, D. Kumar, A.M. Biradar, Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals-reduced graphene oxide hybrid for immunosensor applications. Nanoscale 5(21), 10494–10503 (2013). doi:10.1039/c3nr02575f
- C.X. Guo, S.R. Ng, S.Y. Khoo, X. Zheng, P. Chen, C.M. Li, RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6(8), 6944–6951 (2012). doi:10.1021/nn301974u
- Y. Ohno, K. Maehashi, K. Matsumoto, Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132(51), 18012–18013 (2010). doi:10.1021/ja108127r
- S. Mao, K. Yu, G. Lu, J. Chen, Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 4(10), 921–930 (2011). doi:10.1007/s12274-011-0148-3
- S. Mao, K. Yu, J. Chang, D.A. Steeber, L.E. Ocola, J. Chen, Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 3, 1696 (2013). doi:10.1038/srep01696
- X. You, J.J. Pak, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B 202(31), 1357–1365 (2014). doi:10.1016/j.snb.2014.04.079
- C. Wang, X. Cui, Y. Li, H. Li, L. Huang et al., A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep. 6, 21711 (2016). doi:10.1038/srep21711
- L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert, M. Stutzmann, I.D. Sharp, A. Offenhausser, J.A. Garrido, Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23(43), 5045–5049 (2011). doi:10.1002/adma.201102990
- G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010). doi:10.1002/adma.200901996
- E. Morales-Narvaez, A. Merkoci, Graphene oxide as an optical biosensing platform. Adv. Mater. 24(25), 3298–3308 (2012). doi:10.1002/adma.201200373
- L. Lin, Y. Liu, X. Zhao, J. Li, Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Anal. Chem. 83(22), 8396–8402 (2011). doi:10.1021/ac200593g
- C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48(26), 4785–4787 (2009). doi:10.1002/anie.200901479
- M. Zhang, B.C. Yin, W. Tan, B.C. Ye, A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens. Bioelectron. 26(7), 3260–3265 (2011). doi:10.1016/j.bios.2010.12.037
- S.K. Lim, P. Chen, F.L. Lee, S. Moochhala, B. Liedberg, Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal. Chem. 87(18), 9408–9412 (2015). doi:10.1021/acs.analchem.5b02270
- Y. Wang, Z. Li, D. Hu, C.-T. Lin, J. Li, Y. Lin, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132(27), 9274–9276 (2010). doi:10.1021/ja103169v
- S. He, K.K. Liu, S. Su, J. Yan, X. Mao et al., Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 84(10), 4622–4627 (2012). doi:10.1021/ac300577d
- S. Xu, Y. Liu, T. Wang, J. Li, Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 83(10), 3817–3823 (2011). doi:10.1021/ac200237j
- L. Feng, Z. Liu, Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2), 317–324 (2011). doi:10.2217/nnm.10.158
References
M. Holzinger, A. Le Goff, S. Cosnier, Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014). doi:10.3389/fchem.2014.00063
S.H. Lee, J.H. Sung, T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng. 40(6), 1384–1397 (2012). doi:10.1007/s10439-011-0457-4
R.P. Singh, Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. Sci. 2011, 1–30 (2011). doi:10.4061/2011/125487
R.A.S. Luz, R.M. Iost, F.N. Crespilho, Nanomaterials for biosensors and implantable biodevices, in Nanobioelectrochemistry, ed. by F.N. Crespilho (Springer, Berlin, 2013), pp. 27–48. doi:10.1007/978-3-642-29250-7_2
I.E. Tothill, Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J. 4(4), 361–374 (2011). doi:10.3920/WMJ2011.1318
P. Pandey, M. Datta, B.D. Malhotra, Prospects of nanomaterials in biosensors. Anal. Lett. 41(2), 159–209 (2008). doi:10.1080/00032710701792620
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). doi:10.1007/s40820-015-0077-x
A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011(1), 685081 (2011). doi:10.1155/2011/685081
W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010). doi:10.1002/anie.200903463
L. Agui, P. Yanez-Sedeno, J.M. Pingarron, Role of carbon nanotubes in electroanalytical chemistry: a review. Anal. Chim. Acta 622(1–2), 11–47 (2008). doi:10.1016/j.aca.2008.05.070
D. Eder, Carbon nanotube-inorganic hybrids. Chem. Rev. 110(3), 1348–1385 (2010). doi:10.1021/cr800433k
J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011). doi:10.1021/cm102406h
K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006). doi:10.1007/s00216-006-0314-8
X.P. Liu, Y.J. Deng, X.Y. Jin, L.G. Chen, J.H. Jiang, G.L. Shen, R.Q. Yu, Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Anal. Biochem. 389(1), 63–68 (2009). doi:10.1016/j.ab.2009.03.019
T. Lin, V. Bajpai, T. Ji, L. Dai, Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003). doi:10.1071/CH02254
H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes. Synth. Met. 141(1–2), 113–122 (2004). doi:10.1016/j.synthmet.2003.08.018
K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005). doi:10.1002/smll.200400118
L. Santiago-Rodríguez, G. Sánchez-Pomales, C.R. Cabrera, DNA-functionalized carbon nanotubes: synthesis, self-assembly, and applications. Isr. J. Chem. 50(3), 277–290 (2010). doi:10.1002/ijch.201000034
R.C. Haddon, π-Electrons in three dimensional. Acc. Chem. Res. 21(6), 243–249 (1988). doi:10.1021/ar00150a005
S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1105–1113 (2002). doi:10.1021/ar010155r
D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003). doi:10.1002/chem.200304800
E. Vázquez, M. Prato, Functionalization of carbon nanotubes for applications in materials science and nanomedicine. Pure Appl. Chem. 82(4), 853–861 (2010). doi:10.1351/PAC-CON-09-10-40
P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4(6), 2911–2934 (2014). doi:10.1039/C3RA44906H
Y. Zhang, Y. Wen, Y. Liu, D. Li, J. Li, Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochem. Commun. 6(11), 1180–1184 (2004). doi:10.1016/j.elecom.2004.09.016
R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001). doi:10.1021/ja010172b
R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. PNAS 100(9), 4984–4989 (2003). doi:10.1073/pnas.0837064100
M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001). doi:10.1016/S0009-2614(01)00490-0
N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, H. Dai, Noncovalent functionalization of carbon nanotubes by fluorescein—polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129(9), 2448–2449 (2007). doi:10.1021/ja068684j
N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins. J. Chem. 2013, 1–18 (2013). doi:10.1155/2013/676815
L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128–130(21), 37–46 (2006). doi:10.1016/j.cis.2006.11.007
N. Gan, H. Jin, T. Li, L. Zheng, Fe(3)O(4)/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein. Int. J. Nanomedicine 6, 3259–3269 (2011). doi:10.2147/IJN.S26212
N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010). doi:10.1039/b714449k
D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008). doi:10.3390/s8031400
J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanal 17(1), 7–14 (2005). doi:10.1002/elan.200403113
A. Ruhal, J.S. Ruhal, S. Kumar, A. Kumar, Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor. Cell. Mol. Biol. 58(1), 15–20 (2012). doi:10.1170/t915
Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanal 22(10), 1027–1036 (2010). doi:10.1002/elan.200900571
C. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 332(1), 75–83 (2004). doi:10.1016/j.ab.2004.05.057
Y.M. Lee, O.Y. Kwon, Y.J. Yoon, K. Ryu, Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnol. Lett. 28(1), 39–43 (2006). doi:10.1007/s10529-005-9685-8
M.D. Rubianes, G.A. Rivas, Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanal 17(1), 73–78 (2005). doi:10.1002/elan.200403121
P.J. Brrito, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioeletrochem. Bioenergy 41(1), 121–125 (1996). doi:10.1016/0302-4598(96)05078-7
M.a.D. Rubianes, G.A. Rivas, Carbon nanotubes paste electrode. Electrochem. Commun. 5(8), 689–694 (2003). doi:10.1016/S1388-2481(03)00168-1
W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29(6), 889–895 (2011). doi:10.1016/j.biotechadv.2011.07.007
Z. Zhu, J. Wang, A. Munir, H.S. Zhou, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on bamboo shaped carbon nanotubes/chitosan matrix. Colloids Surf. A 385(1–3), 91–94 (2011). doi:10.1016/j.colsurfa.2011.05.047
S. Hrapovic, Y. Liu, K.B. Male, J.H. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76(4), 1083–1088 (2004). doi:10.1021/ac035143t
X. Wu, B. Zhao, P. Wu, H. Zhang, C. Cai, Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. J. Phys. Chem. B 113(40), 13365–13373 (2009). doi:10.1021/jp905632k
Y. Wang, P.P. Joshi, K.L. Hobbs, M.B. Johnson, D.W. Schmidtke, Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22(23), 9776–9783 (2006). doi:10.1021/la060857v
Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5), 5996–6022 (2012). doi:10.3390/s120505996
F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43(16), 2113–2117 (2004). doi:10.1002/anie.200353275
A. Ruhal, J.S. Rana, S. Kumar, A. Kumar, Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor. Cell. Mol. Biol. 58(1), 15–22 (2012). doi:10.1170/t915
X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5(5), 408–411 (2003). doi:10.1016/S1388-2481(03)00076-6
S.G. Wang, Q. Zhang, R. Wang, S.F. Yoon, J. Ahn, D.J. Yang, J.Z. Tian, J.Q. Li, Q. Zhou, Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5(9), 800–803 (2003). doi:10.1016/j.elecom.2003.07.007
S. Roy, H. Vedala, W. Choi, Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology 17(4), S14–S18 (2006). doi:10.1088/0957-4484/17/4/003
Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4(2), 191–195 (2004). doi:10.1021/nl0347233
A.T. Ezhil Vilian, R. Madhu, S.-M. Chen, V. Veeramani, M. Sivakumar, Y.S. Huh, Y.-K. Han, Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. J. Mater. Chem. B 3(30), 6285–6292 (2015). doi:10.1039/C5TB00508F
J. Wang, Survey and summary from DNA biosensors to gene chips. Nucleic Acids Res. 28(16), 3011–3016 (2000). doi:10.1093/nar/28.16.3011
T.G. Drummond, M.G. Hill, J.K. Barton, Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003). doi:10.1038/nbt873
P. He, Y. Xu, Y. Fang, Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim. Acta 152(3–4), 175–186 (2005). doi:10.1007/s00604-005-0445-1
S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.-Y. Lee, T. Kawai, A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuator B 122(2), 672–682 (2007). doi:10.1016/j.snb.2006.06.014
V.C. Diculescu, A.-M.C. Paquim, n.M.O. Brett, Electrochemical DNA sensors for detection of DNA damage. Sensors 5(6), 377–393 (2005). doi:10.3390/s5060377
J. Li, Q. Liu, Y. Liu, S. Liu, S. Yao, DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem. 346(1), 107–114 (2005). doi:10.1016/j.ab.2005.07.037
H. Cai, X. Cao, Y. Jiang, P. He, Y. Fang, Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375(2), 287–293 (2003). doi:10.1007/s00216-002-1652-9
S. Niu, M. Zhao, R. Ren, S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using manganese(II)-Schiff base complex as hybridization indicator. J. Inorg. Biochem. 103(1), 43–49 (2009). doi:10.1016/j.jinorgbio.2008.09.001
P. He, L. Dai, Aligned carbon nanotube-DNA electrochemical sensors. Chem. Commun. 3, 348–349 (2004). doi:10.1039/B313030B
J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3(5), 597–602 (2003). doi:10.1021/nl0340677
Y. Xu, X. Ye, L. Yang, P. He, Y. Fang, Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanal 18(15), 1471–1478 (2006). doi:10.1002/elan.200603544
J.E. Weber, S. Pillai, M.K. Ram, A. Kumar, S.R. Singh, Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode. Mater. Sci. Eng. C 31(5), 821–825 (2011). doi:10.1016/j.msec.2010.12.009
K. Guo, Y. Wang, H. Chen, J. Ji, S. Zhang, J. Kong, B. Liu, An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction. Electrochem. Commun. 13(7), 707–710 (2011). doi:10.1016/j.elecom.2011.04.016
J.V. Veetil, K. Ye, Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 23(3), 517–531 (2007). doi:10.1021/bp0602395
B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8), 6546–6561 (2012). doi:10.1021/nn3023969
M.A. Aziz, S. Park, S. Jon, H. Yang, Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer. Chem. Commun. 25, 2610–2612 (2007). doi:10.1039/B701190C
S.L.R. Gomes-Filho, A.C.M.S. Dias, M.M.S. Silva, B.V.M. Silva, R.F. Dutra, A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem. J. 109, 10–15 (2013). doi:10.1016/j.microc.2012.05.033
Y. Wan, W. Deng, Y. Su, X. Zhu, C. Peng, H. Hu, H. Peng, S. Song, C. Fan, Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron. 30(1), 93–99 (2011). doi:10.1016/j.bios.2011.08.033
B.S. Munge, J. Fisher, L.N. Millord, C.E. Krause, R.S. Dowd, J.F. Rusling, Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst 135(6), 1345–1350 (2010). doi:10.1039/c0an00028k
I. Hafaiedh, S. Ameur, A. Abdelghani, Impedance spectroscopy of supported multiwalled carbon nanotubes for immunosensor applications. Nanomed. Nanotechnol. 6(3), 271–275 (2012). doi:10.4172/2157-7439.s2-002
K. Lee, P.R. Nair, A. Scott, M.A. Alam, D.B. Janes, Device considerations for development of conductance-based biosensors. J. Appl. Phys. 105(10), 102046–102059 (2009). doi:10.1063/1.3116630
S. Liu, X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4(8), e23 (2012). doi:10.1038/am.2012.42
K. Besteman, J.-O. Lee, F.G. Wiertz, H.A. Heering, C. Dekker, Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3(6), 727–730 (2003). doi:10.1021/nl034139u
H.-M. So, K. Won, Y.H. Kim, B.-K. Kim, B.H. Ryu, P.S. Na, H. Kim, J.-O. Lee, Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127(34), 11906–11907 (2005). doi:10.1021/ja053094r
M.T. Martinez, Y.C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9(2), 530–536 (2009). doi:10.1021/nl8025604
J. Oh, G. Yoo, Y.W. Chang, H.J. Kim, J. Jose, E. Kim, J.C. Pyun, K.H. Yoo, A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron. 50, 345–350 (2013). doi:10.1016/j.bios.2013.07.004
H.G. Sudibya, J. Ma, X. Dong, S. Ng, L.J. Li, X.W. Liu, P. Chen, Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 48(15), 2723–2726 (2009). doi:10.1002/anie.200805514
S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65(15), 1933–1950 (2013). doi:10.1016/j.addr.2013.07.015
R. Yang, J. Jin, Y. Chen, N. Shao, H. Kang et al., Carbon nanotube-quenched fluorescent oligonucleotides- probes that fluoresce upon hybridization. J. Am. Chem. Soc. 130(26), 8351–8358 (2008). doi:10.1021/ja800604z
A.A. Boghossian, J. Zhang, P.W. Barone, N.F. Reuel, J.H. Kim et al., Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4(7), 848–863 (2011). doi:10.1002/cssc.201100070
D.A. Heller, E.S. Jeng, T.-K. Yeung, B.M. Martinez, A.E. Moll, J.B. Gastala, M.S. Strano, Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311(5760), 508–511 (2006). doi:10.1126/science.1120792
K. Welsher, Z. Liu, D. Daranciang, H. Dai, Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8(2), 586–590 (2008). doi:10.1021/nl072949q
Z. Chen, S.M. Tabakman, A.P. Goodwin, M.G. Kattah, D. Daranciang et al., Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26(11), 1285–1292 (2008). doi:10.1038/nbt.1501
P. Goldberg-Oppenheimer, T. Hutter, B. Chen, J. Robertson, S. Hofmann, S. Mahajan, Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection. J. Phys. Chem. Lett. 3(23), 3486–3492 (2012). doi:10.1021/jz301333r
N.P. Sardesai, J.C. Barron, J.F. Rusling, Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal. Chem. 83(17), 6698–6703 (2011). doi:10.1021/ac201292q
Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212 (2011). doi:10.1016/j.tibtech.2011.01.008
Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). doi:10.1038/nature04235
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). doi:10.1073/pnas.0502848102
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97(1), 016801–016804 (2006). doi:10.1103/PhysRevLett.97.016801
D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39(8), 3157–3180 (2010). doi:10.1039/b923596e
Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11(4), 889–892 (2009). doi:10.1016/j.elecom.2009.02.013
M. Pumera, Graphene in biosensing. Mater. Today 14(7-8), 308–315 (2011). doi:10.1016/S1369-7021(11)70160-2
G. Gao, D. Liu, S. Tang, C. Huang, M. He, Y. Guo, X. Sun, B. Gao, Heat-initiated chemical functionalization of graphene. Sci. Rep. 6, 20034 (2016). doi:10.1038/srep20034
L. Tang, Y. Wang, J. Li, The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 44(19), 6954–6980 (2015). doi:10.1039/C4CS00519H
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.1002/adfm.200900377
D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012). doi:10.1021/cr300115g
T.J. Davies, M.E. Hyde, R.G. Compton, Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44(32), 5121–5126 (2005). doi:10.1002/anie.200462750
Y. Liu, Y. Liu, H. Feng, Y. Wu, L. Joshi, X. Zeng, J. Li, Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens. Bioelectron. 35(1), 63–68 (2012). doi:10.1016/j.bios.2012.02.007
L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem. Commun. 46(32), 5882–5884 (2010). doi:10.1039/c0cc01212b
Q. Zhang, Y. Qiao, F. Hao, L. Zhang, S. Wu, Y. Li, J. Li, X.-M. Song, Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur. J. 16(27), 8133–8139 (2010). doi:10.1002/chem.201000684
C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81(6), 2378–2382 (2009). doi:10.1021/ac802193c
Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9), 6158–6160 (2010). doi:10.1021/la100886x
K.P. Prathish, M.M. Barsan, D. Geng, X. Sun, C.M.A. Brett, Chemically modified graphene and nitrogen-doped graphene: electrochemical characterisation and sensing applications. Electrochim. Acta 114, 533–542 (2013)
M.M. Barsan, M. David, M. Florescu, L. Tugulea, C.M. Brett, A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99, 46–52 (2014). doi:10.1016/j.bioelechem.2014.06.004
Y. Zhang, J. Zhang, X. Huang, X. Zhou, H. Wu, S. Guo, Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8(1), 154–159 (2012). doi:10.1002/smll.201101695
Q. Wang, X. Cui, J. Chen, X. Zheng, C. Liu et al., Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv. 2(15), 6245–6249 (2012). doi:10.1039/c2ra20425h
Y. Luo, F.-Y. Kong, C. Li, J.-J. Shi, W.-X. Lv, W. Wang, One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sens. Actuator B 234, 625–632 (2016). doi:10.1016/j.snb.2016.05.046
M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, W. Tang, Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuator B 190, 707–714 (2014). doi:10.1016/j.snb.2013.09.054
J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum. Biosens. Bioelectron. 83, 68–76 (2016). doi:10.1016/j.bios.2016.04.040
F.J.V. Gomez, A. Martín, M.F. Silva, A. Escarpa, Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim. Acta 182(11), 1925–1931 (2015). doi:10.1007/s00604-015-1520-x
L. Zhu, L. Luo, Z. Wang, DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens. Bioelectron. 35(1), 507–511 (2012). doi:10.1016/j.bios.2012.03.026
Q. Wang, J. Lei, S. Deng, L. Zhang, H. Ju, Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem. Commun. 49(9), 916–918 (2013). doi:10.1039/C2CC37664D
M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009). doi:10.1021/ac900136z
A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011). doi:10.1021/nn200091p
Z. Zhang, L. Luo, G. Chen, Y. Ding, D. Deng, C. Fan, Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing. Biosens. Bioelectron. 60(15), 161–166 (2014). doi:10.1016/j.bios.2014.03.067
T. Wei, W. Tu, B. Zhao, Y. Lan, J. Bao, Z. Dai, Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates. Sci. Rep. 4, 3982 (2014). doi:10.1038/srep03982
K. Liu, J.J. Zhang, C. Wang, J.J. Zhu, Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens. Bioelectron. 26(8), 3627–3632 (2011). doi:10.1016/j.bios.2011.02.018
X. Chen, P. Qin, J. Li, Z. Yang, Z. Wen, Z. Jian, J. Zhao, X. Hu, Xa Jiao, Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim. Acta 182(1), 369–376 (2015). doi:10.1007/s00604-014-1331-5
S.K. Mishra, A.K. Srivastava, D. Kumar, A.M. Biradar, Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals-reduced graphene oxide hybrid for immunosensor applications. Nanoscale 5(21), 10494–10503 (2013). doi:10.1039/c3nr02575f
C.X. Guo, S.R. Ng, S.Y. Khoo, X. Zheng, P. Chen, C.M. Li, RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6(8), 6944–6951 (2012). doi:10.1021/nn301974u
Y. Ohno, K. Maehashi, K. Matsumoto, Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132(51), 18012–18013 (2010). doi:10.1021/ja108127r
S. Mao, K. Yu, G. Lu, J. Chen, Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 4(10), 921–930 (2011). doi:10.1007/s12274-011-0148-3
S. Mao, K. Yu, J. Chang, D.A. Steeber, L.E. Ocola, J. Chen, Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 3, 1696 (2013). doi:10.1038/srep01696
X. You, J.J. Pak, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B 202(31), 1357–1365 (2014). doi:10.1016/j.snb.2014.04.079
C. Wang, X. Cui, Y. Li, H. Li, L. Huang et al., A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep. 6, 21711 (2016). doi:10.1038/srep21711
L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert, M. Stutzmann, I.D. Sharp, A. Offenhausser, J.A. Garrido, Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23(43), 5045–5049 (2011). doi:10.1002/adma.201102990
G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010). doi:10.1002/adma.200901996
E. Morales-Narvaez, A. Merkoci, Graphene oxide as an optical biosensing platform. Adv. Mater. 24(25), 3298–3308 (2012). doi:10.1002/adma.201200373
L. Lin, Y. Liu, X. Zhao, J. Li, Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Anal. Chem. 83(22), 8396–8402 (2011). doi:10.1021/ac200593g
C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48(26), 4785–4787 (2009). doi:10.1002/anie.200901479
M. Zhang, B.C. Yin, W. Tan, B.C. Ye, A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens. Bioelectron. 26(7), 3260–3265 (2011). doi:10.1016/j.bios.2010.12.037
S.K. Lim, P. Chen, F.L. Lee, S. Moochhala, B. Liedberg, Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal. Chem. 87(18), 9408–9412 (2015). doi:10.1021/acs.analchem.5b02270
Y. Wang, Z. Li, D. Hu, C.-T. Lin, J. Li, Y. Lin, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132(27), 9274–9276 (2010). doi:10.1021/ja103169v
S. He, K.K. Liu, S. Su, J. Yan, X. Mao et al., Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 84(10), 4622–4627 (2012). doi:10.1021/ac300577d
S. Xu, Y. Liu, T. Wang, J. Li, Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 83(10), 3817–3823 (2011). doi:10.1021/ac200237j
L. Feng, Z. Liu, Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2), 317–324 (2011). doi:10.2217/nnm.10.158