Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates
Corresponding Author: Imad H. Kadhim
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 20-28
Abstract
In this paper, high-quality nanocrystalline SnO2 thin film was grown on bare Si (100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO2 thin film and palladium (Pd) metal. The contact between Pd and nanocrystalline SnO2 film is tunable. Ohmic barrier contact was formed without addition of glycerin, while Schottky contact formed by adding glycerin. Two kinds of sensor devices with Schottky contact were fabricated (Device 1: 8 h, 500 °C; Device 2: 10 h, 400 °C). The room temperature sensitivity for hydrogen (H2) was 120 and 95 % in 1000 ppm H2, and the low power consumption was 65 and 86 µW for two devices, respectively. At higher temperature of 125 °C, the sensitivity was increased to 195 and 160 %, respectively. The sensing measurements were repeatable at various temperatures (room temperature, 75, 125 °C) for over 50 min. It was found that Device 1 has better sensitivity than Device 2 due to its better crystallinity. These findings indicate that the sensors fabricated on bare Si by adding glycerin to the sol solution have strong ability to detect H2 gas under different concentrations and temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gong, J. Liu, J. Xia, L. Quan, H. Liu, D. Zhou, Mater gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory. Mater. Sci. Eng. B 164(2), 85–90 (2009). doi:10.1016/j.mseb.2009.07.008
- J. Jeng, The influence of annealing atmosphere on the material properties of sol-gel derived SnO2: Sb films before and after annealing. Appl. Surf. Sci. 258, 5981–5986 (2012). doi:10.1016/j.apsusc.2012.02.010
- V.R. Katti, A.K. Debnath, K.P. Muthe, M. Kaur, A.K. Dua, S.C. Gadkari, V.C. Sahni, Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sens. Actuators B 96(1), 245–252 (2003). doi:10.1016/S0925-4005(03)00532-X
- Y. Liu, E. Koep, M. Liu, A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 17(15), 3997–4000 (2005). doi:10.1021/cm050451o
- M.A. Gubbins, V. Casey, S.B. Newcomb, nanostructural characterisation of SnO2 thin films prepared by reactive RF magnetron sputtering of tin. Thin Solid Films 405, 270–275 (2002). doi:10.1016/S0040-6090(01)01728-X
- S. Chacko, M.J. Bushiri, V.K. Vaidyan, Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates. J. Phys. D-Appl. Phys. 39, 4540–4543 (2006). doi:10.1088/0022-3727/39/21/004
- I.H. Kadhim, H.A. Hassan, Effects of glycerin volume ratios and annealing temperature on the characteristics of nanocrystalline tin dioxide thin films. Mater. Sci. Mater: Electron. 26, 1–10 (2015). doi:10.1007/s10854-015-2851-4
- S.Y. Chiu, H.W. Huang, K.C. Liang, K.-P. Liua, J.-H. Tsaib, W.-S. Loura, Comprehensive investigation on planar type of pd-GaN hydrogen sensors. Int. J. Hydrogen Energy 34(13), 5604–5615 (2009). doi:10.1016/j.ijhydene.2009.04.073
- W.J. Butter, M.B. Post, R. Burgess, C. RivkinInt, C. Rivkin, An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 36(3), 2462–2470 (2011). doi:10.1016/j.ijhydene.2010.04.176
- S.J. Peartron, F. Ren, Y.L. Wang, B.H. Chu, K.H. Chen, Progress, recent advances in wide band gap semiconductor biological and gas sensors. Mater. Sci. 55(1), 1–59 (2010)
- T. Hubert, L. Boon-black, U. Banach, Hydrogen sensors- A review. Sens. Actuators B 157(2), 329–352 (2011). doi:10.1016/j.snb.2011.04.070
- S.T. Hung, C.J. Chang, C.H. Hsu, BHChCF Lo, SnO2 functionalized AlGan/GaN high electron mobility transistor for hydrogen sensing applications. Int. J. Hydrogen Energy 37(18), 13783–13788 (2012). doi:10.1016/j.ijhydene.2012.03.124
- S. Wright, W. Lim, D.P. Norton, S.J. Peatron, F. Ren, J.L. Johnson, Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond. Sci. Tech. 25, 024002 (2010). doi:10.1088/0268-1242/25/2/024002
- J. Sun, J. Xu, Y.S. Yu, P. Sun, F. Liu, G. Lu, UV-activated room temperature metal oxide based gas sensor attached with reflector. Sens. Actuators B 169, 291–296 (2012). doi:10.1016/j.snb.2012.04.083
- K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10, 4083–4099 (2010). doi:10.3390/s100404083
- A. Helwig, G. Muller, G. Sberveglieri, G. Faglia, Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method. Sens. Actuators B 130, 193–199 (2008). doi:10.1016/j.snb.2007.07.122
- M.M. Law, H. Kind, B. Messer, F. Kim, P.D. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. 114(13), 2511–2514 (2002). doi:10.1002/1521-3757(20020703)114:13<2511:AID-ANGE2511>3.0.CO;2-N
- C.J. Chang, C.K. Lin, C.C. Chen, C.Y. Chen, E.H. Kuo, Gas sensors with porous three-dimensional framework using TiO2/polymer double-shell hollow microsphere. Thin Solid Films 520(5), 1546–1553 (2011). doi:10.1016/j.tsf.2011.09.065
- T. Hamaguchi, N. Yabuki, M. Uno, S. Yamanaka, Synthesis and H2 gas sensing properties of tin oxide nanohole arrays with various electrodes. Sens. Actuators B 113(2), 852–856 (2006). doi:10.1016/j.snb.2005.03.062
- C.D. Feng, Y. Shimizu, M. Egashira, Effect of gas diffusion process on sensing properties of SnO2 thin film sensors in a SiO2/SnO2 layer-built structure fabricated by sol-gel process. J. Electrochem. Soc. 141(1), 220–225 (1994). doi:10.1149/1.2054687
- H.E. Endres, H.D. Jander, W. Göttler, A test system for gas sensors. Sens. Actuators B 23(2–3), 163–172 (1995). doi:10.1016/0925-4005(94)01272-J
- N.S. Ramgir, M. Ghosh, P. Veerender, N. Datta, N. Datta et al., Growth and gas sensing characteristics of p-and n-type ZnO nanostructures. Sens. Actuators B 156(2), 875–880 (2011). doi:10.1016/j.snb.2011.02.058
- O. Lupan, L. Chow, G. Chai, A single ZnO tetrapod-based sensor. Sens. Actuators B 141(2), 511–517 (2009). doi:10.1016/j.snb.2009.07.011
- S.N. Das, J.P. Kar, J.H. Choi, T.I. Lee, K.J. Moon, Fabrication, characterization of ZnO single nanowire-based hydrogen sensor. J. Phys. Chem. C 114, 689–1693 (2010). doi:10.1021/jp910515b
- S. Ren, G. Fan, S. Qu, Q. Wang, Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles. J. Appl. Phys. 110, 084321 (2011). doi:10.1063/1.3653827
- M. Aziz, S. Abbas, W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Mater. Lett. 91, 31–34 (2013). doi:10.1016/j.matlet.2012.09.079
- Y. Li, W. Yin, R. Deng, R. Chen, J. Chen et al., Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, e30 (2012). doi:10.1038/am.2012.56
- C. Ke, W. Zhu, J.S. Pun, Z. Yang, Annealing temperature dependent oxygen vacancy behavior in SnO2 thin films fabricated by pulsed laser deposition. Curr. Appl. Phys. 11(3), S306–S309 (2011). doi:10.1016/j.cap.2010.11.067
- H. Köse, A.O. Aydin, H. Akbulut, Sol-gel synthesis of nanostructured SnO2 thin film anodes for Li-ion batteries. Acta Phys. Pol. A 121(1), 227–229 (2012)
- Y.Z. Li, X.M. Li, X.D. Gao, Effects of post-annealing on Schottky contacts of Pt/ZnO films toward UV photodetector. J. Alloys Compd. 509, 7193–7197 (2011). doi:10.1016/j.jallcom.2011.04.039
- Q. Wan, E. Dattoli, W. Lu, Doping-dependent electrical characteristics of SnO2 nanowires. Small 4(4), 451–454 (2008). doi:10.1002/smll.200700753
- J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sens. Actuators B 176, 360–367 (2013). doi:10.1016/j.snb.2012.09.081
- Q.N. Abdullah, F.K. Yam, J.J. Hassan, C.W. Chin, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapour deposition (CVD) technique. Int. J. Hydrogen Energy 38, 14085–14101 (2013). doi:10.1016/j.ijhydene.2013.08.014
- H. Tang, M. Yan, X. Ma, H. Zhang, M. Wang, Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sens. Actuators B 113, 324–328 (2006). doi:10.1016/j.snb.2005.03.024
- M.L. Lu, T.M. Weng, J.Y. Chen, Y.F. Chen, Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Mater. 4, e26 (2012). doi:10.1038/am.2012.48
- K.K. Khun, A. Mahajan, R.K. Bedi, SnO2 thick films for room temperature gas sensing applications. J. Appl. Phys. 106, 124509 (2009). doi:10.1063/1.3273323
- S.S. Kim, J.Y. Park, S.W. Choi, H.S. Kim, H.G. Na, Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization. Int. J. Hydrogen Energy 36(3), 2313–2319 (2011). doi:10.1016/j.ijhydene.2010.11.050
- J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd. 546, 107–111 (2013). doi:10.1016/j.jallcom.2012.08.040
- L.L. Fields, J.P. Zheng, Y. Cheng, Room-temperature low-power hydrogen sensor based on a single tin oxide nanobelt. Appl. Phys. Lett. 88, 263102 (2006). doi:10.1063/1.2217710
- J. Gong, J. Sun, Q. Chen, Microachined sol-gel carbon nanotube/SnO2 nanocomposite hydrogen sensor. Sens. Actuators B 130, 829–835 (2008). doi:10.1016/j.snb.2007.10.051
- J.P. Ahn, J.H. Kimb, J.K. Park, M.Y. Huh, Microstructure and gas-sensing properties of thick film sensor using nanophase SnO2 powder. Sens. Actuators B 99, 18–24 (2004). doi:10.1016/S0925-4005(03)00629-4
References
S. Gong, J. Liu, J. Xia, L. Quan, H. Liu, D. Zhou, Mater gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory. Mater. Sci. Eng. B 164(2), 85–90 (2009). doi:10.1016/j.mseb.2009.07.008
J. Jeng, The influence of annealing atmosphere on the material properties of sol-gel derived SnO2: Sb films before and after annealing. Appl. Surf. Sci. 258, 5981–5986 (2012). doi:10.1016/j.apsusc.2012.02.010
V.R. Katti, A.K. Debnath, K.P. Muthe, M. Kaur, A.K. Dua, S.C. Gadkari, V.C. Sahni, Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sens. Actuators B 96(1), 245–252 (2003). doi:10.1016/S0925-4005(03)00532-X
Y. Liu, E. Koep, M. Liu, A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 17(15), 3997–4000 (2005). doi:10.1021/cm050451o
M.A. Gubbins, V. Casey, S.B. Newcomb, nanostructural characterisation of SnO2 thin films prepared by reactive RF magnetron sputtering of tin. Thin Solid Films 405, 270–275 (2002). doi:10.1016/S0040-6090(01)01728-X
S. Chacko, M.J. Bushiri, V.K. Vaidyan, Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates. J. Phys. D-Appl. Phys. 39, 4540–4543 (2006). doi:10.1088/0022-3727/39/21/004
I.H. Kadhim, H.A. Hassan, Effects of glycerin volume ratios and annealing temperature on the characteristics of nanocrystalline tin dioxide thin films. Mater. Sci. Mater: Electron. 26, 1–10 (2015). doi:10.1007/s10854-015-2851-4
S.Y. Chiu, H.W. Huang, K.C. Liang, K.-P. Liua, J.-H. Tsaib, W.-S. Loura, Comprehensive investigation on planar type of pd-GaN hydrogen sensors. Int. J. Hydrogen Energy 34(13), 5604–5615 (2009). doi:10.1016/j.ijhydene.2009.04.073
W.J. Butter, M.B. Post, R. Burgess, C. RivkinInt, C. Rivkin, An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 36(3), 2462–2470 (2011). doi:10.1016/j.ijhydene.2010.04.176
S.J. Peartron, F. Ren, Y.L. Wang, B.H. Chu, K.H. Chen, Progress, recent advances in wide band gap semiconductor biological and gas sensors. Mater. Sci. 55(1), 1–59 (2010)
T. Hubert, L. Boon-black, U. Banach, Hydrogen sensors- A review. Sens. Actuators B 157(2), 329–352 (2011). doi:10.1016/j.snb.2011.04.070
S.T. Hung, C.J. Chang, C.H. Hsu, BHChCF Lo, SnO2 functionalized AlGan/GaN high electron mobility transistor for hydrogen sensing applications. Int. J. Hydrogen Energy 37(18), 13783–13788 (2012). doi:10.1016/j.ijhydene.2012.03.124
S. Wright, W. Lim, D.P. Norton, S.J. Peatron, F. Ren, J.L. Johnson, Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond. Sci. Tech. 25, 024002 (2010). doi:10.1088/0268-1242/25/2/024002
J. Sun, J. Xu, Y.S. Yu, P. Sun, F. Liu, G. Lu, UV-activated room temperature metal oxide based gas sensor attached with reflector. Sens. Actuators B 169, 291–296 (2012). doi:10.1016/j.snb.2012.04.083
K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10, 4083–4099 (2010). doi:10.3390/s100404083
A. Helwig, G. Muller, G. Sberveglieri, G. Faglia, Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method. Sens. Actuators B 130, 193–199 (2008). doi:10.1016/j.snb.2007.07.122
M.M. Law, H. Kind, B. Messer, F. Kim, P.D. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. 114(13), 2511–2514 (2002). doi:10.1002/1521-3757(20020703)114:13<2511:AID-ANGE2511>3.0.CO;2-N
C.J. Chang, C.K. Lin, C.C. Chen, C.Y. Chen, E.H. Kuo, Gas sensors with porous three-dimensional framework using TiO2/polymer double-shell hollow microsphere. Thin Solid Films 520(5), 1546–1553 (2011). doi:10.1016/j.tsf.2011.09.065
T. Hamaguchi, N. Yabuki, M. Uno, S. Yamanaka, Synthesis and H2 gas sensing properties of tin oxide nanohole arrays with various electrodes. Sens. Actuators B 113(2), 852–856 (2006). doi:10.1016/j.snb.2005.03.062
C.D. Feng, Y. Shimizu, M. Egashira, Effect of gas diffusion process on sensing properties of SnO2 thin film sensors in a SiO2/SnO2 layer-built structure fabricated by sol-gel process. J. Electrochem. Soc. 141(1), 220–225 (1994). doi:10.1149/1.2054687
H.E. Endres, H.D. Jander, W. Göttler, A test system for gas sensors. Sens. Actuators B 23(2–3), 163–172 (1995). doi:10.1016/0925-4005(94)01272-J
N.S. Ramgir, M. Ghosh, P. Veerender, N. Datta, N. Datta et al., Growth and gas sensing characteristics of p-and n-type ZnO nanostructures. Sens. Actuators B 156(2), 875–880 (2011). doi:10.1016/j.snb.2011.02.058
O. Lupan, L. Chow, G. Chai, A single ZnO tetrapod-based sensor. Sens. Actuators B 141(2), 511–517 (2009). doi:10.1016/j.snb.2009.07.011
S.N. Das, J.P. Kar, J.H. Choi, T.I. Lee, K.J. Moon, Fabrication, characterization of ZnO single nanowire-based hydrogen sensor. J. Phys. Chem. C 114, 689–1693 (2010). doi:10.1021/jp910515b
S. Ren, G. Fan, S. Qu, Q. Wang, Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles. J. Appl. Phys. 110, 084321 (2011). doi:10.1063/1.3653827
M. Aziz, S. Abbas, W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Mater. Lett. 91, 31–34 (2013). doi:10.1016/j.matlet.2012.09.079
Y. Li, W. Yin, R. Deng, R. Chen, J. Chen et al., Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, e30 (2012). doi:10.1038/am.2012.56
C. Ke, W. Zhu, J.S. Pun, Z. Yang, Annealing temperature dependent oxygen vacancy behavior in SnO2 thin films fabricated by pulsed laser deposition. Curr. Appl. Phys. 11(3), S306–S309 (2011). doi:10.1016/j.cap.2010.11.067
H. Köse, A.O. Aydin, H. Akbulut, Sol-gel synthesis of nanostructured SnO2 thin film anodes for Li-ion batteries. Acta Phys. Pol. A 121(1), 227–229 (2012)
Y.Z. Li, X.M. Li, X.D. Gao, Effects of post-annealing on Schottky contacts of Pt/ZnO films toward UV photodetector. J. Alloys Compd. 509, 7193–7197 (2011). doi:10.1016/j.jallcom.2011.04.039
Q. Wan, E. Dattoli, W. Lu, Doping-dependent electrical characteristics of SnO2 nanowires. Small 4(4), 451–454 (2008). doi:10.1002/smll.200700753
J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sens. Actuators B 176, 360–367 (2013). doi:10.1016/j.snb.2012.09.081
Q.N. Abdullah, F.K. Yam, J.J. Hassan, C.W. Chin, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapour deposition (CVD) technique. Int. J. Hydrogen Energy 38, 14085–14101 (2013). doi:10.1016/j.ijhydene.2013.08.014
H. Tang, M. Yan, X. Ma, H. Zhang, M. Wang, Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sens. Actuators B 113, 324–328 (2006). doi:10.1016/j.snb.2005.03.024
M.L. Lu, T.M. Weng, J.Y. Chen, Y.F. Chen, Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Mater. 4, e26 (2012). doi:10.1038/am.2012.48
K.K. Khun, A. Mahajan, R.K. Bedi, SnO2 thick films for room temperature gas sensing applications. J. Appl. Phys. 106, 124509 (2009). doi:10.1063/1.3273323
S.S. Kim, J.Y. Park, S.W. Choi, H.S. Kim, H.G. Na, Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization. Int. J. Hydrogen Energy 36(3), 2313–2319 (2011). doi:10.1016/j.ijhydene.2010.11.050
J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd. 546, 107–111 (2013). doi:10.1016/j.jallcom.2012.08.040
L.L. Fields, J.P. Zheng, Y. Cheng, Room-temperature low-power hydrogen sensor based on a single tin oxide nanobelt. Appl. Phys. Lett. 88, 263102 (2006). doi:10.1063/1.2217710
J. Gong, J. Sun, Q. Chen, Microachined sol-gel carbon nanotube/SnO2 nanocomposite hydrogen sensor. Sens. Actuators B 130, 829–835 (2008). doi:10.1016/j.snb.2007.10.051
J.P. Ahn, J.H. Kimb, J.K. Park, M.Y. Huh, Microstructure and gas-sensing properties of thick film sensor using nanophase SnO2 powder. Sens. Actuators B 99, 18–24 (2004). doi:10.1016/S0925-4005(03)00629-4