Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition
Corresponding Author: Nihan Kosku Perkgoz
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 70-79
Abstract
Recently, two-dimensional monolayer molybdenum disulfide (MoS2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However, growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO3/MoO2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS2 monolayer formation, our films are rough and heterogeneous with monolayer MoS2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.N. Xia, H.G. Yan, P. Avouris, The interaction of light and graphene: basics, devices, and applications. Proc. IEEE 101(7), 1717–1731 (2013). doi:10.1109/JPROC.2013.2250892
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
- F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). doi:10.1038/nphoton.2010.186
- E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012). doi:10.1557/mrs.2012.203
- Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S.-W. Kong, Y. Zhang, The Prospective 2D graphene nanosheets: preparation functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2011). doi:10.3786/nml.v4i1.p1-9
- F. Xia, D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010). doi:10.1021/nl9039636
- Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. JACS 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
- H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3(23), 3652–3656 (2012). doi:10.1021/jz301673x
- T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88(4), 045318 (2013). doi:10.1103/PhysRevB.88.045318
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. JACS 133(19), 7296–7299 (2011). doi:10.1021/ja201269b
- K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi:10.1021/nn200659w
- Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma et al., Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13(8), 3870–3877 (2013). doi:10.1021/nl401938t
- J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). doi:10.1021/nn503211t
- A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
- X. Tong, E. Ashalley, F. Lin, H. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
- F. Prins, A.J. Goodman, W.A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single-and few-layer MoS2. Nano Lett. 14(11), 6087–6091 (2014). doi:10.1021/nl5019386
- C. Sevik, Assessment on lattice thermal properties of two-dimensional honeycomb structures: graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 89(3), 035422 (2014). doi:10.1103/PhysRevB.89.035422
- W. Huang, X. Luo, C.K. Gan, S.Y. Quek, G. Liang, Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 16(22), 10866–10874 (2014). doi:10.1039/c4cp00487f
- Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu, Z. Wang, Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Mater. Lett. 131, 122–124 (2014). doi:10.1016/j.matlet.2014.05.162
- Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
- Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). doi:10.1002/smll.201102654
- S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden, X. Xu, Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). doi:10.1021/nn4002038
- S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito et al., Atomically thin layers of MoS2 via a two step thermal evaporation–exfoliation method. Nanoscale 4(2), 461–466 (2012). doi:10.1039/C1NR10803D
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). doi:10.1126/science.1194975
- D. Sun, S. Feng, M. Terrones, R.E. Schaak, Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 27(8), 3167–3175 (2015). doi:10.1021/acs.chemmater.5b01129
- A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554–561 (2013). doi:10.1038/nmat3633
- K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). doi:10.1021/nl2043612
- Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee et al., Van der waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784–2791 (2012). doi:10.1021/nl204562j
- W. Zhang, J.K. Huang, C.H. Chen, Y.H. Chang, Y.J. Cheng, L.J. Li, High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25(25), 3456–3461 (2013). doi:10.1002/adma.201301244
- W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014). doi:10.1038/srep03826
- I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park et al., Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8(10), 10551–10558 (2014). doi:10.1021/nn503988x
- J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu et al., Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8(6), 6024–6030 (2014). doi:10.1021/nn5020819
- S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26(22), 6371–6379 (2014). doi:10.1021/cm5025662
- M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, J.-H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014). doi:10.1021/nn502776h
- H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011). doi:10.1021/nl202675f
- H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature. Small 8(1), 63–67 (2012). doi:10.1002/smll.201101016
- X.L. Li, Y.D. Li, Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 9(12), 2726–2731 (2003). doi:10.1002/chem.200204635
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). doi:10.1021/nn1003937
- B. Windom, W.G. Sawyer, D. Hahn, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42(3), 301–310 (2011). doi:10.1007/s11249-011-9774-x
- H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). doi:10.1002/adfm.201102111
- L. Kumari, Y.-R. Ma, C.-C. Tsai, Y.-W. Lin, S.Y. Wu, K.-W. Cheng, Y. Liou, X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 18(11), 115717 (2007). doi:10.1088/0957-4484/18/11/115717
- M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.-C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013). doi:10.1021/nn401053g
- B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 161403 (2012). doi:10.1103/PhysRevB.85.161403
- M. Buscema, G. Steele, H.J. van der Zant, A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7(4), 561–571 (2014). doi:10.1007/s12274-014-0424-0
- X.X. Wei, Y. Cheng, D. Huo, Y.H. Zhang, J.Z. Wang, Y. Hu, Y. Shi, PL enhancement of MoS2 by Au nanoparticles. Acta Phys. Sin. 63(21), 217802 (2014). doi:10.7498/aps.63.217802
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
- L.-P. Feng, J. Su, D.-P. Li, Z.-T. Liu, Tuning the electronic properties of Ti–MoS2 contacts through introducing vacancies in monolayer MoS2. Phys. Chem. Chem. Phys. 17(10), 6700–6704 (2015). doi:10.1039/C5CP00008D
- C. Ataca, S. Ciraci, Dissociation of H2O at the vacancies of single-layer MoS2. Phys. Rev. B 85(19), 195410 (2012). doi:10.1103/PhysRevB.85.195410
- D. Liu, Y. Guo, L. Fang, J. Robertson, Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103(18), 183113 (2013). doi:10.1063/1.4824893
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). doi:10.1021/nl4007479
- S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). doi:10.1021/nn3059136
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2011). doi:10.1021/nn2024557
- K. Kalantar-Zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos et al., Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2(3), 429–433 (2010). doi:10.1039/B9NR00320G
- J.V. Silveira, L.L. Vieira, A.J. Sampaio, O.L. Alves, A.G. Souza Filho, Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 43(10), 1407–1412 (2012). doi:10.1002/jrs.4058
- Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 44, 2587–2602 (2015). Advance Article
- J. Guo, X. Chen, S. Jin, M. Zhang, C. Liang, Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium storage performance. Catal. Today 246, 165–171 (2015). doi:10.1016/j.cattod.2014.09.028
- S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013). doi:10.1038/nmat3673
- B. Li, S. Yang, N. Huo, Y. Li, J. Yang, R. Li, C. Fan, F. Lu, Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Adv. 4(50), 26407–26412 (2014). doi:10.1039/c4ra01632g
- J.M. Soon, K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10(11), A250–A254 (2007). doi:10.1149/1.2778851
- Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang, High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diam. Relat. Mater. 17(11), 1943–1948 (2008). doi:10.1016/j.diamond.2008.04.015
- A. Sharma, A. Nayak, R. Ghosh, H.-Y. Chang, The Optoelectronic Properties of CVD Grown MoS2 Nanowalls. in NCUR 2014, University of Kentucky, Lexington, 3–5 April 2014
- U.K. Sen, S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interf. 5(4), 1240–1247 (2013). doi:10.1021/am3022015
- M.A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, E. Haro-Poniatowski, Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by CW-laser irradiation. Opt. Mater. 33(3), 480–484 (2011). doi:10.1016/j.optmat.2010.10.028
- T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 114(2), 687–691 (2009). doi:10.1016/j.matchemphys.2008.10.018
References
F.N. Xia, H.G. Yan, P. Avouris, The interaction of light and graphene: basics, devices, and applications. Proc. IEEE 101(7), 1717–1731 (2013). doi:10.1109/JPROC.2013.2250892
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). doi:10.1038/nphoton.2010.186
E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012). doi:10.1557/mrs.2012.203
Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S.-W. Kong, Y. Zhang, The Prospective 2D graphene nanosheets: preparation functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2011). doi:10.3786/nml.v4i1.p1-9
F. Xia, D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010). doi:10.1021/nl9039636
Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. JACS 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3(23), 3652–3656 (2012). doi:10.1021/jz301673x
T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88(4), 045318 (2013). doi:10.1103/PhysRevB.88.045318
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. JACS 133(19), 7296–7299 (2011). doi:10.1021/ja201269b
K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi:10.1021/nn200659w
Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma et al., Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13(8), 3870–3877 (2013). doi:10.1021/nl401938t
J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). doi:10.1021/nn503211t
A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
X. Tong, E. Ashalley, F. Lin, H. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
F. Prins, A.J. Goodman, W.A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single-and few-layer MoS2. Nano Lett. 14(11), 6087–6091 (2014). doi:10.1021/nl5019386
C. Sevik, Assessment on lattice thermal properties of two-dimensional honeycomb structures: graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 89(3), 035422 (2014). doi:10.1103/PhysRevB.89.035422
W. Huang, X. Luo, C.K. Gan, S.Y. Quek, G. Liang, Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 16(22), 10866–10874 (2014). doi:10.1039/c4cp00487f
Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu, Z. Wang, Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Mater. Lett. 131, 122–124 (2014). doi:10.1016/j.matlet.2014.05.162
Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). doi:10.1002/smll.201102654
S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden, X. Xu, Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). doi:10.1021/nn4002038
S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito et al., Atomically thin layers of MoS2 via a two step thermal evaporation–exfoliation method. Nanoscale 4(2), 461–466 (2012). doi:10.1039/C1NR10803D
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). doi:10.1126/science.1194975
D. Sun, S. Feng, M. Terrones, R.E. Schaak, Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 27(8), 3167–3175 (2015). doi:10.1021/acs.chemmater.5b01129
A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554–561 (2013). doi:10.1038/nmat3633
K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). doi:10.1021/nl2043612
Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee et al., Van der waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784–2791 (2012). doi:10.1021/nl204562j
W. Zhang, J.K. Huang, C.H. Chen, Y.H. Chang, Y.J. Cheng, L.J. Li, High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25(25), 3456–3461 (2013). doi:10.1002/adma.201301244
W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014). doi:10.1038/srep03826
I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park et al., Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8(10), 10551–10558 (2014). doi:10.1021/nn503988x
J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu et al., Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8(6), 6024–6030 (2014). doi:10.1021/nn5020819
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26(22), 6371–6379 (2014). doi:10.1021/cm5025662
M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, J.-H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014). doi:10.1021/nn502776h
H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011). doi:10.1021/nl202675f
H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature. Small 8(1), 63–67 (2012). doi:10.1002/smll.201101016
X.L. Li, Y.D. Li, Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 9(12), 2726–2731 (2003). doi:10.1002/chem.200204635
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). doi:10.1021/nn1003937
B. Windom, W.G. Sawyer, D. Hahn, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42(3), 301–310 (2011). doi:10.1007/s11249-011-9774-x
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). doi:10.1002/adfm.201102111
L. Kumari, Y.-R. Ma, C.-C. Tsai, Y.-W. Lin, S.Y. Wu, K.-W. Cheng, Y. Liou, X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 18(11), 115717 (2007). doi:10.1088/0957-4484/18/11/115717
M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.-C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013). doi:10.1021/nn401053g
B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 161403 (2012). doi:10.1103/PhysRevB.85.161403
M. Buscema, G. Steele, H.J. van der Zant, A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7(4), 561–571 (2014). doi:10.1007/s12274-014-0424-0
X.X. Wei, Y. Cheng, D. Huo, Y.H. Zhang, J.Z. Wang, Y. Hu, Y. Shi, PL enhancement of MoS2 by Au nanoparticles. Acta Phys. Sin. 63(21), 217802 (2014). doi:10.7498/aps.63.217802
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
L.-P. Feng, J. Su, D.-P. Li, Z.-T. Liu, Tuning the electronic properties of Ti–MoS2 contacts through introducing vacancies in monolayer MoS2. Phys. Chem. Chem. Phys. 17(10), 6700–6704 (2015). doi:10.1039/C5CP00008D
C. Ataca, S. Ciraci, Dissociation of H2O at the vacancies of single-layer MoS2. Phys. Rev. B 85(19), 195410 (2012). doi:10.1103/PhysRevB.85.195410
D. Liu, Y. Guo, L. Fang, J. Robertson, Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103(18), 183113 (2013). doi:10.1063/1.4824893
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). doi:10.1021/nl4007479
S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). doi:10.1021/nn3059136
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2011). doi:10.1021/nn2024557
K. Kalantar-Zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos et al., Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2(3), 429–433 (2010). doi:10.1039/B9NR00320G
J.V. Silveira, L.L. Vieira, A.J. Sampaio, O.L. Alves, A.G. Souza Filho, Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 43(10), 1407–1412 (2012). doi:10.1002/jrs.4058
Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 44, 2587–2602 (2015). Advance Article
J. Guo, X. Chen, S. Jin, M. Zhang, C. Liang, Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium storage performance. Catal. Today 246, 165–171 (2015). doi:10.1016/j.cattod.2014.09.028
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013). doi:10.1038/nmat3673
B. Li, S. Yang, N. Huo, Y. Li, J. Yang, R. Li, C. Fan, F. Lu, Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Adv. 4(50), 26407–26412 (2014). doi:10.1039/c4ra01632g
J.M. Soon, K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10(11), A250–A254 (2007). doi:10.1149/1.2778851
Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang, High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diam. Relat. Mater. 17(11), 1943–1948 (2008). doi:10.1016/j.diamond.2008.04.015
A. Sharma, A. Nayak, R. Ghosh, H.-Y. Chang, The Optoelectronic Properties of CVD Grown MoS2 Nanowalls. in NCUR 2014, University of Kentucky, Lexington, 3–5 April 2014
U.K. Sen, S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interf. 5(4), 1240–1247 (2013). doi:10.1021/am3022015
M.A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, E. Haro-Poniatowski, Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by CW-laser irradiation. Opt. Mater. 33(3), 480–484 (2011). doi:10.1016/j.optmat.2010.10.028
T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 114(2), 687–691 (2009). doi:10.1016/j.matchemphys.2008.10.018