Improved Photoresponse of UV Photodetectors by the Incorporation of Plasmonic Nanoparticles on GaN Through the Resonant Coupling of Localized Surface Plasmon Resonance
Corresponding Author: Jihoon Lee
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 91
Abstract
Very small metallic nanostructures, i.e., plasmonic nanoparticles (NPs), can demonstrate the localized surface plasmon resonance (LSPR) effect, a characteristic of the strong light absorption, scattering and localized electromagnetic field via the collective oscillation of surface electrons upon on the excitation by the incident photons. The LSPR of plasmonic NPs can significantly improve the photoresponse of the photodetectors. In this work, significantly enhanced photoresponse of UV photodetectors is demonstrated by the incorporation of various plasmonic NPs in the detector architecture. Various size and elemental composition of monometallic Ag and Au NPs, as well as bimetallic alloy AgAu NPs, are fabricated on GaN (0001) by the solid-state dewetting approach. The photoresponse of various NPs are tailored based on the geometric and elemental evolution of NPs, resulting in the highly enhanced photoresponsivity of 112 A W−1, detectivity of 2.4 × 1012 Jones and external quantum efficiency of 3.6 × 104% with the high Ag percentage of AgAu alloy NPs at a low bias of 0.1 V. The AgAu alloy NP detector also demonstrates a fast photoresponse with the relatively short rise and fall time of less than 160 and 630 ms, respectively. The improved photoresponse with the AgAu alloy NPs is correlated with the simultaneous effect of strong plasmon absorption and scattering, increased injection of hot electrons into the GaN conduction band and reduced barrier height at the alloy NPs/GaN interface.
Highlights:
1 Enhancement of UV photoresponse by the incorporation of various plasmonic nanoparticles in the detector architecture.
2 Detailed explanation for the photocurrent enhancement mechanism by the finite-difference time domain (FDTD) simulation and strong plasmon absorption.
3 Systematic comparison and demonstration of the superior photoresponse of homogeneously alloyed AgAu nanoparticles as compared to the monometallic nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015). https://doi.org/10.1016/j.mattod.2015.06.001
- R.P. Gajula, S. Gaddameedhi, Commentary: Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Front. Physiol. 6, 842–848 (2015). https://doi.org/10.3389/fphys.2015.00276
- H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016). https://doi.org/10.1002/adma.201503534
- Y. Wang, Y. Qian, X. Kong, Photon counting based on solar-blind ultraviolet intensified complementary metal-oxide-semiconductor (ICMOS) for corona detection. IEEE Photonics J. 10, 7000919 (2018). https://doi.org/10.1109/JPHOT.2018.2876514
- M. Tan, C. Hu, Y. Lan, J. Khan, H. Deng et al., 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small 13, 1702024 (2017). https://doi.org/10.1002/smll.201702024
- M. Kikawada, A. Ono, W. Inami, Y. Kawata, Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance. Appl. Phys. Lett. 104, 223703 (2014). https://doi.org/10.1063/1.4881325
- J. An, T.S.D. Le, C.H.J. Lim, V.T. Tran, Z. Zhan et al., Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv. Sci. 5, 1800496 (2018). https://doi.org/10.1002/advs.201800496
- L. Li, L. Gu, Z. Lou, Z. Fan, G. Shen, ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 11, 4067–4076 (2017). https://doi.org/10.1021/acsnano.7b00749
- Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p-n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2017). https://doi.org/10.1007/s40820-016-0112-6
- D.M. Reilly, D.T. Moriarty, J.A. Maynard, Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks. Unmanned/Unattended Sens. Sens. Netw. 5611, 244 (2004). https://doi.org/10.1117/12.582002
- G. Wang, H. Lu, D. Chen, F. Ren, R. Zhang et al., High quantum efficiency GaN-based p-i-n ultraviolet photodetectors prepared on patterned sapphire substrates. IEEE Photonics Technol. Lett. 25, 652–654 (2013). https://doi.org/10.1109/LPT.2013.2248056
- F. Xie, H. Lu, X. Xiu, D. Chen, P. Han et al., Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate. Solid State Electron. 57, 39–42 (2011). https://doi.org/10.1016/j.sse.2010.12.005
- J.H. Kang, M.A. Johar, B. Alshehri, E. Dogheche, S.W. Ryu, Facile growth of density- and diameter-controlled GaN nanobridges and their photodetector application. J. Mater. Chem. C 5, 11879–11884 (2017). https://doi.org/10.1039/C7TC02619F
- X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li et al., Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling. J. Mater. Chem. C 5, 4319–4326 (2017). https://doi.org/10.1039/C7TC00594F
- M.-Y. Li, M. Yu, D. Su, J. Zhang, S. Jiang et al., Ultrahigh responsivity UV photodetector based on Cu nanostructure/ZnO QD hybrid architectures. Small 15, 1901606 (2019). https://doi.org/10.1002/smll.201901606
- Z. Kang, Y. Cheng, Z. Zheng, F. Cheng, Z. Chen et al., MoS2-based photodetectors powered by asymmetric contact structure with large work function difference. Nano-Micro Lett. 11, 34 (2019). https://doi.org/10.1007/s40820-019-0262-4
- L. Liu, C. Yang, A. Patanè, Z. Yu, F. Yan et al., High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 9, 8142–8148 (2017). https://doi.org/10.1039/C7NR01290J
- J.H. Lee, W.W. Lee, D.W. Yang, W.J. Chang, S.S. Kwon et al., Anomalous photovoltaic response of graphene-on-GaN Schottky photodiodes. ACS Appl. Mater. Interfaces 10, 14170–14174 (2018). https://doi.org/10.1021/acsami.8b02043
- D. Li, X. Sun, H. Song, Z. Li, H. Jiang et al., Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99, 1–4 (2011). https://doi.org/10.1063/1.3672030
- R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi et al., High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J. Mater. Chem. C 6, 299–303 (2018). https://doi.org/10.1039/C7TC04754A
- X. Zhang, J. Li, W. Yang, B. Leng, P. Niu et al., High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT:PSS heterostructures integrated on human hair. ACS Appl. Mater. Interfaces 11, 24459–24467 (2019). https://doi.org/10.1021/acsami.9b07423
- J. Kim, H.C. Lee, K.H. Kim, M.S. Hwang, J.S. Park et al., Photon-triggered nanowire transistors. Nat. Nanotechnol. 12, 963–968 (2017). https://doi.org/10.1038/nnano.2017.153
- X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong et al., Ultrasensitive and highly selective photodetections of UV: a rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9, 2669–2677 (2017). https://doi.org/10.1021/acsami.6b14907
- Y. Tian, S.J. Chua, H. Wang, Theoretical study of characteristics in GaN metal-semiconductor-metal photodetectors. Solid State Electron. 47, 1863–1867 (2003). https://doi.org/10.1016/S0038-1101(03)00184-9
- J.A. Garrido, E. Monroy, I. Izpura, E. Muñoz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol. 13, 563–568 (1998). https://doi.org/10.1088/0268-1242/13/6/005
- D. Li, X. Sun, H. Song, Z. Li, Y. Chen et al., Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 24, 845–849 (2012). https://doi.org/10.1002/adma.201102585
- M. Valenti, A. Venugopal, D. Tordera, M.P. Jonsson, G. Biskos et al., Hot carrier generation and extraction of plasmonic alloy nanoparticles. ACS Photonics 4, 1146–1152 (2017). https://doi.org/10.1021/acsphotonics.6b01048
- M. Reddeppa, S.B. Mitta, T. Chandrakalavathi, B.G. Park, G. Murali et al., Solution-processed Au@rGO/GaN nanorods hybrid-structure for self-powered UV, visible photodetector and CO gas sensors. Curr. Appl. Phys. 19, 938–945 (2019). https://doi.org/10.1016/j.cap.2019.05.008
- S. Liu, M.Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018). https://doi.org/10.1021/acsami.8b09442
- D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur et al., An analytic model for the dielectric function of Au, Ag, and their alloys. Adv. Opt. Mater. 2, 176–182 (2014). https://doi.org/10.1002/adom.201300457
- T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, K. Ohtsuka, Optical properties of hexagonal GaN. J. Appl. Phys. 82, 3528–3535 (1997). https://doi.org/10.1063/1.365671
- M. Sui, P. Pandey, M.Y. Li, Q. Zhang, S. Kunwar et al., Tuning the configuration of Au nanostructures: from vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN. J. Mater. Sci. 52, 391–407 (2017). https://doi.org/10.1007/s10853-016-0339-0
- S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li et al., Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9, 17 (2017). https://doi.org/10.1007/s40820-016-0120-6
- A. Kosinova, O. Kovalenko, L. Klinger, E. Rabkin, Mechanisms of solid-state dewetting of thin Au films in different annealing atmospheres. Acta Mater. 83, 91–101 (2015). https://doi.org/10.1016/j.actamat.2014.09.049
- L.T. Kong, L.J. Lewis, Surface diffusion coefficients: substrate dynamics matters. Phys. Rev. B-Condens. Matter Mater. Phys. 77, 1–5 (2008). https://doi.org/10.1103/PhysRevB.77.165422
- T. Tian, L. Wang, E. Guo, Z. Liu, T. Zhan et al., Optimized subsequent-annealing-free Ni/Ag based metallization contact to p-type GaN for vertical light emitting diodes with high yield and extremely low operating voltage (2.75 V@350 mA, %3e95%). J. Phys. D-Appl. Phys. 47, 115102 (2014). https://doi.org/10.1088/0022-3727/47/11/115102
- M. Kang, M.-S. Ahn, Y. Lee, K.-H. Jeong, Bioplasmonic alloyed nanoislands using dewetting of bilayer thin films. ACS Appl. Mater. Interfaces 9, 37154–37159 (2017). https://doi.org/10.1021/acsami.7b10715
- P.J. Rivero, E. Ibañez, J. Goicoechea, A. Urrutia, I.R. Matias et al., A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sens. Actuators B-Chem. 251, 624–631 (2017). https://doi.org/10.1016/j.snb.2017.05.110
- K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003). https://doi.org/10.1021/jp026731y
- N. Aggarwal, S. Krishna, A. Sharma, L. Goswami, D. Kumar et al., A highly responsive self-driven UV photodetector using GaN nanoflowers. Adv. Electron. Mater. 3, 1–7 (2017). https://doi.org/10.1002/aelm.201700036
- M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered gan ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016). https://doi.org/10.1021/acsnano.5b07217
- S. Chang, M. Chang, Y. Yang, Enhanced responsivity of GaN metal-semiconductor-metal (MSM) photodetectors on GaN substrate. IEEE Photonics J. 9, 1–7 (2017). https://doi.org/10.1109/JPHOT.2017.2688520
- A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard, H.A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016). https://doi.org/10.1021/acsnano.5b06199
- A. Kalra, S. Vura, S. Rathkanthiwar, R. Muralidharan, S. Raghavan et al., Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal–heterojunction-metal broadband UV-A/UV-C detector. Appl. Phys. Express 11, 064101 (2018). https://doi.org/10.7567/APEX.11.064101
- A. Gundimeda, S. Krishna, N. Aggarwal, A. Sharma, N.D. Sharma et al., Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110, 103507 (2017). https://doi.org/10.1063/1.4978427
- W. Wang, Y. Zheng, X. Li, Y. Li, L. Huang et al., High-performance nonpolar: a-plane GaN-based metal-semiconductor-metal UV photo-detectors fabricated on LaAlO3 substrates. J. Mater. Chem. C 6, 3417–3426 (2018). https://doi.org/10.1039/C7TC05534J
- W. Wang, Z. Yang, Z. Lu, G. Li, High responsivity and low dark current nonpolar GaN-based ultraviolet photo-detectors. J. Mater. Chem. C 6, 6641–6646 (2018). https://doi.org/10.1039/C8TC02281J
- H. Zhou, P. Gui, L. Yang, C. Ye, M. Xue et al., High performance, self-powered ultraviolet photodetector based on a ZnO nanoarrays/GaN structure with a CdS insert layer. New J. Chem. 41, 4901–4907 (2017). https://doi.org/10.1039/C7NJ01140G
- H. Tian, Q. Liu, A. Hu, X. He, Z. Hu et al., Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt. Express 26, 5408–5415 (2018). https://doi.org/10.1364/OE.26.005408
- C.J. Lee, S.B. Kang, H.G. Cha, C.H. Won, S.K. Hong et al., GaN metal-semiconductor-metal UV sensor with multi-layer graphene as Schottky electrodes. Jpn. J. Appl. Phys. (2015). https://doi.org/10.7567/JJAP.54.06FF08
- N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand et al., Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes. Appl. Phys. Lett. 109, 242102 (2016). https://doi.org/10.1063/1.4971982
- L. Wen, Y. Chen, W. Liu, Q. Su, J. Grant et al., Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and Omni-Schottky junction. Laser Photonics Rev. 11, 1–10 (2017). https://doi.org/10.1002/lpor.201700059
- M. Kim, M. Lin, J. Son, H. Xu, J.M. Nam, Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1–21 (2017). https://doi.org/10.1002/adom.201700004
- A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, Plasmonic scattering by metal nanoparticles for solar cells. Plasmonics 7, 525–534 (2012). https://doi.org/10.1007/s11468-012-9338-4
- R. Jia, D. Zhao, N. Gao, D. Liu, Polarization enhanced charge transfer: dual-band GaN-based plasmonic photodetector. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/srep40483
- S. Abdalla, F. Marzouki, S. Al-Ameer, S. Turkestani, Electric properties of n-GaN: effect of different contacts on the electronic conduction. Int. J. Phys. 1, 41–48 (2013). https://doi.org/10.12691/ijp-1-2-3
- C.D. Gelatt, H. Ehrenreich, Charge transfer in alloys: AgAu. Phys. Rev. B 10, 398 (1974). https://doi.org/10.1103/PhysRevB.10.398
- J.A. Rothschild, M. Eizenberg, Work function calculation of solid solution alloys using the image force model. Phys. Rev. B-Condens. Matter Mater. Phys. 81, 1–8 (2010). https://doi.org/10.1103/PhysRevB.81.224201
- S.C. Fain, J.M. McDavid, Work-function variation with alloy composition: Ag-Au. Phys. Rev. B 9, 5099–5107 (1974). https://doi.org/10.1103/PhysRevB.9.5099
References
H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015). https://doi.org/10.1016/j.mattod.2015.06.001
R.P. Gajula, S. Gaddameedhi, Commentary: Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Front. Physiol. 6, 842–848 (2015). https://doi.org/10.3389/fphys.2015.00276
H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016). https://doi.org/10.1002/adma.201503534
Y. Wang, Y. Qian, X. Kong, Photon counting based on solar-blind ultraviolet intensified complementary metal-oxide-semiconductor (ICMOS) for corona detection. IEEE Photonics J. 10, 7000919 (2018). https://doi.org/10.1109/JPHOT.2018.2876514
M. Tan, C. Hu, Y. Lan, J. Khan, H. Deng et al., 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small 13, 1702024 (2017). https://doi.org/10.1002/smll.201702024
M. Kikawada, A. Ono, W. Inami, Y. Kawata, Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance. Appl. Phys. Lett. 104, 223703 (2014). https://doi.org/10.1063/1.4881325
J. An, T.S.D. Le, C.H.J. Lim, V.T. Tran, Z. Zhan et al., Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv. Sci. 5, 1800496 (2018). https://doi.org/10.1002/advs.201800496
L. Li, L. Gu, Z. Lou, Z. Fan, G. Shen, ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 11, 4067–4076 (2017). https://doi.org/10.1021/acsnano.7b00749
Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p-n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2017). https://doi.org/10.1007/s40820-016-0112-6
D.M. Reilly, D.T. Moriarty, J.A. Maynard, Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks. Unmanned/Unattended Sens. Sens. Netw. 5611, 244 (2004). https://doi.org/10.1117/12.582002
G. Wang, H. Lu, D. Chen, F. Ren, R. Zhang et al., High quantum efficiency GaN-based p-i-n ultraviolet photodetectors prepared on patterned sapphire substrates. IEEE Photonics Technol. Lett. 25, 652–654 (2013). https://doi.org/10.1109/LPT.2013.2248056
F. Xie, H. Lu, X. Xiu, D. Chen, P. Han et al., Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate. Solid State Electron. 57, 39–42 (2011). https://doi.org/10.1016/j.sse.2010.12.005
J.H. Kang, M.A. Johar, B. Alshehri, E. Dogheche, S.W. Ryu, Facile growth of density- and diameter-controlled GaN nanobridges and their photodetector application. J. Mater. Chem. C 5, 11879–11884 (2017). https://doi.org/10.1039/C7TC02619F
X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li et al., Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling. J. Mater. Chem. C 5, 4319–4326 (2017). https://doi.org/10.1039/C7TC00594F
M.-Y. Li, M. Yu, D. Su, J. Zhang, S. Jiang et al., Ultrahigh responsivity UV photodetector based on Cu nanostructure/ZnO QD hybrid architectures. Small 15, 1901606 (2019). https://doi.org/10.1002/smll.201901606
Z. Kang, Y. Cheng, Z. Zheng, F. Cheng, Z. Chen et al., MoS2-based photodetectors powered by asymmetric contact structure with large work function difference. Nano-Micro Lett. 11, 34 (2019). https://doi.org/10.1007/s40820-019-0262-4
L. Liu, C. Yang, A. Patanè, Z. Yu, F. Yan et al., High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 9, 8142–8148 (2017). https://doi.org/10.1039/C7NR01290J
J.H. Lee, W.W. Lee, D.W. Yang, W.J. Chang, S.S. Kwon et al., Anomalous photovoltaic response of graphene-on-GaN Schottky photodiodes. ACS Appl. Mater. Interfaces 10, 14170–14174 (2018). https://doi.org/10.1021/acsami.8b02043
D. Li, X. Sun, H. Song, Z. Li, H. Jiang et al., Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99, 1–4 (2011). https://doi.org/10.1063/1.3672030
R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi et al., High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J. Mater. Chem. C 6, 299–303 (2018). https://doi.org/10.1039/C7TC04754A
X. Zhang, J. Li, W. Yang, B. Leng, P. Niu et al., High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT:PSS heterostructures integrated on human hair. ACS Appl. Mater. Interfaces 11, 24459–24467 (2019). https://doi.org/10.1021/acsami.9b07423
J. Kim, H.C. Lee, K.H. Kim, M.S. Hwang, J.S. Park et al., Photon-triggered nanowire transistors. Nat. Nanotechnol. 12, 963–968 (2017). https://doi.org/10.1038/nnano.2017.153
X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong et al., Ultrasensitive and highly selective photodetections of UV: a rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9, 2669–2677 (2017). https://doi.org/10.1021/acsami.6b14907
Y. Tian, S.J. Chua, H. Wang, Theoretical study of characteristics in GaN metal-semiconductor-metal photodetectors. Solid State Electron. 47, 1863–1867 (2003). https://doi.org/10.1016/S0038-1101(03)00184-9
J.A. Garrido, E. Monroy, I. Izpura, E. Muñoz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol. 13, 563–568 (1998). https://doi.org/10.1088/0268-1242/13/6/005
D. Li, X. Sun, H. Song, Z. Li, Y. Chen et al., Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 24, 845–849 (2012). https://doi.org/10.1002/adma.201102585
M. Valenti, A. Venugopal, D. Tordera, M.P. Jonsson, G. Biskos et al., Hot carrier generation and extraction of plasmonic alloy nanoparticles. ACS Photonics 4, 1146–1152 (2017). https://doi.org/10.1021/acsphotonics.6b01048
M. Reddeppa, S.B. Mitta, T. Chandrakalavathi, B.G. Park, G. Murali et al., Solution-processed Au@rGO/GaN nanorods hybrid-structure for self-powered UV, visible photodetector and CO gas sensors. Curr. Appl. Phys. 19, 938–945 (2019). https://doi.org/10.1016/j.cap.2019.05.008
S. Liu, M.Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018). https://doi.org/10.1021/acsami.8b09442
D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur et al., An analytic model for the dielectric function of Au, Ag, and their alloys. Adv. Opt. Mater. 2, 176–182 (2014). https://doi.org/10.1002/adom.201300457
T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, K. Ohtsuka, Optical properties of hexagonal GaN. J. Appl. Phys. 82, 3528–3535 (1997). https://doi.org/10.1063/1.365671
M. Sui, P. Pandey, M.Y. Li, Q. Zhang, S. Kunwar et al., Tuning the configuration of Au nanostructures: from vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN. J. Mater. Sci. 52, 391–407 (2017). https://doi.org/10.1007/s10853-016-0339-0
S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li et al., Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9, 17 (2017). https://doi.org/10.1007/s40820-016-0120-6
A. Kosinova, O. Kovalenko, L. Klinger, E. Rabkin, Mechanisms of solid-state dewetting of thin Au films in different annealing atmospheres. Acta Mater. 83, 91–101 (2015). https://doi.org/10.1016/j.actamat.2014.09.049
L.T. Kong, L.J. Lewis, Surface diffusion coefficients: substrate dynamics matters. Phys. Rev. B-Condens. Matter Mater. Phys. 77, 1–5 (2008). https://doi.org/10.1103/PhysRevB.77.165422
T. Tian, L. Wang, E. Guo, Z. Liu, T. Zhan et al., Optimized subsequent-annealing-free Ni/Ag based metallization contact to p-type GaN for vertical light emitting diodes with high yield and extremely low operating voltage (2.75 V@350 mA, %3e95%). J. Phys. D-Appl. Phys. 47, 115102 (2014). https://doi.org/10.1088/0022-3727/47/11/115102
M. Kang, M.-S. Ahn, Y. Lee, K.-H. Jeong, Bioplasmonic alloyed nanoislands using dewetting of bilayer thin films. ACS Appl. Mater. Interfaces 9, 37154–37159 (2017). https://doi.org/10.1021/acsami.7b10715
P.J. Rivero, E. Ibañez, J. Goicoechea, A. Urrutia, I.R. Matias et al., A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sens. Actuators B-Chem. 251, 624–631 (2017). https://doi.org/10.1016/j.snb.2017.05.110
K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003). https://doi.org/10.1021/jp026731y
N. Aggarwal, S. Krishna, A. Sharma, L. Goswami, D. Kumar et al., A highly responsive self-driven UV photodetector using GaN nanoflowers. Adv. Electron. Mater. 3, 1–7 (2017). https://doi.org/10.1002/aelm.201700036
M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered gan ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016). https://doi.org/10.1021/acsnano.5b07217
S. Chang, M. Chang, Y. Yang, Enhanced responsivity of GaN metal-semiconductor-metal (MSM) photodetectors on GaN substrate. IEEE Photonics J. 9, 1–7 (2017). https://doi.org/10.1109/JPHOT.2017.2688520
A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard, H.A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016). https://doi.org/10.1021/acsnano.5b06199
A. Kalra, S. Vura, S. Rathkanthiwar, R. Muralidharan, S. Raghavan et al., Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal–heterojunction-metal broadband UV-A/UV-C detector. Appl. Phys. Express 11, 064101 (2018). https://doi.org/10.7567/APEX.11.064101
A. Gundimeda, S. Krishna, N. Aggarwal, A. Sharma, N.D. Sharma et al., Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110, 103507 (2017). https://doi.org/10.1063/1.4978427
W. Wang, Y. Zheng, X. Li, Y. Li, L. Huang et al., High-performance nonpolar: a-plane GaN-based metal-semiconductor-metal UV photo-detectors fabricated on LaAlO3 substrates. J. Mater. Chem. C 6, 3417–3426 (2018). https://doi.org/10.1039/C7TC05534J
W. Wang, Z. Yang, Z. Lu, G. Li, High responsivity and low dark current nonpolar GaN-based ultraviolet photo-detectors. J. Mater. Chem. C 6, 6641–6646 (2018). https://doi.org/10.1039/C8TC02281J
H. Zhou, P. Gui, L. Yang, C. Ye, M. Xue et al., High performance, self-powered ultraviolet photodetector based on a ZnO nanoarrays/GaN structure with a CdS insert layer. New J. Chem. 41, 4901–4907 (2017). https://doi.org/10.1039/C7NJ01140G
H. Tian, Q. Liu, A. Hu, X. He, Z. Hu et al., Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt. Express 26, 5408–5415 (2018). https://doi.org/10.1364/OE.26.005408
C.J. Lee, S.B. Kang, H.G. Cha, C.H. Won, S.K. Hong et al., GaN metal-semiconductor-metal UV sensor with multi-layer graphene as Schottky electrodes. Jpn. J. Appl. Phys. (2015). https://doi.org/10.7567/JJAP.54.06FF08
N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand et al., Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes. Appl. Phys. Lett. 109, 242102 (2016). https://doi.org/10.1063/1.4971982
L. Wen, Y. Chen, W. Liu, Q. Su, J. Grant et al., Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and Omni-Schottky junction. Laser Photonics Rev. 11, 1–10 (2017). https://doi.org/10.1002/lpor.201700059
M. Kim, M. Lin, J. Son, H. Xu, J.M. Nam, Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1–21 (2017). https://doi.org/10.1002/adom.201700004
A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, Plasmonic scattering by metal nanoparticles for solar cells. Plasmonics 7, 525–534 (2012). https://doi.org/10.1007/s11468-012-9338-4
R. Jia, D. Zhao, N. Gao, D. Liu, Polarization enhanced charge transfer: dual-band GaN-based plasmonic photodetector. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/srep40483
S. Abdalla, F. Marzouki, S. Al-Ameer, S. Turkestani, Electric properties of n-GaN: effect of different contacts on the electronic conduction. Int. J. Phys. 1, 41–48 (2013). https://doi.org/10.12691/ijp-1-2-3
C.D. Gelatt, H. Ehrenreich, Charge transfer in alloys: AgAu. Phys. Rev. B 10, 398 (1974). https://doi.org/10.1103/PhysRevB.10.398
J.A. Rothschild, M. Eizenberg, Work function calculation of solid solution alloys using the image force model. Phys. Rev. B-Condens. Matter Mater. Phys. 81, 1–8 (2010). https://doi.org/10.1103/PhysRevB.81.224201
S.C. Fain, J.M. McDavid, Work-function variation with alloy composition: Ag-Au. Phys. Rev. B 9, 5099–5107 (1974). https://doi.org/10.1103/PhysRevB.9.5099