N-Graphene Nanowalls via Plasma Nitrogen Incorporation and Substitution: The Experimental Evidence
Corresponding Author: Uroš Cvelbar
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 53
Abstract
Incorporating nitrogen (N) atom in graphene is considered a key technique for tuning its electrical properties. However, this is still a great challenge, and it is unclear how to build N-graphene with desired nitrogen configurations. There is a lack of experimental evidence to explain the influence and mechanism of structural defects for nitrogen incorporation into graphene compared to the derived DFT theories. Herein, this gap is bridged through a systematic study of different nitrogen-containing gaseous plasma post-treatments on graphene nanowalls (CNWs) to produce N-CNWs with incorporated and substituted nitrogen. The structural and morphological analyses describe a remarkable difference in the plasma–surface interaction, nitrogen concentration and nitrogen incorporation mechanism in CNWs by using different nitrogen-containing plasma. Electrical conductivity measurements revealed that the conductivity of the N-graphene is strongly influenced by the position and concentration of C–N bonding configurations. These findings open up a new pathway for the synthesis of N-graphene using plasma post-treatment to control the concentration and configuration of incorporated nitrogen for application-specific properties.
Highlights:
1 Nitrogen was successfully incorporated in graphene nanowalls (CNWs) using cold gaseous plasma post-treatment and influence of nitrogen concentration and configuration in CNWs on electrical conductivity was demonstrated.
2 The mechanism of nitrogen incorporation was systematically studied using different characterisation techniques to make a bridge between established DFT theories.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Bo, S. Cui, K. Yu, G. Lu, S. Mao, J. Chen, Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces. Rev. Sci. Instrum. 82, 086116 (2011). https://doi.org/10.1063/1.3624842
- J. Maruyama, S. Maruyama, T. Fukuhara, K. Chashiro, H. Uyama, Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon 126, 452–455 (2018). https://doi.org/10.1016/j.carbon.2017.10.029
- Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64–67 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1%3C64:AID-ADMA64%3E3.0.CO;2-G
- Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, Carbon nanowalls and related materials. J. Mater. Chem. 14, 469–477 (2004). https://doi.org/10.1039/B311682D
- K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, M. Hori, Vertical growth of carbon nanowalls using RF plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 14(3–7), 831–834 (2005). https://doi.org/10.1016/j.diamond.2004.10.021
- J. Beckers, W.W. Stoffels, G.M.W. Kroesen, Temperature dependence of nucleation and growth of nanoparticles in low pressure Ar/CH4 RF discharges. J. Phys. D-Appl. Phys. 42, 155206 (2009). https://doi.org/10.1088/0022-3727/42/15/155206
- N. Santhosh, G. Filipič, E. Tatarova, O. Baranov, H. Kondo et al., Oriented carbon nanostructures by plasma processing: recent advances and future challenges. Micromachines 9(11), 565 (2018). https://doi.org/10.3390/mi9110565
- Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, K. Cen, Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5, 5180–5204 (2013). https://doi.org/10.1039/C3NR33449J
- M. Hiramatsu, M. Hori, Carbon Nanowalls: Synthesis and Emerging Applications (Springer, Vienna, 2010). https://doi.org/10.1007/978-3-211-99718-5
- V. Krivchenko, P. Shevnin, A. Pilevsky, A. Egorov, N. Suetin, V. Sen, S. Evlashin, A. Rakhimov, Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD. J. Mater. Chem. 22, 16458–16464 (2012). https://doi.org/10.1039/C2JM32263C
- P. Hojati-Talemi, G.P. Simon, Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon 49, 2875–2877 (2011). https://doi.org/10.1016/j.carbon.2011.03.004
- D.H. Seo, Z.J. Han, S. Kumar, K. Ostrikov, Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3(10), 1316–1323 (2013). https://doi.org/10.1002/aenm.201300431
- H. Qi, Z. Bo, S. Yang, L. Duan, H. Yang, J. Yan, K. Cen, K.K. Ostrikov, Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2018.07.019
- Z. Bo, C. Xu, H. Yang, H. Shi, J. Yan, K. Cen, K.K. Ostrikov, Hierarchical, vertically-oriented carbon nanowall foam supercapacitor using room temperature ionic liquid mixture for ac line filtering with ultrahigh energy density. ChemElectroChem 6(8), 2167–2173 (2019). https://doi.org/10.1002/celc.201801825
- Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50, 4379–4387 (2012). https://doi.org/10.1016/j.carbon.2012.05.014
- S.A. Evlashin, Y.M. Maksimov, P.V. Dyakonov, A.A. Pilevsky, K.I. Maslakov et al., N-Doped carbon nanowalls for power sources. Sci. Rep. 9, 6716 (2019). https://doi.org/10.1038/s41598-019-43001-3
- Z. Bo, S. Mao, Z. Jun Han, K. Cen, J. Chen, K.K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108–2121 (2015). https://doi.org/10.1039/C4CS00352G
- A. Achour, S. Solaymani, S. Vizireanu, A. Baraket, A. Vesel et al., Effect of nitrogen configuration on carbon nanowall surface: towards the improvement of electrochemical transduction properties and the stabilization of gold nanoparticles. Mater. Chem. Phys. 228, 110–117 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.046
- K. Yu, P. Wang, G. Lu, K.H. Chen, Z. Bo, J. Chen, Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537–542 (2011). https://doi.org/10.1021/jz200087w
- M. Pierpaoli, M. Ficek, M. Rycewicz, M. Sawczak, J. Karczewski, M. Ruello, R. Bogdanowicz, Tailoring electro/optical properties of transparent boron-doped carbon nanowalls grown on quartz. Materials (Basel) 12(3), 547 (2019). https://doi.org/10.3390/ma12030547
- A. Terriza, R. Álvarez, A. Borrás, J. Cotrino, F. Yubero, A.R. González-Elipe, Roughness assessment and wetting behavior of fluorocarbon surfaces. J. Colloid Interface Sci. 376(1), 274–282 (2012). https://doi.org/10.1016/j.jcis.2012.03.010
- C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011). https://doi.org/10.1002/adma.201004110
- B.B. Wang, X.L. Qu, X.X. Zhong, Y.A. Chen, K. Zheng, U. Cvelbar, K. Ostrikov, Nanocarbon phase transformations controlled by solubility of carbon species in gold nanoparticles. Diam. Relat. Mater. 88, 282–289 (2018). https://doi.org/10.1016/j.diamond.2018.08.001
- B.B. Wang, Q.J. Cheng, X.X. Zhong, Y.Q. Wang, Y.A. Chen, K. Ostrikov, Enhanced electron field emission from plasma-nitrogenated carbon nanotips. J. Appl. Phys. 111, 044317 (2012). https://doi.org/10.1063/1.3688252
- A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101, 036808 (2008). https://doi.org/10.1103/PhysRevLett.101.036808
- W. Takeuchi, M. Ura, M. Hiramatsu, Y. Tokuda, H. Kano, M. Hori, Electrical conduction control of carbon nanowalls. Appl. Phys. Lett. 92, 213103 (2008). https://doi.org/10.1063/1.2936850
- K. Teii, S. Shimada, M. Nakashima, A.T.H. Chuang, Synthesis and electrical characterization of n-type carbon nanowalls. J. Appl. Phys. 106, 084303 (2009). https://doi.org/10.1063/1.3238276
- B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010). https://doi.org/10.1021/nl103079j
- D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4, 760–764 (2011). https://doi.org/10.1039/C0EE00326C
- H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012). https://doi.org/10.1021/cs200652y
- Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010). https://doi.org/10.1021/nn100315s
- Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao et al., Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010). https://doi.org/10.1039/C0JM00782J
- H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori, Effects of nitrogen plasma post-treatment on electrical conduction of carbon nanowalls. Jpn. J. Appl. Phys. 53, 040307 (2014). https://doi.org/10.7567/JJAP.53.040307
- E.J. Biddinger, D. von Deak, U.S. Ozkan, Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top. Catal. 52, 1566–1574 (2009). https://doi.org/10.1007/s11244-009-9289-y
- B. Wang, L. Tsetseris, S.T. Pantelides, Introduction of nitrogen with controllable configuration into graphene via vacancies and edges. J. Mater. Chem. A 1, 14927–14934 (2013). https://doi.org/10.1039/C3TA13610H
- C.P. Ewels, M. Glerup, Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345–1363 (2005). https://doi.org/10.1166/jnn.2005.304
- T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai et al., Atomic-scale characterization of nitrogen-doped graphite: effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys. Rev. B 86, 035436 (2012). https://doi.org/10.1103/PhysRevB.86.035436
- R. Yadav, C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J. Sci. Adv. Mater. Devices 2, 141–149 (2017). https://doi.org/10.1016/j.jsamd.2017.05.007
- S. Jalili, R. Vaziri, Study of the electronic properties of Li-intercalated nitrogen doped graphite. Mol. Phys. 109, 687–694 (2011). https://doi.org/10.1080/00268976.2010.547523
- D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov et al., Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011). https://doi.org/10.1021/nl2031037
- W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8, 163 (2017). https://doi.org/10.3390/mi8050163
- F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011). https://doi.org/10.1021/nn102598m
- P.A. Manojkumar, N.G. Krishna, G. Mangamma, S.K. Albert, Understanding the structural and chemical changes in vertical graphene nanowalls upon plasma nitrogen ion implantation. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP02165E
- X.-F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Sci. Rep. 6, 23495 (2016). https://doi.org/10.1038/srep23495
- Z. Hou, X. Wang, T. Ikeda, K. Terakura, M. Oshima, M. Kakimoto, S. Miyata, Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 85, 165439 (2012). https://doi.org/10.1103/PhysRevB.85.165439
- E.H. Åhlgren, J. Kotakoski, A.V. Krasheninnikov, Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, 115424 (2011). https://doi.org/10.1103/PhysRevB.83.115424
- S. Sakulsermsuk, P. Singjai, C. Chaiwong, Influence of plasma process on the nitrogen configuration in graphene. Diam. Relat. Mater. 70, 211–218 (2016). https://doi.org/10.1016/j.diamond.2016.11.001
- Z. Hou, K. Terakura, Effect of Nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015). https://doi.org/10.1021/jp512886t
- C. Ehlert, W.E.S. Unger, P. Saalfrank, C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys. Chem. Chem. Phys. 16, 14083–14095 (2014). https://doi.org/10.1039/C4CP01106F
- W. Hua, B. Gao, S. Li, H. Ågren, Y. Luo, X-ray absorption spectra of graphene from first-principles simulations. Phys. Rev. B 82, 155433 (2010). https://doi.org/10.1103/PhysRevB.82.155433
- X. Li, W. Hua, J. Guo, Y. Luo, Electronic structure of nitrogen-doped graphene in the ground and core-excited states from first-principles simulations. J. Phys. Chem. C 119, 16660–16666 (2015). https://doi.org/10.1021/acs.jpcc.5b03981
- W.Y.R. Verastegui, Ab-initio and Experimental NEXAFS Spectroscopy Investigations of Graphene : Growth and Post-Processing Effects. Doctoral dissertation, Bangor University, May (2018)
- S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, M. Hori, Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106, 094302 (2009). https://doi.org/10.1063/1.3253734
- H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori, Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68, 380–388 (2014). https://doi.org/10.1016/j.carbon.2013.11.014
- S. Kondo, M. Hori, K. Yamakawa, S. Den, H. Kano et al., Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanomater Struct. 26, 1294 (2008). https://doi.org/10.1116/1.2938397
- J.F. Moulder, W.F. Stickle, P.E.Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation Physical Electronics Division, 1995). ISBN:096481241X, 9780964812413
- W.E.S. Unger, A. Lippitz, C. Wöll, W. Heckmann, X-ray absorption spectroscopy (NEXAFS) of polymer surfaces. Fresenius J. Anal. Chem. 358, 89–92 (1997). https://doi.org/10.1007/s002160050352
- E. Kovačević, J. Berndt, I. Stefanović, H.-W. Becker, C. Godde, T. Strunskus, J. Winter, L. Boufendi, Formation and material analysis of plasma polymerized carbon nitride nanoparticles. J. Appl. Phys. 105, 104910 (2009). https://doi.org/10.1063/1.3129318
- E. Kovacevic, J. Berndt, T. Strunskus, L. Boufendi, Size dependent characteristics of plasma synthesized carbonaceous nanoparticles. J. Appl. Phys. 112, 013303 (2012). https://doi.org/10.1063/1.4731751
- A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
- A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church et al., A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491 (2016). https://doi.org/10.1038/srep19491
- L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057
- G. Abbas, P. Papakonstantinou, G.R.S. Iyer, I.W. Kirkman, L.C. Chen, Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Phys. Rev. B 75, 195429 (2007). https://doi.org/10.1103/PhysRevB.75.195429
- D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W. Rabalais, Carbon nitride deposited using energetic species: a two-phase system. Phys. Rev. Lett. 73, 118 (1994). https://doi.org/10.1103/PhysRevLett.73.118
- E. Tatarova, A. Dias, J. Henriques, M. Abrashev, N. Bundaleska et al., Towards large-scale in free-standing graphene and N-graphene sheets. Sci. Rep. 7, 10175 (2017). https://doi.org/10.1038/s41598-017-10810-3
- T. Susi, T. Pichler, P. Ayala, X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192 (2015). https://doi.org/10.3762/bjnano.6.17
- S. Suzuki, A. Chatterjee, C.L.L. Cheng, M. Yoshimura, Effect of hydrogen on carbon nanowall growth by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 50, 01AF08 (2011). https://doi.org/10.1143/JJAP.50.01AF08
- M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004). https://doi.org/10.1063/1.1762702
- D.A. Fischer, R.M. Wentzcovitch, R.G. Carr, A. Continenza, A.J. Freeman, Graphitic interlayer states: a carbon K near-edge x-ray-absorption fine-structure study. Phys. Rev. B 44, 1427 (1991). https://doi.org/10.1103/PhysRevB.44.1427
- V. Lee, R.V. Dennis, B.J. Schultz, C. Jaye, D.A. Fischer, S. Banerjee, Soft X-ray absorption spectroscopy studies of the electronic structure recovery of graphene oxide upon chemical defunctionalization. J. Phys. Chem. C 116, 20591–20599 (2012). https://doi.org/10.1021/jp306497f
- P.-L. Girard-Lauriault, R. Illgen, J.-C. Ruiz, M.R. Wertheimer, W.E.S. Unger, Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions. Appl. Surf. Sci. 258, 8448–8454 (2012). https://doi.org/10.1016/j.apsusc.2012.03.012
- J. Brcka, Simulation of the NH3 gas decomposition by linear ICP source (2017). https://pdfs.semanticscholar.org/c41b/5f0078b595bce3488653e7f7b2fcc6e8690b.pdf. Accessed 10 Oct 2019
- M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov et al., Efficient nitrogen doping of graphene by plasma treatment. Carbon 96, 196–202 (2016). https://doi.org/10.1016/j.carbon.2015.09.056
- O. Lehtinen, J. Kotakoski, A.V. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010). https://doi.org/10.1103/PhysRevB.81.153401
- S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015). https://doi.org/10.1039/C4CS00499J
References
Z. Bo, S. Cui, K. Yu, G. Lu, S. Mao, J. Chen, Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces. Rev. Sci. Instrum. 82, 086116 (2011). https://doi.org/10.1063/1.3624842
J. Maruyama, S. Maruyama, T. Fukuhara, K. Chashiro, H. Uyama, Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon 126, 452–455 (2018). https://doi.org/10.1016/j.carbon.2017.10.029
Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64–67 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1%3C64:AID-ADMA64%3E3.0.CO;2-G
Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, Carbon nanowalls and related materials. J. Mater. Chem. 14, 469–477 (2004). https://doi.org/10.1039/B311682D
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, M. Hori, Vertical growth of carbon nanowalls using RF plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 14(3–7), 831–834 (2005). https://doi.org/10.1016/j.diamond.2004.10.021
J. Beckers, W.W. Stoffels, G.M.W. Kroesen, Temperature dependence of nucleation and growth of nanoparticles in low pressure Ar/CH4 RF discharges. J. Phys. D-Appl. Phys. 42, 155206 (2009). https://doi.org/10.1088/0022-3727/42/15/155206
N. Santhosh, G. Filipič, E. Tatarova, O. Baranov, H. Kondo et al., Oriented carbon nanostructures by plasma processing: recent advances and future challenges. Micromachines 9(11), 565 (2018). https://doi.org/10.3390/mi9110565
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, K. Cen, Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5, 5180–5204 (2013). https://doi.org/10.1039/C3NR33449J
M. Hiramatsu, M. Hori, Carbon Nanowalls: Synthesis and Emerging Applications (Springer, Vienna, 2010). https://doi.org/10.1007/978-3-211-99718-5
V. Krivchenko, P. Shevnin, A. Pilevsky, A. Egorov, N. Suetin, V. Sen, S. Evlashin, A. Rakhimov, Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD. J. Mater. Chem. 22, 16458–16464 (2012). https://doi.org/10.1039/C2JM32263C
P. Hojati-Talemi, G.P. Simon, Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon 49, 2875–2877 (2011). https://doi.org/10.1016/j.carbon.2011.03.004
D.H. Seo, Z.J. Han, S. Kumar, K. Ostrikov, Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3(10), 1316–1323 (2013). https://doi.org/10.1002/aenm.201300431
H. Qi, Z. Bo, S. Yang, L. Duan, H. Yang, J. Yan, K. Cen, K.K. Ostrikov, Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2018.07.019
Z. Bo, C. Xu, H. Yang, H. Shi, J. Yan, K. Cen, K.K. Ostrikov, Hierarchical, vertically-oriented carbon nanowall foam supercapacitor using room temperature ionic liquid mixture for ac line filtering with ultrahigh energy density. ChemElectroChem 6(8), 2167–2173 (2019). https://doi.org/10.1002/celc.201801825
Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50, 4379–4387 (2012). https://doi.org/10.1016/j.carbon.2012.05.014
S.A. Evlashin, Y.M. Maksimov, P.V. Dyakonov, A.A. Pilevsky, K.I. Maslakov et al., N-Doped carbon nanowalls for power sources. Sci. Rep. 9, 6716 (2019). https://doi.org/10.1038/s41598-019-43001-3
Z. Bo, S. Mao, Z. Jun Han, K. Cen, J. Chen, K.K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108–2121 (2015). https://doi.org/10.1039/C4CS00352G
A. Achour, S. Solaymani, S. Vizireanu, A. Baraket, A. Vesel et al., Effect of nitrogen configuration on carbon nanowall surface: towards the improvement of electrochemical transduction properties and the stabilization of gold nanoparticles. Mater. Chem. Phys. 228, 110–117 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.046
K. Yu, P. Wang, G. Lu, K.H. Chen, Z. Bo, J. Chen, Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537–542 (2011). https://doi.org/10.1021/jz200087w
M. Pierpaoli, M. Ficek, M. Rycewicz, M. Sawczak, J. Karczewski, M. Ruello, R. Bogdanowicz, Tailoring electro/optical properties of transparent boron-doped carbon nanowalls grown on quartz. Materials (Basel) 12(3), 547 (2019). https://doi.org/10.3390/ma12030547
A. Terriza, R. Álvarez, A. Borrás, J. Cotrino, F. Yubero, A.R. González-Elipe, Roughness assessment and wetting behavior of fluorocarbon surfaces. J. Colloid Interface Sci. 376(1), 274–282 (2012). https://doi.org/10.1016/j.jcis.2012.03.010
C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011). https://doi.org/10.1002/adma.201004110
B.B. Wang, X.L. Qu, X.X. Zhong, Y.A. Chen, K. Zheng, U. Cvelbar, K. Ostrikov, Nanocarbon phase transformations controlled by solubility of carbon species in gold nanoparticles. Diam. Relat. Mater. 88, 282–289 (2018). https://doi.org/10.1016/j.diamond.2018.08.001
B.B. Wang, Q.J. Cheng, X.X. Zhong, Y.Q. Wang, Y.A. Chen, K. Ostrikov, Enhanced electron field emission from plasma-nitrogenated carbon nanotips. J. Appl. Phys. 111, 044317 (2012). https://doi.org/10.1063/1.3688252
A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101, 036808 (2008). https://doi.org/10.1103/PhysRevLett.101.036808
W. Takeuchi, M. Ura, M. Hiramatsu, Y. Tokuda, H. Kano, M. Hori, Electrical conduction control of carbon nanowalls. Appl. Phys. Lett. 92, 213103 (2008). https://doi.org/10.1063/1.2936850
K. Teii, S. Shimada, M. Nakashima, A.T.H. Chuang, Synthesis and electrical characterization of n-type carbon nanowalls. J. Appl. Phys. 106, 084303 (2009). https://doi.org/10.1063/1.3238276
B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010). https://doi.org/10.1021/nl103079j
D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4, 760–764 (2011). https://doi.org/10.1039/C0EE00326C
H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012). https://doi.org/10.1021/cs200652y
Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010). https://doi.org/10.1021/nn100315s
Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao et al., Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010). https://doi.org/10.1039/C0JM00782J
H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori, Effects of nitrogen plasma post-treatment on electrical conduction of carbon nanowalls. Jpn. J. Appl. Phys. 53, 040307 (2014). https://doi.org/10.7567/JJAP.53.040307
E.J. Biddinger, D. von Deak, U.S. Ozkan, Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top. Catal. 52, 1566–1574 (2009). https://doi.org/10.1007/s11244-009-9289-y
B. Wang, L. Tsetseris, S.T. Pantelides, Introduction of nitrogen with controllable configuration into graphene via vacancies and edges. J. Mater. Chem. A 1, 14927–14934 (2013). https://doi.org/10.1039/C3TA13610H
C.P. Ewels, M. Glerup, Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345–1363 (2005). https://doi.org/10.1166/jnn.2005.304
T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai et al., Atomic-scale characterization of nitrogen-doped graphite: effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys. Rev. B 86, 035436 (2012). https://doi.org/10.1103/PhysRevB.86.035436
R. Yadav, C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J. Sci. Adv. Mater. Devices 2, 141–149 (2017). https://doi.org/10.1016/j.jsamd.2017.05.007
S. Jalili, R. Vaziri, Study of the electronic properties of Li-intercalated nitrogen doped graphite. Mol. Phys. 109, 687–694 (2011). https://doi.org/10.1080/00268976.2010.547523
D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov et al., Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011). https://doi.org/10.1021/nl2031037
W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8, 163 (2017). https://doi.org/10.3390/mi8050163
F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011). https://doi.org/10.1021/nn102598m
P.A. Manojkumar, N.G. Krishna, G. Mangamma, S.K. Albert, Understanding the structural and chemical changes in vertical graphene nanowalls upon plasma nitrogen ion implantation. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP02165E
X.-F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Sci. Rep. 6, 23495 (2016). https://doi.org/10.1038/srep23495
Z. Hou, X. Wang, T. Ikeda, K. Terakura, M. Oshima, M. Kakimoto, S. Miyata, Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 85, 165439 (2012). https://doi.org/10.1103/PhysRevB.85.165439
E.H. Åhlgren, J. Kotakoski, A.V. Krasheninnikov, Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, 115424 (2011). https://doi.org/10.1103/PhysRevB.83.115424
S. Sakulsermsuk, P. Singjai, C. Chaiwong, Influence of plasma process on the nitrogen configuration in graphene. Diam. Relat. Mater. 70, 211–218 (2016). https://doi.org/10.1016/j.diamond.2016.11.001
Z. Hou, K. Terakura, Effect of Nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015). https://doi.org/10.1021/jp512886t
C. Ehlert, W.E.S. Unger, P. Saalfrank, C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys. Chem. Chem. Phys. 16, 14083–14095 (2014). https://doi.org/10.1039/C4CP01106F
W. Hua, B. Gao, S. Li, H. Ågren, Y. Luo, X-ray absorption spectra of graphene from first-principles simulations. Phys. Rev. B 82, 155433 (2010). https://doi.org/10.1103/PhysRevB.82.155433
X. Li, W. Hua, J. Guo, Y. Luo, Electronic structure of nitrogen-doped graphene in the ground and core-excited states from first-principles simulations. J. Phys. Chem. C 119, 16660–16666 (2015). https://doi.org/10.1021/acs.jpcc.5b03981
W.Y.R. Verastegui, Ab-initio and Experimental NEXAFS Spectroscopy Investigations of Graphene : Growth and Post-Processing Effects. Doctoral dissertation, Bangor University, May (2018)
S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, M. Hori, Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106, 094302 (2009). https://doi.org/10.1063/1.3253734
H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori, Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68, 380–388 (2014). https://doi.org/10.1016/j.carbon.2013.11.014
S. Kondo, M. Hori, K. Yamakawa, S. Den, H. Kano et al., Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanomater Struct. 26, 1294 (2008). https://doi.org/10.1116/1.2938397
J.F. Moulder, W.F. Stickle, P.E.Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation Physical Electronics Division, 1995). ISBN:096481241X, 9780964812413
W.E.S. Unger, A. Lippitz, C. Wöll, W. Heckmann, X-ray absorption spectroscopy (NEXAFS) of polymer surfaces. Fresenius J. Anal. Chem. 358, 89–92 (1997). https://doi.org/10.1007/s002160050352
E. Kovačević, J. Berndt, I. Stefanović, H.-W. Becker, C. Godde, T. Strunskus, J. Winter, L. Boufendi, Formation and material analysis of plasma polymerized carbon nitride nanoparticles. J. Appl. Phys. 105, 104910 (2009). https://doi.org/10.1063/1.3129318
E. Kovacevic, J. Berndt, T. Strunskus, L. Boufendi, Size dependent characteristics of plasma synthesized carbonaceous nanoparticles. J. Appl. Phys. 112, 013303 (2012). https://doi.org/10.1063/1.4731751
A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church et al., A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491 (2016). https://doi.org/10.1038/srep19491
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057
G. Abbas, P. Papakonstantinou, G.R.S. Iyer, I.W. Kirkman, L.C. Chen, Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Phys. Rev. B 75, 195429 (2007). https://doi.org/10.1103/PhysRevB.75.195429
D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W. Rabalais, Carbon nitride deposited using energetic species: a two-phase system. Phys. Rev. Lett. 73, 118 (1994). https://doi.org/10.1103/PhysRevLett.73.118
E. Tatarova, A. Dias, J. Henriques, M. Abrashev, N. Bundaleska et al., Towards large-scale in free-standing graphene and N-graphene sheets. Sci. Rep. 7, 10175 (2017). https://doi.org/10.1038/s41598-017-10810-3
T. Susi, T. Pichler, P. Ayala, X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192 (2015). https://doi.org/10.3762/bjnano.6.17
S. Suzuki, A. Chatterjee, C.L.L. Cheng, M. Yoshimura, Effect of hydrogen on carbon nanowall growth by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 50, 01AF08 (2011). https://doi.org/10.1143/JJAP.50.01AF08
M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004). https://doi.org/10.1063/1.1762702
D.A. Fischer, R.M. Wentzcovitch, R.G. Carr, A. Continenza, A.J. Freeman, Graphitic interlayer states: a carbon K near-edge x-ray-absorption fine-structure study. Phys. Rev. B 44, 1427 (1991). https://doi.org/10.1103/PhysRevB.44.1427
V. Lee, R.V. Dennis, B.J. Schultz, C. Jaye, D.A. Fischer, S. Banerjee, Soft X-ray absorption spectroscopy studies of the electronic structure recovery of graphene oxide upon chemical defunctionalization. J. Phys. Chem. C 116, 20591–20599 (2012). https://doi.org/10.1021/jp306497f
P.-L. Girard-Lauriault, R. Illgen, J.-C. Ruiz, M.R. Wertheimer, W.E.S. Unger, Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions. Appl. Surf. Sci. 258, 8448–8454 (2012). https://doi.org/10.1016/j.apsusc.2012.03.012
J. Brcka, Simulation of the NH3 gas decomposition by linear ICP source (2017). https://pdfs.semanticscholar.org/c41b/5f0078b595bce3488653e7f7b2fcc6e8690b.pdf. Accessed 10 Oct 2019
M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov et al., Efficient nitrogen doping of graphene by plasma treatment. Carbon 96, 196–202 (2016). https://doi.org/10.1016/j.carbon.2015.09.056
O. Lehtinen, J. Kotakoski, A.V. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010). https://doi.org/10.1103/PhysRevB.81.153401
S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015). https://doi.org/10.1039/C4CS00499J