Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window
Corresponding Author: Zhen Cheng
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 38
Abstract
Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700–900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000–1700 nm) especially NIR-IIa window (1300–1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window. Hereby, we propose the use of laser excitation at 1275 nm, which is approved by Food and Drug Administration for physical therapy, as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption. Specifically, CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm, a conventional NIR-I window for PTT, were synthesized as PTT agents and a comparison platform, to explore the potential of 1275 and 808 nm lasers for PTT, especially in deep-tissue settings. The results showed that 1275 nm laser was practicable in PTT. It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser. NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT, and shows high potential to improve the PTT outcome.
Highlights:
1 The laser of 1275 nm exhibited excellent ablation of tumors with 5-mm porcine muscle tissue blocking, while 808 nm laser failed.
2 Polyethylene glycol-stabilized copper sulfide nanoparticles with similar absorption efficiency at wavelength of 808 and 1275 nm were employed to compare the potential of these two lasers in deep-tissue photothermal therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. He, J. Song, J. Qu, Z. Cheng, Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47(12), 4258–4278 (2018). https://doi.org/10.1039/c8cs00234g
- M. Abbas, Q. Zou, S. Li, X. Yan, Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 29(12), 1605021 (2017). https://doi.org/10.1002/adma.201605021
- J.J. Hu, Y.J. Cheng, X.Z. Zhang, Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 10(48), 22657–22672 (2018). https://doi.org/10.1039/c8nr07627h
- X. Ge, Q. Fu, L. Bai, B. Chen, R. Wang et al., Photoacoustic imaging and photothermal therapy in the second near-infrared window. New J. Chem. 43(23), 8835–8851 (2019). https://doi.org/10.1039/c9nj01402k
- J. Li, K. Pu, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48(1), 38–71 (2019). https://doi.org/10.1039/c8cs00001h
- H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
- M.F. Tsai, S.H. Chang, F.Y. Cheng, V. Shanmugam, Y.S. Cheng et al., Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7(6), 5330–5342 (2013). https://doi.org/10.1021/nn401187c
- Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen et al., Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials 155, 103–111 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.016
- T. Sun, J.H. Dou, S. Liu, X. Wang, X. Zheng et al., Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 10(9), 7919–7926 (2018). https://doi.org/10.1021/acsami.8b01458
- T. Sun, J. Han, S. Liu, X. Wang, Z.Y. Wang et al., Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 13(6), 7345–7354 (2019). https://doi.org/10.1021/acsnano.9b03910
- A.M. Smith, M.C. Mancini, S. Nie, Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4(11), 710–711 (2009). https://doi.org/10.1038/nnano.2009.326
- Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29(2), 718–725 (2016). https://doi.org/10.1021/acs.chemmater.6b04405
- J.-E. Park, M. Kim, J.-H. Hwang, J.-M. Nam, Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods 1(3), 1600032 (2017). https://doi.org/10.1002/smtd.201600032
- A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D-Appl. Phys. 38(15), 2543–2555 (2005). https://doi.org/10.1088/0022-3727/38/15/004
- Y. Jiang, J. Li, X. Zhen, C. Xie, K. Pu, Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv. Mater. 30(14), 1705980 (2018). https://doi.org/10.1002/adma.201705980
- B. Guo, Z. Sheng, D. Hu, C. Liu, H. Zheng et al., Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 30(35), 1802591 (2018). https://doi.org/10.1002/adma.201802591
- J. Zhou, Y. Jiang, S. Hou, P.K. Upputuri, D. Wu et al., Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 12(3), 2643–2651 (2018). https://doi.org/10.1021/acsnano.7b08725
- G. Hong, S. Diao, J. Chang, A.L. Antaris, C. Chen et al., Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8(9), 723–730 (2014). https://doi.org/10.1038/nphoton.2014.166
- S. Diao, J.L. Blackburn, G. Hong, A.L. Antaris, J. Chang et al., Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54(49), 14758–14762 (2015). https://doi.org/10.1002/anie.201507473
- X.D. Zhang, H. Wang, A.L. Antaris, L. Li, S. Diao et al., Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28(32), 6872–6879 (2016). https://doi.org/10.1002/adma.201600706
- H. Wan, J. Yue, S. Zhu, T. Uno, X. Zhang et al., A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9(1), 1171 (2018). https://doi.org/10.1038/s41467-018-03505-4
- P.F. White, J. Zafereo, O.L. Elvir-Lazo, H. Hernandez, Treatment of drug-resistant fibromyalgia symptoms using high-intensity laser therapy: a case-based review. Rheumatol. Int. 38(3), 517–523 (2018). https://doi.org/10.1007/s00296-017-3856-5
- P.F. White, X. Cao, L. Elvir Lazo, H. Hernandez, Effect of high-intensity laser treatments on chronic pain related to osteoarthritis in former professional athletes: a case series. J. Mol. Biomark. Diagn. 08(4), 1000343 (2017). https://doi.org/10.4172/2155-9929.1000343
- M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song et al., A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 132(43), 15351–15358 (2010). https://doi.org/10.1021/ja106855m
- G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle et al., Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6(8), 7489–7496 (2012). https://doi.org/10.1021/nn302782y
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
- S. Song, C. Xiong, M. Zhou, W. Lu, Q. Huang et al., Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-DOTA-hypericin. J. Nucl. Med. 52(5), 792–799 (2011). https://doi.org/10.2967/jnumed.110.086116
- J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003). https://doi.org/10.1038/nrd1033
- A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15(2), 235–242 (2016). https://doi.org/10.1038/nmat4476
- W. Feng, X. Han, R. Wang, X. Gao, P. Hu et al., Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 31(5), 1805919 (2019). https://doi.org/10.1002/adma.201805919
- C. Ash, G. Town, M. Clement, Confirmation of spectral jitter: a measured shift in the spectral distribution of intense pulsed light systems using a time-resolved spectrometer during exposure and increased fluence. J. Med. Eng. Technol. 34(2), 97–107 (2010). https://doi.org/10.3109/03091900903402089
- M. Smith, R.L. Fork, S. Cole, Safe delivery of optical power from space. Opt. Express 8(10), 537–546 (2001). https://doi.org/10.1364/oe.8.000537
- K. Welsher, S.P. Sherlock, H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011). https://doi.org/10.1073/pnas.1014501108
- L.A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R.R. Alfano, Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 19(5), 056004 (2014). https://doi.org/10.1117/1.JBO.19.5.056004
- Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan et al., NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd(3+)/Yb(3+)@SiO2@Cu2S toward highly efficient photothermal ablation. ACS Appl. Mater. Interfaces 10(17), 14570–14576 (2018). https://doi.org/10.1021/acsami.8b03239
- L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012). https://doi.org/10.1126/science.1216210
- B. Wu, S.T. Lu, H. Yu, R.F. Liao, H. Li et al., Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials 159, 37–47 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.022
- Y. Zhang, N. Zhao, Y. Qin, F. Wu, Z. Xu et al., Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 10(35), 16581–16590 (2018). https://doi.org/10.1039/c8nr02556h
- Y. Jiang, P.K. Upputuri, C. Xie, Z. Zeng, A. Sharma et al., Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31(11), 1808166 (2019). https://doi.org/10.1002/adma.201808166
- G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1(1), 0010 (2017). https://doi.org/10.1038/s41551-016-0010
- E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
- X. Zhu, W. Feng, J. Chang, Y.W. Tan, J. Li et al., Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). https://doi.org/10.1038/ncomms10437
References
S. He, J. Song, J. Qu, Z. Cheng, Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47(12), 4258–4278 (2018). https://doi.org/10.1039/c8cs00234g
M. Abbas, Q. Zou, S. Li, X. Yan, Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 29(12), 1605021 (2017). https://doi.org/10.1002/adma.201605021
J.J. Hu, Y.J. Cheng, X.Z. Zhang, Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 10(48), 22657–22672 (2018). https://doi.org/10.1039/c8nr07627h
X. Ge, Q. Fu, L. Bai, B. Chen, R. Wang et al., Photoacoustic imaging and photothermal therapy in the second near-infrared window. New J. Chem. 43(23), 8835–8851 (2019). https://doi.org/10.1039/c9nj01402k
J. Li, K. Pu, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48(1), 38–71 (2019). https://doi.org/10.1039/c8cs00001h
H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
M.F. Tsai, S.H. Chang, F.Y. Cheng, V. Shanmugam, Y.S. Cheng et al., Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7(6), 5330–5342 (2013). https://doi.org/10.1021/nn401187c
Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen et al., Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials 155, 103–111 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.016
T. Sun, J.H. Dou, S. Liu, X. Wang, X. Zheng et al., Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 10(9), 7919–7926 (2018). https://doi.org/10.1021/acsami.8b01458
T. Sun, J. Han, S. Liu, X. Wang, Z.Y. Wang et al., Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 13(6), 7345–7354 (2019). https://doi.org/10.1021/acsnano.9b03910
A.M. Smith, M.C. Mancini, S. Nie, Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4(11), 710–711 (2009). https://doi.org/10.1038/nnano.2009.326
Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29(2), 718–725 (2016). https://doi.org/10.1021/acs.chemmater.6b04405
J.-E. Park, M. Kim, J.-H. Hwang, J.-M. Nam, Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods 1(3), 1600032 (2017). https://doi.org/10.1002/smtd.201600032
A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D-Appl. Phys. 38(15), 2543–2555 (2005). https://doi.org/10.1088/0022-3727/38/15/004
Y. Jiang, J. Li, X. Zhen, C. Xie, K. Pu, Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv. Mater. 30(14), 1705980 (2018). https://doi.org/10.1002/adma.201705980
B. Guo, Z. Sheng, D. Hu, C. Liu, H. Zheng et al., Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 30(35), 1802591 (2018). https://doi.org/10.1002/adma.201802591
J. Zhou, Y. Jiang, S. Hou, P.K. Upputuri, D. Wu et al., Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 12(3), 2643–2651 (2018). https://doi.org/10.1021/acsnano.7b08725
G. Hong, S. Diao, J. Chang, A.L. Antaris, C. Chen et al., Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8(9), 723–730 (2014). https://doi.org/10.1038/nphoton.2014.166
S. Diao, J.L. Blackburn, G. Hong, A.L. Antaris, J. Chang et al., Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54(49), 14758–14762 (2015). https://doi.org/10.1002/anie.201507473
X.D. Zhang, H. Wang, A.L. Antaris, L. Li, S. Diao et al., Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28(32), 6872–6879 (2016). https://doi.org/10.1002/adma.201600706
H. Wan, J. Yue, S. Zhu, T. Uno, X. Zhang et al., A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9(1), 1171 (2018). https://doi.org/10.1038/s41467-018-03505-4
P.F. White, J. Zafereo, O.L. Elvir-Lazo, H. Hernandez, Treatment of drug-resistant fibromyalgia symptoms using high-intensity laser therapy: a case-based review. Rheumatol. Int. 38(3), 517–523 (2018). https://doi.org/10.1007/s00296-017-3856-5
P.F. White, X. Cao, L. Elvir Lazo, H. Hernandez, Effect of high-intensity laser treatments on chronic pain related to osteoarthritis in former professional athletes: a case series. J. Mol. Biomark. Diagn. 08(4), 1000343 (2017). https://doi.org/10.4172/2155-9929.1000343
M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song et al., A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 132(43), 15351–15358 (2010). https://doi.org/10.1021/ja106855m
G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle et al., Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6(8), 7489–7496 (2012). https://doi.org/10.1021/nn302782y
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
S. Song, C. Xiong, M. Zhou, W. Lu, Q. Huang et al., Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-DOTA-hypericin. J. Nucl. Med. 52(5), 792–799 (2011). https://doi.org/10.2967/jnumed.110.086116
J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003). https://doi.org/10.1038/nrd1033
A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15(2), 235–242 (2016). https://doi.org/10.1038/nmat4476
W. Feng, X. Han, R. Wang, X. Gao, P. Hu et al., Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 31(5), 1805919 (2019). https://doi.org/10.1002/adma.201805919
C. Ash, G. Town, M. Clement, Confirmation of spectral jitter: a measured shift in the spectral distribution of intense pulsed light systems using a time-resolved spectrometer during exposure and increased fluence. J. Med. Eng. Technol. 34(2), 97–107 (2010). https://doi.org/10.3109/03091900903402089
M. Smith, R.L. Fork, S. Cole, Safe delivery of optical power from space. Opt. Express 8(10), 537–546 (2001). https://doi.org/10.1364/oe.8.000537
K. Welsher, S.P. Sherlock, H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011). https://doi.org/10.1073/pnas.1014501108
L.A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R.R. Alfano, Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 19(5), 056004 (2014). https://doi.org/10.1117/1.JBO.19.5.056004
Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan et al., NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd(3+)/Yb(3+)@SiO2@Cu2S toward highly efficient photothermal ablation. ACS Appl. Mater. Interfaces 10(17), 14570–14576 (2018). https://doi.org/10.1021/acsami.8b03239
L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012). https://doi.org/10.1126/science.1216210
B. Wu, S.T. Lu, H. Yu, R.F. Liao, H. Li et al., Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials 159, 37–47 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.022
Y. Zhang, N. Zhao, Y. Qin, F. Wu, Z. Xu et al., Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 10(35), 16581–16590 (2018). https://doi.org/10.1039/c8nr02556h
Y. Jiang, P.K. Upputuri, C. Xie, Z. Zeng, A. Sharma et al., Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31(11), 1808166 (2019). https://doi.org/10.1002/adma.201808166
G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1(1), 0010 (2017). https://doi.org/10.1038/s41551-016-0010
E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
X. Zhu, W. Feng, J. Chang, Y.W. Tan, J. Li et al., Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). https://doi.org/10.1038/ncomms10437