Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries
Corresponding Author: Ji‑Hyun Jang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 28
Abstract
We report a wire-shaped three-dimensional (3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites, easy access of electrolyte ions, and facile charge transport for flexible wearable applications. The interconnected and compact electrode delivers a high volumetric capacitance (gravimetric capacitance) of 73 F cm−3 (2446 F g−1), excellent rate capability, and cycle stability. The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire (NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire (Mn3O4/3D-Ni) hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1. The red light-emitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions. The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times, for smart wearable and implantable devices.
Highlights:
1 The flexible 3D porous structure with a large surface area provides pathways for rapid ion/electron transport and ion diffusion as well as numerous electroactive sites.
2 The wire-shaped supercapacitor exhibits a high energy density of 153.3 Wh kg−1 and a power density of 8810 W kg−1.
3 The hybrid device demonstrates excellent durability under various mechanical deformations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.F. Service, Electronic textiles charge ahead. Science 301(5635), 909–911 (2003). https://doi.org/10.1126/science.301.5635.909
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotech. 6, 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
- D.-H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008). https://doi.org/10.1002/adma.200801788
- M. Haghi, K. Thurow, I. Habil, R. Stoll, M. Habil, Wearable devices in medical internet of things: scientific research and commercially available devices. Health. Inform. Res. 23, 4–15 (2017). https://doi.org/10.4258/hir.2017.23.1.4
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810–4816 (2012). https://doi.org/10.1021/nl302254v
- B.-U. Hwang, J.-H. Lee, T.Q. Trung, E. Roh, D.-I. Kim, S.-W. Kim, N.-E. Lee, Transparent stratechable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9), 8801–8810 (2015). https://doi.org/10.1021/acsnano.5b01835
- S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 3511–3516 (2011). https://doi.org/10.1002/adma.201101066
- Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013). https://doi.org/10.1038/srep02598
- L. Liu, B. Shen, D. Jiang, R. Guo, L. Kong, X. Yan, Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 6, 1600763 (2016). https://doi.org/10.1002/aenm.201600763
- A. Ramadoss, B. Saravanakumar, S.J. Kim, Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 15, 587–597 (2015). https://doi.org/10.1016/j.nanoen.2015.05.009
- S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, A facile route to an efficient NiO supercapacitor with a three-dimensional nano-network morphology. ACS Appl. Mater. Interfaces 5(5), 1596–1603 (2013). https://doi.org/10.1021/am3021894
- B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st edn. (Springer, New York, 1999)
- A. Ramadoss, K.-Y. Yoon, M.-J. Kwak, S.-I. Kim, S.-T. Ryu, J.-H. Jang, Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 337, 159–165 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.091
- S.-I. Kim, J.-H. Kang, S.-W. Kim, J.-H. Jang, A new approach to high-performance flexible supercapacitors: mesoporous three-dimensional Ni-electrodes. Nano Energy 39, 639–646 (2017). https://doi.org/10.1016/j.nanoen.2017.07.050
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (Mxenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Ghaemmaghami, R. Mohammadi, Carbon nitride as a new way to facilitate the next generation of carbon-based supercapacitors. Sustain. Energy Fuels 3, 2176–2204 (2019). https://doi.org/10.1039/C9SE00313D
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrchemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B
- G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8, 812–825 (2016). https://doi.org/10.1039/C5NR05643H
- J. Xing, S. Wu, K.Y. Simon Ng, Electrodeposition of ultrathin nickel-cobalt double hydroxide nanosheets on nickel foam as high-performance supercapacitor electrodes. RSC Adv. 5, 88780–88786 (2015). https://doi.org/10.1039/C5RA17481C
- Y. Tao, L. Ruiyi, L. Zaijun, Nickel-cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials. Mater. Res. Bull. 51, 97–104 (2014). https://doi.org/10.1016/j.materresbull.2013.11.044
- L. Jiang, Y. Sui, J. Qi, Y. Chang, Y. He et al., Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl. Surface Sci. 426, 148–159 (2017). https://doi.org/10.1016/j.apsusc.2017.07.175
- R. Li, Z. Hu, X. Shao, R. Cheng, S. Li, W. Yu, W. Lin, D. Yuan, Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 6, 18737 (2016). https://doi.org/10.1038/srep18737
- I. Shakir, M. Shahid, U.A. Rana, I.M.A. Nashef, R. Hussain, Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices. Electrochim. Acta 129, 28–32 (2014). https://doi.org/10.1016/j.electacta.2014.02.082
- X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li et al., Nickel-cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta 215, 492–499 (2016). https://doi.org/10.1016/j.electacta.2016.08.134
- S.T. Senthilkumar, N. Fu, Y. Liu, Y. Wang, L. Zhou, H. Huang, Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim. Acta 211, 411–419 (2016). https://doi.org/10.1016/j.electacta.2016.06.059
- N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
- H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K.N. Hui, K.S. Hui, Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta 261, 178–187 (2018). https://doi.org/10.1016/j.electacta.2017.12.139
- Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun et al., Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775–11781 (2018). https://doi.org/10.1039/C8NR01229F
- J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
- X. Liang, G. Long, C. Fu, M. Pang, Y. Xi et al., High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 345, 186–195 (2018). https://doi.org/10.1016/j.cej.2018.03.104
- A. Ramadoss, K.-N. Kang, H.-J. Ahn, S.-I. Kim, S.-T. Ryu, J.-H. Jang, Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J. Mater. Chem. A 4, 4718–4727 (2016). https://doi.org/10.1039/C5TA10781D
- W.-Y. Ko, C.-C. Chung, K.-J. Lin, 3D porous mixed-valent manganese oxide nanosheets electrodeposited onto flexible Ag-CNT textiles for highly improved capacitive performances. ChemistrySelect 2, 11503–11512 (2017). https://doi.org/10.1002/slct.201702248
- K.-N. Kang, I.-H. Kim, A. Ramadoss, S.-I. Kim, J.-C. Yoon, J.-H. Jang, Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Phys. Chem. Chem. Phys. 20, 719–727 (2018). https://doi.org/10.1039/C7CP07473E
- J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong, G.-R. Li, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7(21), 11444–11451 (2015). https://doi.org/10.1021/acsami.5b02157
- X.F. Lu, G.R. Li, Y.X. Tong, A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 58, 1799–1808 (2015). https://doi.org/10.1007/s11431-015-5931-z
- S.-I. Kim, S.-W. Kim, K. Jung, J.-B. Kim, J.-H. Jang, Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energy 24, 17–24 (2016). https://doi.org/10.1016/j.nanoen.2016.03.027
- M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010). https://doi.org/10.1039/c0ee00074d
- K. Naoi, M. Morita, Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem. Soc. Interfaces 1, 44–48 (2008)
- F. Barzegar, J.K. Dangbegnon, A. Bello, D.Y. Momodu, A.T.C. Johnson Jr., N. Manyala, Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv. 5, 097171 (2015). https://doi.org/10.1063/1.4931956
- X. Lu, Y. Zneg, M. Yu, T. Zhai, C. Liang, S. Xie, M.-S. Balogun, Y. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148–3155 (2014). https://doi.org/10.1002/adma.201305851
- C.-C. Yang, S.-T. Hsu, W.-C. Chien, All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J. Power Sources 152, 303–310 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.004
- A. Lewandowski, M. Zajder, E. Frąckowiak, F. Béguin, Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochim. Acta 46, 2777–2780 (2001). https://doi.org/10.1016/S0013-4686(01)00496-0
- X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
- J. Ding, H. Zhou, H. Zhang, T. Stephenson, Z. Li, D. Karpuzov, D. Mitlin, Exceptional energy and new sight with a sodium-selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 10, 153–165 (2017). https://doi.org/10.1039/C6EE02274J
- A.D. Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171–178 (2003). https://doi.org/10.1016/S0378-7753(02)00718-8
- L. Mu, S. Xu, Y. Li, Y.-S. Hu, H. Li, L. Chen, X. Huang, Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015). https://doi.org/10.1002/adma.201502449
- F. Barzegar, A. Bello, D.Y. Momodu, J.K. Dangbegnon, F. Taghizadeh, M.J. Madito, T.M. Masikhwa, N. Manyala, Asymmetric supercapacitor based on an α-MoO3 cathode and porous activated carbon anode materials. RSC Adv. 5, 37462–37468 (2015). https://doi.org/10.1039/C5RA03579A
- H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
- N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.-Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
- C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang et al., All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838
- S.T. Senthilkumar, J. Kim, Y. Wang, H. Huang, Y. Kim, Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes. J. Mater. Chem. A 4, 4934–4940 (2016). https://doi.org/10.1039/C6TA00093B
- L. Cao, G. Tang, J. Mei, H. Liu, Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J. Power Sources 359, 262–269 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.051
- K. Lu, J. Zhang, Y. Wang, J. Ma, B. Song, H. Ma, Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors. ACS Sustain. Chem. Eng. 5, 821–827 (2017). https://doi.org/10.1021/acssuschemeng.6b02144
- Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 6, 3314–3321 (2013). https://doi.org/10.1039/c3ee41143e
- X. Zheng, Z. Gu, Q. Hu, B. Geng, X. Zhang, Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Adv. 5, 17007–17013 (2015). https://doi.org/10.1039/C5RA01294E
References
R.F. Service, Electronic textiles charge ahead. Science 301(5635), 909–911 (2003). https://doi.org/10.1126/science.301.5635.909
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotech. 6, 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
D.-H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008). https://doi.org/10.1002/adma.200801788
M. Haghi, K. Thurow, I. Habil, R. Stoll, M. Habil, Wearable devices in medical internet of things: scientific research and commercially available devices. Health. Inform. Res. 23, 4–15 (2017). https://doi.org/10.4258/hir.2017.23.1.4
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810–4816 (2012). https://doi.org/10.1021/nl302254v
B.-U. Hwang, J.-H. Lee, T.Q. Trung, E. Roh, D.-I. Kim, S.-W. Kim, N.-E. Lee, Transparent stratechable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9), 8801–8810 (2015). https://doi.org/10.1021/acsnano.5b01835
S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 3511–3516 (2011). https://doi.org/10.1002/adma.201101066
Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013). https://doi.org/10.1038/srep02598
L. Liu, B. Shen, D. Jiang, R. Guo, L. Kong, X. Yan, Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 6, 1600763 (2016). https://doi.org/10.1002/aenm.201600763
A. Ramadoss, B. Saravanakumar, S.J. Kim, Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 15, 587–597 (2015). https://doi.org/10.1016/j.nanoen.2015.05.009
S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, A facile route to an efficient NiO supercapacitor with a three-dimensional nano-network morphology. ACS Appl. Mater. Interfaces 5(5), 1596–1603 (2013). https://doi.org/10.1021/am3021894
B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st edn. (Springer, New York, 1999)
A. Ramadoss, K.-Y. Yoon, M.-J. Kwak, S.-I. Kim, S.-T. Ryu, J.-H. Jang, Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 337, 159–165 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.091
S.-I. Kim, J.-H. Kang, S.-W. Kim, J.-H. Jang, A new approach to high-performance flexible supercapacitors: mesoporous three-dimensional Ni-electrodes. Nano Energy 39, 639–646 (2017). https://doi.org/10.1016/j.nanoen.2017.07.050
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (Mxenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Ghaemmaghami, R. Mohammadi, Carbon nitride as a new way to facilitate the next generation of carbon-based supercapacitors. Sustain. Energy Fuels 3, 2176–2204 (2019). https://doi.org/10.1039/C9SE00313D
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrchemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B
G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8, 812–825 (2016). https://doi.org/10.1039/C5NR05643H
J. Xing, S. Wu, K.Y. Simon Ng, Electrodeposition of ultrathin nickel-cobalt double hydroxide nanosheets on nickel foam as high-performance supercapacitor electrodes. RSC Adv. 5, 88780–88786 (2015). https://doi.org/10.1039/C5RA17481C
Y. Tao, L. Ruiyi, L. Zaijun, Nickel-cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials. Mater. Res. Bull. 51, 97–104 (2014). https://doi.org/10.1016/j.materresbull.2013.11.044
L. Jiang, Y. Sui, J. Qi, Y. Chang, Y. He et al., Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl. Surface Sci. 426, 148–159 (2017). https://doi.org/10.1016/j.apsusc.2017.07.175
R. Li, Z. Hu, X. Shao, R. Cheng, S. Li, W. Yu, W. Lin, D. Yuan, Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 6, 18737 (2016). https://doi.org/10.1038/srep18737
I. Shakir, M. Shahid, U.A. Rana, I.M.A. Nashef, R. Hussain, Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices. Electrochim. Acta 129, 28–32 (2014). https://doi.org/10.1016/j.electacta.2014.02.082
X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li et al., Nickel-cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta 215, 492–499 (2016). https://doi.org/10.1016/j.electacta.2016.08.134
S.T. Senthilkumar, N. Fu, Y. Liu, Y. Wang, L. Zhou, H. Huang, Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim. Acta 211, 411–419 (2016). https://doi.org/10.1016/j.electacta.2016.06.059
N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K.N. Hui, K.S. Hui, Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta 261, 178–187 (2018). https://doi.org/10.1016/j.electacta.2017.12.139
Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun et al., Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775–11781 (2018). https://doi.org/10.1039/C8NR01229F
J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
X. Liang, G. Long, C. Fu, M. Pang, Y. Xi et al., High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 345, 186–195 (2018). https://doi.org/10.1016/j.cej.2018.03.104
A. Ramadoss, K.-N. Kang, H.-J. Ahn, S.-I. Kim, S.-T. Ryu, J.-H. Jang, Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J. Mater. Chem. A 4, 4718–4727 (2016). https://doi.org/10.1039/C5TA10781D
W.-Y. Ko, C.-C. Chung, K.-J. Lin, 3D porous mixed-valent manganese oxide nanosheets electrodeposited onto flexible Ag-CNT textiles for highly improved capacitive performances. ChemistrySelect 2, 11503–11512 (2017). https://doi.org/10.1002/slct.201702248
K.-N. Kang, I.-H. Kim, A. Ramadoss, S.-I. Kim, J.-C. Yoon, J.-H. Jang, Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Phys. Chem. Chem. Phys. 20, 719–727 (2018). https://doi.org/10.1039/C7CP07473E
J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong, G.-R. Li, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7(21), 11444–11451 (2015). https://doi.org/10.1021/acsami.5b02157
X.F. Lu, G.R. Li, Y.X. Tong, A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 58, 1799–1808 (2015). https://doi.org/10.1007/s11431-015-5931-z
S.-I. Kim, S.-W. Kim, K. Jung, J.-B. Kim, J.-H. Jang, Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energy 24, 17–24 (2016). https://doi.org/10.1016/j.nanoen.2016.03.027
M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010). https://doi.org/10.1039/c0ee00074d
K. Naoi, M. Morita, Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem. Soc. Interfaces 1, 44–48 (2008)
F. Barzegar, J.K. Dangbegnon, A. Bello, D.Y. Momodu, A.T.C. Johnson Jr., N. Manyala, Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv. 5, 097171 (2015). https://doi.org/10.1063/1.4931956
X. Lu, Y. Zneg, M. Yu, T. Zhai, C. Liang, S. Xie, M.-S. Balogun, Y. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148–3155 (2014). https://doi.org/10.1002/adma.201305851
C.-C. Yang, S.-T. Hsu, W.-C. Chien, All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J. Power Sources 152, 303–310 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.004
A. Lewandowski, M. Zajder, E. Frąckowiak, F. Béguin, Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochim. Acta 46, 2777–2780 (2001). https://doi.org/10.1016/S0013-4686(01)00496-0
X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
J. Ding, H. Zhou, H. Zhang, T. Stephenson, Z. Li, D. Karpuzov, D. Mitlin, Exceptional energy and new sight with a sodium-selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 10, 153–165 (2017). https://doi.org/10.1039/C6EE02274J
A.D. Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171–178 (2003). https://doi.org/10.1016/S0378-7753(02)00718-8
L. Mu, S. Xu, Y. Li, Y.-S. Hu, H. Li, L. Chen, X. Huang, Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015). https://doi.org/10.1002/adma.201502449
F. Barzegar, A. Bello, D.Y. Momodu, J.K. Dangbegnon, F. Taghizadeh, M.J. Madito, T.M. Masikhwa, N. Manyala, Asymmetric supercapacitor based on an α-MoO3 cathode and porous activated carbon anode materials. RSC Adv. 5, 37462–37468 (2015). https://doi.org/10.1039/C5RA03579A
H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.-Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang et al., All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838
S.T. Senthilkumar, J. Kim, Y. Wang, H. Huang, Y. Kim, Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes. J. Mater. Chem. A 4, 4934–4940 (2016). https://doi.org/10.1039/C6TA00093B
L. Cao, G. Tang, J. Mei, H. Liu, Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J. Power Sources 359, 262–269 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.051
K. Lu, J. Zhang, Y. Wang, J. Ma, B. Song, H. Ma, Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors. ACS Sustain. Chem. Eng. 5, 821–827 (2017). https://doi.org/10.1021/acssuschemeng.6b02144
Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 6, 3314–3321 (2013). https://doi.org/10.1039/c3ee41143e
X. Zheng, Z. Gu, Q. Hu, B. Geng, X. Zhang, Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Adv. 5, 17007–17013 (2015). https://doi.org/10.1039/C5RA01294E