Improvement of a Real Gas-Sensor for the Origin of Methane Selectivity Degradation by µ-XAFS Investigation
Corresponding Author: Kiyotaka Asakura
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 255-260
Abstract
We have directly investigated the chemical state of the Pd species in a real μ-gas sensor device by examining the μ-fluorescence X-ray absorption fine structure. The μ-gas sensor device was heavily damaged by a heating process in which the temperature was ill-controlled, resulting in decrease of methane selectivity. We found that the PdO in the fresh μ-gas sensor was reduced to Pd metal particles as the methane selectivity decreased. Based on the investigation results, we modified the device structure so as to heat up homogeneously. The lifetime of the sensor was then successfully increased by more than 5 years.
Keywords
- C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
- T. Suzuki, K. Kunihara, M. Kobayashi, S. Tabata, K. Higaki, H. Ohnishi, A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater—Part 1: CH4 sensing. Sens. Actuators B Chem. 109(2), 185–189 (2005). doi:10.1016/j.snb.2005.05.013
- S. Tabata, K. Higaki, H. Ohnishi, T. Suzuki, K. Kunihara, M. Kobayashi, A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and a thin film heater—Part 2: CO sensing. Sens. Actuators B Chem. 109(2), 190–193 (2005). doi:10.1016/j.snb.2005.05.012
- J.C. Kim, H.K. Jun, J.-S. Huh, D.D. Lee, Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens. Actuators B Chem. 45(3), 271–277 (1997). doi:10.1016/S0925-4005(97)00325-0
- N. Murata, T. Suzuki, M. Kobayashi, F. Togoh, K. Asakura, Characterization of Pt-doped SnO2 catalyst for a high-performance micro gas sensor. Phys. Chem. Chem. Phys. 15(41), 17938–17946 (2013). doi:10.1039/c3cp52490f
- M.A. Kumakhov, Channeling of photons and new X-ray optics. Nucl. Instrum. Methods Phys. Res. B 48(1–4), 283–286 (1990). doi:10.1016/0168-583X(90)90123-C
- M.A. Kumakhov, F.F. Komarov, Multiple reflection from surface X-ray optics. Phys. Rep. 191(5), 289–350 (1990). doi:10.1016/0370-1573(90)90135-O
- P.J. Schields, D.M. Gibson, W.M. Gibson, N. Gao, H.P. Huang, I.Y. Ponomarev, Overview of polycapillary X-ray optics. Powder Diffr. 17(2), 70–80 (2002). doi:10.1154/1.1482080
- N. Gao, K. Janssens, in X-Ray spectrometry: recent technological advances: polycapillary X-ray optics, ed. by K. Tsuji, J. Injuk, R. Van Grieken (Wiley, Chichester, 2005), pp. 89–110
- M. Nomura, Y. Koike, M. Sato, A. Koyama, Y. Inada, K. Asakura, A new XAFS beamline NW10A at the photon factory. AIP Conf. Proc. 882(1), 896–898 (2007). doi:10.1063/1.2644697
- N. Gao, I.Y. Ponomarev, Q.F. Xiao, W.M. Gibson, D.A. Carpenter, Monolithic polycapillary focusing optics and their applications in microbeam X-ray fluorescence. Appl. Phys. Lett. 69(11), 1529–1531 (1996). doi:10.1063/1.117994
- A. Bjeoumikhov, N. Langhoff, S. Bjeoumikhova, R. Wedell, Capillary optics for micro X-ray fluorescence analysis. Rev. Sci. Instrum. 76(6), 063115 (2005). doi:10.1063/1.1938847
- L. Cheng, X. Ding, Z. Liu, Q. Pan, X. Chu, Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects. Spectrochim. Acta Part B 62(8), 817–823 (2007). doi:10.1016/j.sab.2007.06.010
- T. Sugiyama, M. Uo, T. Wada, D. Omagari, K. Komiyama, T. Noguchi, Y. Jinbu, M. Kusama, Estimation of trace metal elements in oral mucosa specimens by using SR-XRF, PIXE, and XAFS. Biometals 28(1), 11–20 (2015). doi:10.1007/s10534-014-9796-6
- L. Vincze, F. Wei, K. Proost, B. Vekemans, K. Janssens, Y. He, Y. Yan, G. Falkenberg, Suitability of polycapillary optics for focusing of monochromatic synchrotron radiation as used in trace level micro-XANES measurements. J. Anal. At. Spectrom. 17(3), 177–182 (2002). doi:10.1039/b110210a
- G. Silversmit, B. Vekemans, S. Nikitenko, W. Bras, V. Czhech, G. Zaray, I. Szaloki, L. Vincze, Polycapillary-optics-based micro-XANES and micro-EXAFS at a third-generation bending-magnet beamline. J. Synchrotron Radiat. 16, 237–246 (2009). doi:10.1107/S0909049508043306
- T. Sun, Y. Xie, Z. Liu, T. Liu, T. Hu, X. Ding, Application of a combined system of polycapillary X-ray lens and toroidal mirror in micro-X-ray-absorption fine-structure facility. J. Appl. Phys. 99(9), 094907-1–094907-4 (2006). doi:10.1063/1.2193050
- T. Sun, Z. Liu, X. Ding, Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments. Chem. Phys. Lett. 439(4–6), 412–414 (2007). doi:10.1016/j.cplett.2007.03.105
- M. Uo, K. Asakura, K. Watanabe, F. Watari, XAFS analysis of the bronchoalveolar lavage fluid of a tungsten carbide pneumoconiosis patient. Chem. Lett. 39(8), 852–853 (2010). doi:10.1246/cl.2010.852
- N. Hirao, Y. Baba, T. Sekiguchi, Quick observation of photoelectron emission microscopy with focused soft X-rays using poly-capillary lens (Proceedings of the 5th international symposium on practical surface analysis, PSA-10 and 7th Korea-Japan international symposium on surface analysis). J. Surf. Anal. 17(3), 227–231 (2011)
- W.M. Gibson, M.A. Kumakhov, Applications of X-ray and neutron capillary optics. X-ray detector physics and applications. Proc. SPIE 1736, 172–189 (1993). doi:10.1117/12.140473
- X. Ding, N. Gao, G.J. Havrilla, Monolithic polycapillary X-ray optics engineered to meet a wide range of applications. Proc. SPIE 4144, 174–182 (2000). doi:10.1117/12.405891
- K. Tsuji, K. Nakano, X. Ding, Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochim. Acta Part B 62(6–7), 549 (2007). doi:10.1016/j.sab.2007.02.014
- T. Sun, X. Ding, Z. Liu, G. Zhu, Y. Li, X. Wei, D. Chen, Q. Xu, Q. Liu, Y. Huang, X. Lin, H. Sun, Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors. Spectrochim. Acta Part B 63(1), 76–80 (2008). doi:10.1016/j.sab.2007.11.003
- T.X. Sun, H.H. Liu, Z.G. Liu, S. Peng, Y.Z. Ma, W.Y. Sun, P. Luo, X.L. Ding, Application of confocal technology based on polycapillary X-ray optics in three-dimensional diffraction scanning analysis. Nucl. Instrum. Methods Phys. Res. B 323, 25–29 (2014). doi:10.1016/j.nimb.2014.01.013
- S. Peng, Z.G. Liu, T.X. Sun, Y.Z. Ma, X.L. Ding, Spatially resolved in situ measurements of the ion distribution near the surface of electrode in a steady-state diffusion in an electrolytic tank with confocal micro X-ray fluorescence. Analy. Chem. 86(1), 362–366 (2014). doi:10.1021/ac403188k
- T. Taguchi, REX2000 Version 2.5: improved DATA handling and enhanced user-interface. AIP Conf. Proc. 882(1), 162–164 (2007). doi:10.1063/1.2644462
- M. Kobayashi, M. Yoshida, T. Suzuki, K. Kunihara, S. Tabata, K. Higaki, H. Ohnishi, T. Hashimoto, Jpn. Patent JP4376093, 2009
- T. Suzuki, K. Onodera, F. Inoue, K. Tsuda, Jpn. Patent JP3812215, 2006
- W.C. Hamilton, Significance tests on the crystallographic R factor. Acta Crystallogr. 18(3), 502–510 (1965). doi:10.1107/S0365110X65001081
- M.G. Jones, T.G. Nevell, R.J. Ewen, C.L. Honeybourne, Oxidation-state of the surface of palladium in the catalytic combustion of hydrogen. Appl. Catal. 70(1), 277–286 (1991). doi:10.1016/S0166-9834(00)84170-6
- J.M. Jehng, G. Deo, B.M. Weckhuysen, I.E. Wachs, Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. J. Mol. Catal. A: Chem. 110(1), 41–54 (1996). doi:10.1016/1381-1169(96)00061-1
- K. Okumura, R. Yoshimoto, T. Uruga, H. Tanida, K. Kato, S. Yokota, M. Niwa, Energy-dispersive XAFS studies on the spontaneous dispersion of PdO and the formation of stable Pd clusters in zeolites. J. Phys. Chem. B 108(20), 6250–6255 (2004). doi:10.1021/jp037187b
References
C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
T. Suzuki, K. Kunihara, M. Kobayashi, S. Tabata, K. Higaki, H. Ohnishi, A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater—Part 1: CH4 sensing. Sens. Actuators B Chem. 109(2), 185–189 (2005). doi:10.1016/j.snb.2005.05.013
S. Tabata, K. Higaki, H. Ohnishi, T. Suzuki, K. Kunihara, M. Kobayashi, A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and a thin film heater—Part 2: CO sensing. Sens. Actuators B Chem. 109(2), 190–193 (2005). doi:10.1016/j.snb.2005.05.012
J.C. Kim, H.K. Jun, J.-S. Huh, D.D. Lee, Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens. Actuators B Chem. 45(3), 271–277 (1997). doi:10.1016/S0925-4005(97)00325-0
N. Murata, T. Suzuki, M. Kobayashi, F. Togoh, K. Asakura, Characterization of Pt-doped SnO2 catalyst for a high-performance micro gas sensor. Phys. Chem. Chem. Phys. 15(41), 17938–17946 (2013). doi:10.1039/c3cp52490f
M.A. Kumakhov, Channeling of photons and new X-ray optics. Nucl. Instrum. Methods Phys. Res. B 48(1–4), 283–286 (1990). doi:10.1016/0168-583X(90)90123-C
M.A. Kumakhov, F.F. Komarov, Multiple reflection from surface X-ray optics. Phys. Rep. 191(5), 289–350 (1990). doi:10.1016/0370-1573(90)90135-O
P.J. Schields, D.M. Gibson, W.M. Gibson, N. Gao, H.P. Huang, I.Y. Ponomarev, Overview of polycapillary X-ray optics. Powder Diffr. 17(2), 70–80 (2002). doi:10.1154/1.1482080
N. Gao, K. Janssens, in X-Ray spectrometry: recent technological advances: polycapillary X-ray optics, ed. by K. Tsuji, J. Injuk, R. Van Grieken (Wiley, Chichester, 2005), pp. 89–110
M. Nomura, Y. Koike, M. Sato, A. Koyama, Y. Inada, K. Asakura, A new XAFS beamline NW10A at the photon factory. AIP Conf. Proc. 882(1), 896–898 (2007). doi:10.1063/1.2644697
N. Gao, I.Y. Ponomarev, Q.F. Xiao, W.M. Gibson, D.A. Carpenter, Monolithic polycapillary focusing optics and their applications in microbeam X-ray fluorescence. Appl. Phys. Lett. 69(11), 1529–1531 (1996). doi:10.1063/1.117994
A. Bjeoumikhov, N. Langhoff, S. Bjeoumikhova, R. Wedell, Capillary optics for micro X-ray fluorescence analysis. Rev. Sci. Instrum. 76(6), 063115 (2005). doi:10.1063/1.1938847
L. Cheng, X. Ding, Z. Liu, Q. Pan, X. Chu, Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects. Spectrochim. Acta Part B 62(8), 817–823 (2007). doi:10.1016/j.sab.2007.06.010
T. Sugiyama, M. Uo, T. Wada, D. Omagari, K. Komiyama, T. Noguchi, Y. Jinbu, M. Kusama, Estimation of trace metal elements in oral mucosa specimens by using SR-XRF, PIXE, and XAFS. Biometals 28(1), 11–20 (2015). doi:10.1007/s10534-014-9796-6
L. Vincze, F. Wei, K. Proost, B. Vekemans, K. Janssens, Y. He, Y. Yan, G. Falkenberg, Suitability of polycapillary optics for focusing of monochromatic synchrotron radiation as used in trace level micro-XANES measurements. J. Anal. At. Spectrom. 17(3), 177–182 (2002). doi:10.1039/b110210a
G. Silversmit, B. Vekemans, S. Nikitenko, W. Bras, V. Czhech, G. Zaray, I. Szaloki, L. Vincze, Polycapillary-optics-based micro-XANES and micro-EXAFS at a third-generation bending-magnet beamline. J. Synchrotron Radiat. 16, 237–246 (2009). doi:10.1107/S0909049508043306
T. Sun, Y. Xie, Z. Liu, T. Liu, T. Hu, X. Ding, Application of a combined system of polycapillary X-ray lens and toroidal mirror in micro-X-ray-absorption fine-structure facility. J. Appl. Phys. 99(9), 094907-1–094907-4 (2006). doi:10.1063/1.2193050
T. Sun, Z. Liu, X. Ding, Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments. Chem. Phys. Lett. 439(4–6), 412–414 (2007). doi:10.1016/j.cplett.2007.03.105
M. Uo, K. Asakura, K. Watanabe, F. Watari, XAFS analysis of the bronchoalveolar lavage fluid of a tungsten carbide pneumoconiosis patient. Chem. Lett. 39(8), 852–853 (2010). doi:10.1246/cl.2010.852
N. Hirao, Y. Baba, T. Sekiguchi, Quick observation of photoelectron emission microscopy with focused soft X-rays using poly-capillary lens (Proceedings of the 5th international symposium on practical surface analysis, PSA-10 and 7th Korea-Japan international symposium on surface analysis). J. Surf. Anal. 17(3), 227–231 (2011)
W.M. Gibson, M.A. Kumakhov, Applications of X-ray and neutron capillary optics. X-ray detector physics and applications. Proc. SPIE 1736, 172–189 (1993). doi:10.1117/12.140473
X. Ding, N. Gao, G.J. Havrilla, Monolithic polycapillary X-ray optics engineered to meet a wide range of applications. Proc. SPIE 4144, 174–182 (2000). doi:10.1117/12.405891
K. Tsuji, K. Nakano, X. Ding, Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochim. Acta Part B 62(6–7), 549 (2007). doi:10.1016/j.sab.2007.02.014
T. Sun, X. Ding, Z. Liu, G. Zhu, Y. Li, X. Wei, D. Chen, Q. Xu, Q. Liu, Y. Huang, X. Lin, H. Sun, Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors. Spectrochim. Acta Part B 63(1), 76–80 (2008). doi:10.1016/j.sab.2007.11.003
T.X. Sun, H.H. Liu, Z.G. Liu, S. Peng, Y.Z. Ma, W.Y. Sun, P. Luo, X.L. Ding, Application of confocal technology based on polycapillary X-ray optics in three-dimensional diffraction scanning analysis. Nucl. Instrum. Methods Phys. Res. B 323, 25–29 (2014). doi:10.1016/j.nimb.2014.01.013
S. Peng, Z.G. Liu, T.X. Sun, Y.Z. Ma, X.L. Ding, Spatially resolved in situ measurements of the ion distribution near the surface of electrode in a steady-state diffusion in an electrolytic tank with confocal micro X-ray fluorescence. Analy. Chem. 86(1), 362–366 (2014). doi:10.1021/ac403188k
T. Taguchi, REX2000 Version 2.5: improved DATA handling and enhanced user-interface. AIP Conf. Proc. 882(1), 162–164 (2007). doi:10.1063/1.2644462
M. Kobayashi, M. Yoshida, T. Suzuki, K. Kunihara, S. Tabata, K. Higaki, H. Ohnishi, T. Hashimoto, Jpn. Patent JP4376093, 2009
T. Suzuki, K. Onodera, F. Inoue, K. Tsuda, Jpn. Patent JP3812215, 2006
W.C. Hamilton, Significance tests on the crystallographic R factor. Acta Crystallogr. 18(3), 502–510 (1965). doi:10.1107/S0365110X65001081
M.G. Jones, T.G. Nevell, R.J. Ewen, C.L. Honeybourne, Oxidation-state of the surface of palladium in the catalytic combustion of hydrogen. Appl. Catal. 70(1), 277–286 (1991). doi:10.1016/S0166-9834(00)84170-6
J.M. Jehng, G. Deo, B.M. Weckhuysen, I.E. Wachs, Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. J. Mol. Catal. A: Chem. 110(1), 41–54 (1996). doi:10.1016/1381-1169(96)00061-1
K. Okumura, R. Yoshimoto, T. Uruga, H. Tanida, K. Kato, S. Yokota, M. Niwa, Energy-dispersive XAFS studies on the spontaneous dispersion of PdO and the formation of stable Pd clusters in zeolites. J. Phys. Chem. B 108(20), 6250–6255 (2004). doi:10.1021/jp037187b