Preparation of Palladium Supported on Ferric Oxide Nano-catalysts for Carbon Monoxide Oxidation in Low Temperature
Corresponding Author: Dannong He
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 233-241
Abstract
Catalytic property of Pd/Fe2O3 catalysts on carbon monoxide (CO) oxidation at low temperature were investigated in this paper. Both the as-prepared and H2-pretreated Pd/Fe2O3 catalysts show catalytic performances on CO oxidation. The CO was completely converted at 333 K for the as-prepared sample, whereas at 313 K for H2-pretreated Pd/Fe2O3-573 catalyst. The catalytic performance of the Pd/Fe2O3 catalyst decreases with increased calcination temperature. This may be due to the increased crystallinity of the support and decreased metal-support interaction. Progressive deactivation of the catalysts during long-time reaction was associated with the formation of carbonates on the catalyst surface that inhibits CO activation or intermediate transformation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. N. Rao, P. Bharali, G. Thrimurthulu and B. M. Reddy, “Supported Copper-ceria catalysts for low temperature CO oxidation”, Catal. Commun. 11(10), 863–866 (2010). http://dx.doi.org/10.1016/j.catcom.2010.03.009
- D. Gamarra, C. Belver, M. Garcia, and A. Arias, “Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species”, J. Am. Chem. Soc. 129(40), 12064–12065 (2007). http://dx.doi.org/10.1021/ja073926g
- W. Xie, Y. Li, Z. Liu, M. Haruta and W. Shen, “Lowtemperature oxidation of CO catalysed by Co3O4 nanorods”, Nature 458(7239), 746–749 (2009). http://dx.doi.org/10.1038/nature07877
- K. Zhao, B. Qiao, J. Wang, Y. Zhang and T. Zhang, “A highly active and sintering-resistant Au/FeOx− hydroxyapatite catalyst for CO oxidation”, Chem. Commun., 47(6), 1779–1781 (2011). http://dx.doi.org/10.1039/C0CC04171H
- S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang and W. Zhang, “Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method”, Catal. Commun. 9(6), 1045–1049 (2008). http://dx.doi.org/10.1016/j.catcom.2007.10.016
- A. Satsuma, K. Osaki, M. Yanagihara, J. Ohyama and K. Shimizu, “Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts”, Appl. Catal. B: Environ. 132–133, 511–518 (2013).http://dx.doi.org/10.1016/j.apcatb.2012.12.025
- M. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications”, Gold Bull. 37(1–2), 27–36 (2004). http://dx.doi.org/10.1007/BF03215514
- J. Moghaddam, S. Mollaesmail and S. Karimi, “The Influence of Morphology on Photo-catalytic Activity and Optical Properties of Nano-crystalline ZnO Powder”, Nano-Micro Letters. 4(4), 197–201 (2012). http://dx.doi.org/10.3786/nml.v4i4.p197-201
- M. A. Bollinger and M. A. Vannice, “A kinetic and DRIFT study of low temperature carbon monoxide over Au-TiO2 catalysts”, Appl. Catal. B: Environ. 8(4), 417–443 (1996). http://dx.doi.org/10.1016/0926-3373(96)90129-0
- G. Y. Wang, H. L. Lian, W. X. Zhang, D. Z. Jiang and T. H. Wu, “Stability and deactivation of Au/Fe2O3 catalysts for CO oxidation at ambient temperature and moisture”, Kin. Catal. 43(3), 433–442 (2002). http://dx.doi.org/10.1023/A:1016026405985
- M. Dateand M. Haruta, “Moisture effect on CO oxidation over Au/TiO2 catalyst”, J. Catal. 201(2), 221–224 (2001). http://dx.doi.org/10.1006/jcat.2001.3254
- M. Jin, J. Park, J. Shon, Z. Li, Y. Park and J. Kim, “Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides”, Catal. Today 185(1), 183–190 (2012). http://dx.doi.org/10.1016/j.cattod.2011.09.019
- F. Liang, H. Zhu, Z. Qin, G. Wang and J. Wang, “Effects of CO2 on the stability of Pd/CeO2TiO2 catalyst for low-temperature CO oxidation”, Catal. Commun. 10(5), 737–740 (2009). http://dx.doi.org/10.1016/j.catcom.2008.11.031
- B. Qiao, L. Liu, J. Zhang and Y. Deng, “Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: From gold to palladium”, J. Catal. 261(2), 241–244 (2009). http://dx.doi.org/10.1016/j.jcat.2008.11.012
- S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. P. Omil and J. M. Pintado, “Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts”, Catal. Today 50(2), 175–206 (1999). http://dx.doi.org/10.1016/S0920-5861(98)00503-3
- B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, “Single-atom catalysis of CO oxidation using Pt1/FeOx”, Nature Chem. 3(8), 634–641 (2011). http://dx.doi.org/10.1038/nchem.1095
- L. Liu, F. Zhou, L. Wang, X. Qi, F. Shi and Y. Deng, “Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions”. J. Catal. 274(1), 1–10 (2010). http://dx.doi.org/10.1016/j.jcat.2010.05.022
- Q. Fu, W. Li, Y. Yao, H. Liu, H. Su, D. Ma, X. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang and X. H. Bao, “Interface-confined ferrous centers for catalytic oxidation”, Science 238(5982), 1141–1144 (2010). http://dx.doi.org/10.1126/science.1188267
- L. Li, A. Wang, B. Qiao, J. Lin, Y. Huang, X. Wang and T. Zhang, “Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism”, J. Catal. 299, 90–100 (2013). http://dx.doi.org/10.1016/j.jcat.2012.11.019
- L. Liu, B. Qiao, Y. He, F. Zhou, B. Yang and Y. Deng, “Catalytic co-oxidation of CO and H2 over FeOx-supported Pd catalyst at low temperatures”, J. Catal. 294, 29–36 (2012). http://dx.doi.org/10.1016/j.jcat.2012.06.018
- M. G. Musolino, C. Busacca, F. Mauriello and R. Pietropaolo, “Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions”, Appl. Catal. A: Gen. 379(1–2), 77–86 (2010). http://dx.doi.org/10.1016/j.apcata.2010.03.008
- J. Jia, J. Shen, L. Lin, Z. Xu, T. Zhang and D. Liang, “A study on reduction behaviors of the supported platinumiron catalysts”, J. Mol. Catal. A: Chem. 138(2–3), 177–184 (1999). http://dx.doi.org/10.1016/S1381-1169(98)00147-2
- W. C. Conner and J. L. Falconer, “Spillover in Heterogeneous Catalysis”, Chem. Rev. 95(3), 759–788 (1995). http://dx.doi.org/10.1021/cr00035a014
- X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. S. Su and W. Shen, “Rod-Shaped Fe2O3 as an Efficient Catalyst for the Selective Reduction of Nitrogen Oxide by Ammonia”, Angew. Chem. Int. Ed. 51(12), 2989–2993 (2012). http://dx.doi.org/10.1002/anie.201107113
- S. H. Oh and G. B. Hoflund, “Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders”, J. Catal. 245(1), 35–44 (2007). http://dx.doi.org/10.1016/j.jcat.2006.09.016
- M. Jin, J. N. Park, J. K. Shon, J. H. Kim, Z. Li, Y. K. Park and J. M. Kim, “Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides”, Catal. Today 185(1), 183–190 (2012). http://dx.doi.org/10.1016/j.cattod.2011.09.019
- S. Y. Christou and A. M. Efstathiou, “Effects of Pd Particle Size on the Rates of Oxygen Back-Spillover and CO Oxidation under Dynamic Oxygen Storage and Release Measurements over Pd/CeO2 Catalysts”, Top Catal. 42–43(1–4), 351–355 (2007). http://dx.doi.org/10.1007/s11244-007-0204-0
- J. C. F. Gonzalez, V. A. Bhirud and B. C. Gates, “A highly active catalyst for CO oxidation at 298 K: mononuclear AuIII complexes anchored to La2O3 nanoparticles”, Chem. Commun. 5275–5277 (2005). http://dx.doi.org/10.1039/b509629d
- T. Na, F. Wang, H. Li and W. Shen, “Influence of Au particle size on Au/CeO2 catalysts for CO oxidation”, Catal. Today 175(1), 541–545 (2011). http://dx.doi.org/10.1016/j.cattod.2011.04.027
- N. W. Cant, P. C. Hicks and B. S. Lennon, “Steadystate oxidation of carbon monoxide over supported noble metals with particular reference to platinum”, J. Catal. 54(3), 372–383 (1978). http://dx.doi.org/10.1016/0021-9517(78)90085-4
- I. Stara, V. Nehasil and V. Matolin, “The influence of particle size on CO oxidation on Pd/alumina model catalyst”, Surf. Sci. 331–333, 173–177 (1995). http://dx.doi.org/10.1016/0039-6028(95)00183-2
- F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta, “FTIR study of carbon monoxide and scrambling at room temperature over gold supported on ZnO and TiO2”, J. Phys. Chem. 100(9), 3625–3631 (1996). http://dx.doi.org/10.1021/jp952259n
- T. Shido and Y. Iwasawa, “Reactant-promoted reaction mechanism for water-gas shift reaction on Rhdoped CeO2”, J. Catal. 141(1), 71–81 (1993). http://dx.doi.org/10.1006/jcat.1993.1119
- B. Chang, B. W. Jang, S. Dai and S. H. Overbury, “Transient studies of the mechanism of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis”, J. Catal. 236(2), 392–400 (2005). http://dx.doi.org/10.1016/j.jcat.2005.10.006
- Y. Shen, Y. Guo, L. Wang, Y. Wang, Y. Guo, X. Gong and G. Lu, “The stability and deactivation of Pd-Cu- Clx/Al2O3 catalyst for low temperature CO oxidation: an effect of moisture”, Catal. Sci. Techno. 1, 1202–1207 (2011). http://dx.doi.org/10.1039/c1cy00146a
References
K. N. Rao, P. Bharali, G. Thrimurthulu and B. M. Reddy, “Supported Copper-ceria catalysts for low temperature CO oxidation”, Catal. Commun. 11(10), 863–866 (2010). http://dx.doi.org/10.1016/j.catcom.2010.03.009
D. Gamarra, C. Belver, M. Garcia, and A. Arias, “Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species”, J. Am. Chem. Soc. 129(40), 12064–12065 (2007). http://dx.doi.org/10.1021/ja073926g
W. Xie, Y. Li, Z. Liu, M. Haruta and W. Shen, “Lowtemperature oxidation of CO catalysed by Co3O4 nanorods”, Nature 458(7239), 746–749 (2009). http://dx.doi.org/10.1038/nature07877
K. Zhao, B. Qiao, J. Wang, Y. Zhang and T. Zhang, “A highly active and sintering-resistant Au/FeOx− hydroxyapatite catalyst for CO oxidation”, Chem. Commun., 47(6), 1779–1781 (2011). http://dx.doi.org/10.1039/C0CC04171H
S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang and W. Zhang, “Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method”, Catal. Commun. 9(6), 1045–1049 (2008). http://dx.doi.org/10.1016/j.catcom.2007.10.016
A. Satsuma, K. Osaki, M. Yanagihara, J. Ohyama and K. Shimizu, “Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts”, Appl. Catal. B: Environ. 132–133, 511–518 (2013).http://dx.doi.org/10.1016/j.apcatb.2012.12.025
M. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications”, Gold Bull. 37(1–2), 27–36 (2004). http://dx.doi.org/10.1007/BF03215514
J. Moghaddam, S. Mollaesmail and S. Karimi, “The Influence of Morphology on Photo-catalytic Activity and Optical Properties of Nano-crystalline ZnO Powder”, Nano-Micro Letters. 4(4), 197–201 (2012). http://dx.doi.org/10.3786/nml.v4i4.p197-201
M. A. Bollinger and M. A. Vannice, “A kinetic and DRIFT study of low temperature carbon monoxide over Au-TiO2 catalysts”, Appl. Catal. B: Environ. 8(4), 417–443 (1996). http://dx.doi.org/10.1016/0926-3373(96)90129-0
G. Y. Wang, H. L. Lian, W. X. Zhang, D. Z. Jiang and T. H. Wu, “Stability and deactivation of Au/Fe2O3 catalysts for CO oxidation at ambient temperature and moisture”, Kin. Catal. 43(3), 433–442 (2002). http://dx.doi.org/10.1023/A:1016026405985
M. Dateand M. Haruta, “Moisture effect on CO oxidation over Au/TiO2 catalyst”, J. Catal. 201(2), 221–224 (2001). http://dx.doi.org/10.1006/jcat.2001.3254
M. Jin, J. Park, J. Shon, Z. Li, Y. Park and J. Kim, “Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides”, Catal. Today 185(1), 183–190 (2012). http://dx.doi.org/10.1016/j.cattod.2011.09.019
F. Liang, H. Zhu, Z. Qin, G. Wang and J. Wang, “Effects of CO2 on the stability of Pd/CeO2TiO2 catalyst for low-temperature CO oxidation”, Catal. Commun. 10(5), 737–740 (2009). http://dx.doi.org/10.1016/j.catcom.2008.11.031
B. Qiao, L. Liu, J. Zhang and Y. Deng, “Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: From gold to palladium”, J. Catal. 261(2), 241–244 (2009). http://dx.doi.org/10.1016/j.jcat.2008.11.012
S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. P. Omil and J. M. Pintado, “Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts”, Catal. Today 50(2), 175–206 (1999). http://dx.doi.org/10.1016/S0920-5861(98)00503-3
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, “Single-atom catalysis of CO oxidation using Pt1/FeOx”, Nature Chem. 3(8), 634–641 (2011). http://dx.doi.org/10.1038/nchem.1095
L. Liu, F. Zhou, L. Wang, X. Qi, F. Shi and Y. Deng, “Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions”. J. Catal. 274(1), 1–10 (2010). http://dx.doi.org/10.1016/j.jcat.2010.05.022
Q. Fu, W. Li, Y. Yao, H. Liu, H. Su, D. Ma, X. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang and X. H. Bao, “Interface-confined ferrous centers for catalytic oxidation”, Science 238(5982), 1141–1144 (2010). http://dx.doi.org/10.1126/science.1188267
L. Li, A. Wang, B. Qiao, J. Lin, Y. Huang, X. Wang and T. Zhang, “Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism”, J. Catal. 299, 90–100 (2013). http://dx.doi.org/10.1016/j.jcat.2012.11.019
L. Liu, B. Qiao, Y. He, F. Zhou, B. Yang and Y. Deng, “Catalytic co-oxidation of CO and H2 over FeOx-supported Pd catalyst at low temperatures”, J. Catal. 294, 29–36 (2012). http://dx.doi.org/10.1016/j.jcat.2012.06.018
M. G. Musolino, C. Busacca, F. Mauriello and R. Pietropaolo, “Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions”, Appl. Catal. A: Gen. 379(1–2), 77–86 (2010). http://dx.doi.org/10.1016/j.apcata.2010.03.008
J. Jia, J. Shen, L. Lin, Z. Xu, T. Zhang and D. Liang, “A study on reduction behaviors of the supported platinumiron catalysts”, J. Mol. Catal. A: Chem. 138(2–3), 177–184 (1999). http://dx.doi.org/10.1016/S1381-1169(98)00147-2
W. C. Conner and J. L. Falconer, “Spillover in Heterogeneous Catalysis”, Chem. Rev. 95(3), 759–788 (1995). http://dx.doi.org/10.1021/cr00035a014
X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. S. Su and W. Shen, “Rod-Shaped Fe2O3 as an Efficient Catalyst for the Selective Reduction of Nitrogen Oxide by Ammonia”, Angew. Chem. Int. Ed. 51(12), 2989–2993 (2012). http://dx.doi.org/10.1002/anie.201107113
S. H. Oh and G. B. Hoflund, “Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders”, J. Catal. 245(1), 35–44 (2007). http://dx.doi.org/10.1016/j.jcat.2006.09.016
M. Jin, J. N. Park, J. K. Shon, J. H. Kim, Z. Li, Y. K. Park and J. M. Kim, “Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides”, Catal. Today 185(1), 183–190 (2012). http://dx.doi.org/10.1016/j.cattod.2011.09.019
S. Y. Christou and A. M. Efstathiou, “Effects of Pd Particle Size on the Rates of Oxygen Back-Spillover and CO Oxidation under Dynamic Oxygen Storage and Release Measurements over Pd/CeO2 Catalysts”, Top Catal. 42–43(1–4), 351–355 (2007). http://dx.doi.org/10.1007/s11244-007-0204-0
J. C. F. Gonzalez, V. A. Bhirud and B. C. Gates, “A highly active catalyst for CO oxidation at 298 K: mononuclear AuIII complexes anchored to La2O3 nanoparticles”, Chem. Commun. 5275–5277 (2005). http://dx.doi.org/10.1039/b509629d
T. Na, F. Wang, H. Li and W. Shen, “Influence of Au particle size on Au/CeO2 catalysts for CO oxidation”, Catal. Today 175(1), 541–545 (2011). http://dx.doi.org/10.1016/j.cattod.2011.04.027
N. W. Cant, P. C. Hicks and B. S. Lennon, “Steadystate oxidation of carbon monoxide over supported noble metals with particular reference to platinum”, J. Catal. 54(3), 372–383 (1978). http://dx.doi.org/10.1016/0021-9517(78)90085-4
I. Stara, V. Nehasil and V. Matolin, “The influence of particle size on CO oxidation on Pd/alumina model catalyst”, Surf. Sci. 331–333, 173–177 (1995). http://dx.doi.org/10.1016/0039-6028(95)00183-2
F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta, “FTIR study of carbon monoxide and scrambling at room temperature over gold supported on ZnO and TiO2”, J. Phys. Chem. 100(9), 3625–3631 (1996). http://dx.doi.org/10.1021/jp952259n
T. Shido and Y. Iwasawa, “Reactant-promoted reaction mechanism for water-gas shift reaction on Rhdoped CeO2”, J. Catal. 141(1), 71–81 (1993). http://dx.doi.org/10.1006/jcat.1993.1119
B. Chang, B. W. Jang, S. Dai and S. H. Overbury, “Transient studies of the mechanism of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis”, J. Catal. 236(2), 392–400 (2005). http://dx.doi.org/10.1016/j.jcat.2005.10.006
Y. Shen, Y. Guo, L. Wang, Y. Wang, Y. Guo, X. Gong and G. Lu, “The stability and deactivation of Pd-Cu- Clx/Al2O3 catalyst for low temperature CO oxidation: an effect of moisture”, Catal. Sci. Techno. 1, 1202–1207 (2011). http://dx.doi.org/10.1039/c1cy00146a