Fabrication and Microwave Absorption Properties of Fe0.64Ni0.36-NiFe2O4 Nanocomposite
Corresponding Author: Desheng Xue
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 176-179
Abstract
Fe0.64Ni0.36−NiFe2O4 nanocomposite was performed with partially reducing NiFe2O4 nanoparticles in Ar/H2 ambient. The microwave and static magnetic properties were investigated. The results showed that the nanocomposite was characterized with enhanced microwave absorption properties. The optimal reflection loss (RL) of the nanocomposite reached −24.8 dB at 14 GHz for an absorber thickness of 1.5 mm. Meanwhile, a broad bandwidth for RL<-10 dB was obtained in the range of 3.1–15.1 GHz for an absorber thickness from 1.0 to 4.0 mm. The enhancement is attributed to the increase of dielectric and magnetic loss after reducing procedure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. G. Liu, J. J. Jiang, D. Y. Geng, B. Q. Li, W. Liu and Z. D. Zhang, Appl. Phys. Lett. 94, 053119 (2009). http://dx.doi.org/10.1063/1.3079393
- T. Wei, C. Q. Jin, W. Zhong and J. M. Liu, Appl. Phys. Lett. 91, 222907 (2007). http://dx.doi.org/10.1063/1.2819089
- X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang and Z. D. Zhang, Appl. Phys. Lett. 92, 173117 (2008). http://dx.doi.org/10.1063/1.2919098
- X. G. Lu, G. Y. Liang, Y. M. Zhang and W. Zhang, Nanotechnology 18, 015701 (2007). http://dx.doi.org/10.1088/0957-4484/18/1/015701
- L. G. Yan, J. B. Wang, X. H. Han, Y. Ren, Q. F. Liu and F. S. Li, Nanotechnology 21, 095708 (2010). http://dx.doi.org/10.1088/0957-4484/21/9/095708
- A. T. Raghavender, N. Biliškov and Ž. Skoko, Mater. Lett. 65, 677 (2011). http://dx.doi.org/10.1016/j.matlet.2010.11.071
- L. H. Bar, J. S. Kim and J. C. Kim, Res. Chem. Intermed. 36, 795 (2010). http://dx.doi.org/10.1007/s11164-010-0183-9
- H. T. Zhao, X. D. Sun, C. H. Mao and J. Du, Physica B: Condensed Matter 104, 69 (2009). http://dx.doi.org/10.1016/j.physb.2008.10.006
- F. Ma, Y. Qin and Y. Z. Li, Appl. Phys. Lett. 96, 202507 (2010). http://dx.doi.org/10.1063/1.3432441
References
X. G. Liu, J. J. Jiang, D. Y. Geng, B. Q. Li, W. Liu and Z. D. Zhang, Appl. Phys. Lett. 94, 053119 (2009). http://dx.doi.org/10.1063/1.3079393
T. Wei, C. Q. Jin, W. Zhong and J. M. Liu, Appl. Phys. Lett. 91, 222907 (2007). http://dx.doi.org/10.1063/1.2819089
X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang and Z. D. Zhang, Appl. Phys. Lett. 92, 173117 (2008). http://dx.doi.org/10.1063/1.2919098
X. G. Lu, G. Y. Liang, Y. M. Zhang and W. Zhang, Nanotechnology 18, 015701 (2007). http://dx.doi.org/10.1088/0957-4484/18/1/015701
L. G. Yan, J. B. Wang, X. H. Han, Y. Ren, Q. F. Liu and F. S. Li, Nanotechnology 21, 095708 (2010). http://dx.doi.org/10.1088/0957-4484/21/9/095708
A. T. Raghavender, N. Biliškov and Ž. Skoko, Mater. Lett. 65, 677 (2011). http://dx.doi.org/10.1016/j.matlet.2010.11.071
L. H. Bar, J. S. Kim and J. C. Kim, Res. Chem. Intermed. 36, 795 (2010). http://dx.doi.org/10.1007/s11164-010-0183-9
H. T. Zhao, X. D. Sun, C. H. Mao and J. Du, Physica B: Condensed Matter 104, 69 (2009). http://dx.doi.org/10.1016/j.physb.2008.10.006
F. Ma, Y. Qin and Y. Z. Li, Appl. Phys. Lett. 96, 202507 (2010). http://dx.doi.org/10.1063/1.3432441