Effect of Hydrolyzing Agents on the Properties of Poly (Ethylene Glycol)-Fe3O4 Nanocomposite
Corresponding Author: E. Karaoǧlu
Nano-Micro Letters,
Vol. 3 No. 2 (2011), Article Number: 79-85
Abstract
A PEG assisted hydrothermal route was used to study the influence of the hydrolyzing agent on the properties of PEG-iron oxide (Fe3O4) nanocomposites. Iron oxide nanoparticles (NPs), which confirmed by X-ray diffraction analysis, were successfully synthesized by a hydrothermal method in which NaOH and NH3 were used as hydrolyzing agents. Formation of PEG-Fe3O4 nanocomposite was confirmed by Fourier transform infrared spectroscopy (FTIR). Samples exhibit different crystallite sizes, which estimated based on line profile fitting as 10 nm for NH3 and 8 nm for NaOH hydrolyzed samples. The average particle sizes obtained from transmission electron microscopy was respectively 174±3 nm for NaOH and 165±4 nm for NH3 gas hydrolyzed samples. Magnetic characterization results reveal superparamagnetic characters despite a large particle size, which may indicate the absence of coupling between the nanocrystals due to the polymer in the nanocomposite. The conductivity curve demonstrates that sDC strongly depends on the temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Weiss and W. Ranke, Prog. Surf. Sci. 70, 1 (2002). http://dx.doi.org/10.1016/S0079-816(01)00056-9
- M. K. Krause, M. Ziese, R. Hohne, A. Pan, A. Galkin and E. Zeldov, J. Magn. Magn. Mater. 1097, 242 (2002).
- D. Beydoun, R. Amal, G. K. C. Low and S. McEvoy, J. Phys. Chem. B 104, 4387 (2000). http://dx.doi.org/10.1021/jp992088c
- V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Science 291, 2115 (2001). http://dx.doi.org/10.1126/science.1057553
- C. M. Lieber, Solid State Commun. 107, 607 (1998). http://dx.doi.org/10.1016/S0038-1098(98)00209-9
- Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001). http://dx.doi.org/10.1126/science.1058120
- K. Yamaguchi, K. Matsumoto and T. Fujii, J. Appl. Phys. 67, 4493 (1990). http://dx.doi.org/10.1063/1.344892
- R. Kaiser and G. Miskolcze, J. Appl. Phys. 41, 1064 (1970). http://dx.doi.org/10.1063/1.1658812
- Z. M. Saiyed, M. Parasramka, S. D. Telang and C. N. Ramchand, Anal. Biochem. 363, 288 (2007). http://dx.doi.org/10.1016/j.ab.2007.01.008
- A. K. Guptaa and M. Gupta, Biomaterials 26, 3995 (2005). http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
- S. Guo, D. Li, L. Zhang, J. Li and E. Wang, Biomaterials 30, 1881 (2009). http://dx.doi.org/10.1016/j.biomaterials.2008.12.042
- D. H. Zhang, G. D. Li, J. X. Li and J. S. Chen, Chem. Commn. 29, 3414 (2008). http://dx.doi.org/10.1039/b805737k
- G. F. Goya, T. S. Berquo and F. C. Fonseca, J. Appl. Phys. 94, 3520 (2003). http://dx.doi.org/10.1063/1.1599959
- A. Angermann and J. Töpfer, J. Mater. Sci. 43, 5123 (2008). http://dx.doi.org/10.1007/s10853-008-2738-3
- P. Majewski and B. Thierry, Crit. Rev. Solid State Mater. Sci. 32, 203 (2007). http://dx.doi.org/10.1080/10408430701776680
- Y. Lin and C. Haynes, Chem. Mater. 21, 3979 (2009). http://dx.doi.org/10.1021/cm901259n84
- R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao and S. Sun, Adv. Mater. 22, 2729 (2010). http://dx.doi.org/10.1002/adma.201000260
- L. Xu, M. J. Kim, K. D. Kim, Y. H. Choa and H. T. Kim, Colloid. Surface. A 350, 8 (2009). http://dx.doi.org/10.1016/j.colsurfa.2009.08.022
- Z. B. Huang, Y. Q. Zhang and F. Q. Tang, Chem. Commun. 3, 342 (2005). http://dx.doi.org/10.1039/b410463c
- A. Jozefczak and A. Skumiel, J. Magn. Magn. Mater. 323, 1509 (2011). http://dx.doi.org/10.1016/j.jmmm.2011.01.009
- Y. Zhang, N. Kohler and M. Zhang, Biomaterials 23, 1553 (2002). http://dx.doi.org/10.1016/S0142-9612(01)00267-8
- A. G. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang and J. Xu, J. Alloy. Compd. 458, 487 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.04.019
- G. Y. Zhang, Y. Y. Xu, D. Z. Gao and Y. Q. Sun, J. Alloy. Compd. 509, 885 (2011). http://dx.doi.org/10.1016/j.jallcom.2010.09.124
- K. He, C. Y. Xu, L. Zhen and W. Z. Shao, Mater. Lett. 61, 3159 (2007). http://dx.doi.org/10.1016/j.matlet.2006.11.023
- Y. Y. Zheng, X. B. Wang, L. Shang, C. R. Li, C. Cui, W. J. Dong, W. H. Tang and B. Y. Chen, Mater. Charact. 61, 489 (2010). http://dx.doi.org/10.1016/j.matchar.2010.01.008
- T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Lojkowski and K. J. Kurzydlowski, Appl. Surf. Sci. 253, 204 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.089
- R. Pielaszek, Appl. Crystall. Proceedings of the XIX Conference, Krakow, Poland, 43 (2003).
- T. Özkaya, Synthesis and magnetic characterization of magnetic nanoparticles. Master Thesis, Fatih University, Istanbul 2008.
- T. Özkaya, M. S. Toprak, A. Baykal, H. Kavas, Y. Köoseoğlu and B. Aktas, J. Alloy. Compd. 472, 18 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.04.101
- B. Unal, Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Mater. Chem. Phys. 123, 184 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.03.080
- H. Kavas, Z. Durmus, A. Baykal, A. Aslan, A. Bozkurt and M. S. Toprak, J. Noncrystall. Solid. 356, 484 (2010). http://dx.doi.org/10.1016/j.jnoncrysol.2009.12.022
- Z. Durmus, H. Kavas, A. Baykal, H. Sozeri L. Alpsoy, S. Ü. C elik and M. S. Toprak, J. Alloy. Compd. 509, 2555 (2011). http://dx.doi.org/10.1016/j.jallcom.2010.11.088
- Z. Durmus, H. Söozeri, B. Unal, A. Baykal, R. Topkaya, S. Kazan and M. S. Toprak, Polyhedron 30, 322 (2011). http://dx.doi.org/10.1016/j.poly.2010.10.028
- Z. Durmus, H. Erdemi, A. Aslan, M. S. Toprak and H. Sozeri, Polyhedron 30, 419 (2011). http://dx.doi.org/10.1016/j.poly.2010.11.011
- Z. Chen and L. Gao, Mater. Sci. Eng. B 141, 82 (2007). http://dx.doi.org/10.1016/j.mseb.2007.06.003
- Z. Q. Li, Y. J. Xiong and Y. Xie, Inorg. Chem. 42, 8105 (2003). http://dx.doi.org/10.1021/ic034029q
- H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Den and G. Q. Xu, Langmuir 12, 909 (1996). http://dx.doi.org/10.1021/la950435d
- Y. G. Sun and Y. N. Xia, Adv. Mater. 14, 833 (2002). http://dx.doi.org/10.1002/1521-4095(20020605)14:11$<$833::AID-ADMA833$>$3.0.CO;2-K
- J. Dobryszcki and S. Biallozor, Corros. Sci. 43, 1309 (2001). http://dx.doi.org/10.1016/S0010-938X(00)00155-4
- X. H. Liu, J. Yang, L. Wang, X. J. Yang and L. D. Lu, Mater. Sci. Eng. A 2, 7483 (2003).
- T. Kim and M. Shima, J. Appl. Phys. 101, 09M516 (2007).
- Y. Xiaotun, X. Lingge and N. S. Choon, Hardy CS Nanotechnol. 14, 62 (2003).
- Z. Durmus, H. Kavas, M. S. Toprak, A. Baykal, T. G. Altincekic, A. Aslan, A. Bozkurt and S. Cosgun, J. Alloy. Compd. 484, 371 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.04.103
- B. Ünal, Z. Durmus, A. Baykal, H. Sözeri, M. S. Toprak and L. Alpsoy, J. Alloy. Compd. 505, 172 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.06.022
- B. D. Cullity, Addison-Wesley, Reading, MA 61, 190 (1972).
- J. Mürbe, A. Rechtenbach and T. Töpfer, Mater. Chem. Phys. 110, 426 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.02.037
- R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr and S. Foner, Phys. Rev. Lett. 77, 394 (1996). http://dx.doi.org/10.1103/PhysRevLett.77.394
- X. Batlle and A. Labarta, J. Phys. D Appl. Phys. 35, 15 (2002). http://dx.doi.org/10.1088/0022-3727/35/6/201
- A. E. Berkowitz, J. A. Lahut, I. S. Jacobs, L. M. Levinson and D. W. Forester, Phys. Rev. Lett. 34, 594 (1975). http://dx.doi.org/10.1103/PhysRevLett.34.594
- C. Kittel, Introduction to Solid State Physics, New York, Wiley, 1971.
- K. Uzun, E. Cevik, M. Senel, H. Sozeri, A. Baykal, M. F. Abasiyanik and M. S. Toprak, J. Nanopart. Res. 12, 3057 (2010). http://dx.doi.org/10.1007/s11051-010-9902-9
References
W. Weiss and W. Ranke, Prog. Surf. Sci. 70, 1 (2002). http://dx.doi.org/10.1016/S0079-816(01)00056-9
M. K. Krause, M. Ziese, R. Hohne, A. Pan, A. Galkin and E. Zeldov, J. Magn. Magn. Mater. 1097, 242 (2002).
D. Beydoun, R. Amal, G. K. C. Low and S. McEvoy, J. Phys. Chem. B 104, 4387 (2000). http://dx.doi.org/10.1021/jp992088c
V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Science 291, 2115 (2001). http://dx.doi.org/10.1126/science.1057553
C. M. Lieber, Solid State Commun. 107, 607 (1998). http://dx.doi.org/10.1016/S0038-1098(98)00209-9
Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001). http://dx.doi.org/10.1126/science.1058120
K. Yamaguchi, K. Matsumoto and T. Fujii, J. Appl. Phys. 67, 4493 (1990). http://dx.doi.org/10.1063/1.344892
R. Kaiser and G. Miskolcze, J. Appl. Phys. 41, 1064 (1970). http://dx.doi.org/10.1063/1.1658812
Z. M. Saiyed, M. Parasramka, S. D. Telang and C. N. Ramchand, Anal. Biochem. 363, 288 (2007). http://dx.doi.org/10.1016/j.ab.2007.01.008
A. K. Guptaa and M. Gupta, Biomaterials 26, 3995 (2005). http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
S. Guo, D. Li, L. Zhang, J. Li and E. Wang, Biomaterials 30, 1881 (2009). http://dx.doi.org/10.1016/j.biomaterials.2008.12.042
D. H. Zhang, G. D. Li, J. X. Li and J. S. Chen, Chem. Commn. 29, 3414 (2008). http://dx.doi.org/10.1039/b805737k
G. F. Goya, T. S. Berquo and F. C. Fonseca, J. Appl. Phys. 94, 3520 (2003). http://dx.doi.org/10.1063/1.1599959
A. Angermann and J. Töpfer, J. Mater. Sci. 43, 5123 (2008). http://dx.doi.org/10.1007/s10853-008-2738-3
P. Majewski and B. Thierry, Crit. Rev. Solid State Mater. Sci. 32, 203 (2007). http://dx.doi.org/10.1080/10408430701776680
Y. Lin and C. Haynes, Chem. Mater. 21, 3979 (2009). http://dx.doi.org/10.1021/cm901259n84
R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao and S. Sun, Adv. Mater. 22, 2729 (2010). http://dx.doi.org/10.1002/adma.201000260
L. Xu, M. J. Kim, K. D. Kim, Y. H. Choa and H. T. Kim, Colloid. Surface. A 350, 8 (2009). http://dx.doi.org/10.1016/j.colsurfa.2009.08.022
Z. B. Huang, Y. Q. Zhang and F. Q. Tang, Chem. Commun. 3, 342 (2005). http://dx.doi.org/10.1039/b410463c
A. Jozefczak and A. Skumiel, J. Magn. Magn. Mater. 323, 1509 (2011). http://dx.doi.org/10.1016/j.jmmm.2011.01.009
Y. Zhang, N. Kohler and M. Zhang, Biomaterials 23, 1553 (2002). http://dx.doi.org/10.1016/S0142-9612(01)00267-8
A. G. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang and J. Xu, J. Alloy. Compd. 458, 487 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.04.019
G. Y. Zhang, Y. Y. Xu, D. Z. Gao and Y. Q. Sun, J. Alloy. Compd. 509, 885 (2011). http://dx.doi.org/10.1016/j.jallcom.2010.09.124
K. He, C. Y. Xu, L. Zhen and W. Z. Shao, Mater. Lett. 61, 3159 (2007). http://dx.doi.org/10.1016/j.matlet.2006.11.023
Y. Y. Zheng, X. B. Wang, L. Shang, C. R. Li, C. Cui, W. J. Dong, W. H. Tang and B. Y. Chen, Mater. Charact. 61, 489 (2010). http://dx.doi.org/10.1016/j.matchar.2010.01.008
T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Lojkowski and K. J. Kurzydlowski, Appl. Surf. Sci. 253, 204 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.089
R. Pielaszek, Appl. Crystall. Proceedings of the XIX Conference, Krakow, Poland, 43 (2003).
T. Özkaya, Synthesis and magnetic characterization of magnetic nanoparticles. Master Thesis, Fatih University, Istanbul 2008.
T. Özkaya, M. S. Toprak, A. Baykal, H. Kavas, Y. Köoseoğlu and B. Aktas, J. Alloy. Compd. 472, 18 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.04.101
B. Unal, Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Mater. Chem. Phys. 123, 184 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.03.080
H. Kavas, Z. Durmus, A. Baykal, A. Aslan, A. Bozkurt and M. S. Toprak, J. Noncrystall. Solid. 356, 484 (2010). http://dx.doi.org/10.1016/j.jnoncrysol.2009.12.022
Z. Durmus, H. Kavas, A. Baykal, H. Sozeri L. Alpsoy, S. Ü. C elik and M. S. Toprak, J. Alloy. Compd. 509, 2555 (2011). http://dx.doi.org/10.1016/j.jallcom.2010.11.088
Z. Durmus, H. Söozeri, B. Unal, A. Baykal, R. Topkaya, S. Kazan and M. S. Toprak, Polyhedron 30, 322 (2011). http://dx.doi.org/10.1016/j.poly.2010.10.028
Z. Durmus, H. Erdemi, A. Aslan, M. S. Toprak and H. Sozeri, Polyhedron 30, 419 (2011). http://dx.doi.org/10.1016/j.poly.2010.11.011
Z. Chen and L. Gao, Mater. Sci. Eng. B 141, 82 (2007). http://dx.doi.org/10.1016/j.mseb.2007.06.003
Z. Q. Li, Y. J. Xiong and Y. Xie, Inorg. Chem. 42, 8105 (2003). http://dx.doi.org/10.1021/ic034029q
H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Den and G. Q. Xu, Langmuir 12, 909 (1996). http://dx.doi.org/10.1021/la950435d
Y. G. Sun and Y. N. Xia, Adv. Mater. 14, 833 (2002). http://dx.doi.org/10.1002/1521-4095(20020605)14:11$<$833::AID-ADMA833$>$3.0.CO;2-K
J. Dobryszcki and S. Biallozor, Corros. Sci. 43, 1309 (2001). http://dx.doi.org/10.1016/S0010-938X(00)00155-4
X. H. Liu, J. Yang, L. Wang, X. J. Yang and L. D. Lu, Mater. Sci. Eng. A 2, 7483 (2003).
T. Kim and M. Shima, J. Appl. Phys. 101, 09M516 (2007).
Y. Xiaotun, X. Lingge and N. S. Choon, Hardy CS Nanotechnol. 14, 62 (2003).
Z. Durmus, H. Kavas, M. S. Toprak, A. Baykal, T. G. Altincekic, A. Aslan, A. Bozkurt and S. Cosgun, J. Alloy. Compd. 484, 371 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.04.103
B. Ünal, Z. Durmus, A. Baykal, H. Sözeri, M. S. Toprak and L. Alpsoy, J. Alloy. Compd. 505, 172 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.06.022
B. D. Cullity, Addison-Wesley, Reading, MA 61, 190 (1972).
J. Mürbe, A. Rechtenbach and T. Töpfer, Mater. Chem. Phys. 110, 426 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.02.037
R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr and S. Foner, Phys. Rev. Lett. 77, 394 (1996). http://dx.doi.org/10.1103/PhysRevLett.77.394
X. Batlle and A. Labarta, J. Phys. D Appl. Phys. 35, 15 (2002). http://dx.doi.org/10.1088/0022-3727/35/6/201
A. E. Berkowitz, J. A. Lahut, I. S. Jacobs, L. M. Levinson and D. W. Forester, Phys. Rev. Lett. 34, 594 (1975). http://dx.doi.org/10.1103/PhysRevLett.34.594
C. Kittel, Introduction to Solid State Physics, New York, Wiley, 1971.
K. Uzun, E. Cevik, M. Senel, H. Sozeri, A. Baykal, M. F. Abasiyanik and M. S. Toprak, J. Nanopart. Res. 12, 3057 (2010). http://dx.doi.org/10.1007/s11051-010-9902-9