Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite
Corresponding Author: E. Karaoğlu
Nano-Micro Letters,
Vol. 3 No. 1 (2011), Article Number: 25-33
Abstract
Here, we report on the synthesis of PEG-Mn3O4 nanocomposite (NP’s) via a hydrothermal route by using Mn(acac)2, ethanol, NH3 and PEG-400. The crystalline phase was identified as Mn3O4. The crystallite size of the PEG-Mn3O4 nanocomposite was calculated as 12±5 nm from X-ray line profile fitting and the average particle size from TEM was obtained as 200 nm. This reveals polycrystalline character of Mn3O4 NP’s. The interaction between PEG-400 and the Mn3O4 NP’s was investigated by FTIR. Temperature independent AC conductivity of PEG-Mn3O4 nanocomposite beyond 20 kHz provides a strong evidence of ionic conduction through the structure. The conductivity and permittivity measurements strongly depend on the secondary thermal transition of nanocomposite beyond 100°C. Above that temperature, Mn3O4 particles may interact with each other yielding a percolated path that will facilitate the conduction. On the other hand, the relatively lower activation energy (Ea=0.172 eV) for relaxation process suggests that polymer segmental motions of PEG and electrons hopping between Mn2+ and Mn3+ may be coupled in the sample below 100°C. Room temperature magnetization curve of the sample does not reach to a saturation, which indicates the superparamagnetic character of the particles. As the temperature increases, the frequency at which (ε″) reaches a maximum shifted towards higher frequencies. The maximum peak was observed at 1.4 kHz for 20°C while the maximum was detected at 23.2 kHz for 90°C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. R. Armstrong and P. G. Bruce, Nature 381, 499 (1996). http://dx.doi.org/10.1038/381499a0.
- T. Özkaya, A. Baykal and M. S. Toprak, Cent. Eur. J. Chem. 6, 465 (2008).
- T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu and M. S. Toprak, Physica. B 403, 3760 (2008). http://dx.doi.org/10.1016/j.physb.2008.07.002
- Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Cent. Eur. J. Chem. 7, 555 (2009). http://dx.doi.org/10.2478/s11532-009-0049-4
- Z. Durmus, A. Baykal, H. Kavas, M. Direkçi and M. S. Toprak, Polyhedron 28, 2119 (2009). http://dx.doi.org/10.1016/j.poly.2009.03.026
- A. Vazquez-Olmos, R. Redon, G. Rodriguez-Gattorno, M. E. Mata-Zamora, F. Morales-Leal, A. L. Fernandez-Orosio and J. M. Saniger, J. Colloid Interf. Sci. 291, 175 (2005).
- D. Portehault, S. Cassaignon, E. Baudrin and J. P. Jolivet, J. Mater. Chem. 19, 2407 (2009). http://dx.doi.org/10.1039/b816348k
- E. Winkler, R. D. Zysler and D. Fiorani, Phys. Rev. B 70, 174406 (2004).
- Z. Fang, K. Tang, L. Gao, D. Wang, S. Zeng and Q. Liu, Mater. Res. Bull. 42 (2007) 1761. http://dx.doi.org/10.1016/j.materresbull.2006.11.025
- C. Feldmann, Adv. Funct. Mater. 13, 101 (2003). http://dx.doi.org/10.1002/adfm.200390014
- I. Djerdj, D. Arcon, Z. Jaglicic and M. Niederberger, J. Phys. Chem. C 111, 3614 (2007). http://dx.doi.org/10.1021/jp067302t
- X. Li, L. Zhou, J. Gao, H. Miao, H. Zhang and J. Xu, Powder Technol. 190, 324 (2009). http://dx.doi.org/10.1016/j.powtec.2008.08.010
- Z. Weixin, W. Cheng, Z. Xiaoming, X. Yi and Q. Yitai, Solid State Ionics 117, 331 (1999). http://dx.doi.org/10.1016/S0167-2738(98)00432-9
- N. Wang, L. Guo, L. He, X. Cao, C. Chen, R. Wang and S. Yang, Small 4, 606 (2007). http://dx.doi.org/10.1002/smll.200600283
- J. Du, Y. Gao, L. Chai, G. Zou, Y. Li and Y. Qian, Nanotechnology 117, 4923 (2006). http://dx.doi.org/10.1088/0957-4484/17/19/024
- R. D. Zysler and E. Winkler, Nanotechnology 18, 158001 (2007). http://dx.doi.org/10.1088/0957-4484/18/15/158001
- E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948). http://dx.doi.org/10.1098/rsta.1948.0007
- a) L. Neel and Ann. Geophysics 5, 99 (1949); (b) W. F. Brown, Phys. Rev. B 130, 1677 (1963). http://dx.doi.org/10.1103/PhysRev.130.1677
- L. Sicard, J. M. L. Meins, C. Méthivier, F. Herbst and S. Ammar, J. Magn. Magn. Mater. 322, 2634 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.03.016
- J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu and C. Pan, Langmuir 20, 9775 (2004). http://dx.doi.org/10.1021/la049197p
- J. Dobryszycki and S. Biallozor, Corros. Sci. 43, 1309 (2001). http://dx.doi.org/10.1016/S0010-938X(00)00155-4
- M. Bognitzki, H. Q. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, Adv. Mater. 12, 637 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
- X. H. Lu, J. Yang, L. Wang, X. J. Yang, L. D. Lu and X. Wang, Mater. Sci. Eng. A 289, 241 (2000).
- J. G. Deng, X. B. Ding and Y. X. Peng, Polymerica 43, 2179 (2002). http://dx.doi.org/10.1016/S0032-3861(02)00046-0
- J. Zhang, A. L. Barker, D. Mandler and P. R. Unwin, J. Am. Chem. Soc. 125, 9312 (2003). http://dx.doi.org/10.1021/ja036146q
- G. V. Kurlyandskaya, J. Cunanan, S. M. Bhagat, J. C. Aphesteguy and S. E. Jacobo, J. Phys. Chem. Solids 28, 1527 (2007). http://dx.doi.org/10.1016/j.jpcs.2007.03.031
- S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro and M. F. Bertino, Chem. Mater. 17, 5941 (2005). http://dx.doi.org/10.1021/cm050827y
- C. Danielle, S. Michelle, A. Ivo and Z. Aldo, Chem. Mater. 15, 4658 (2003). http://dx.doi.org/10.1021/cm034292p
- Y. Qiu and L. Gao, J. Phys. Chem. B 109, 19732 (2005). http://dx.doi.org/10.1021/jp053845b
- X. Li and X. Li, G. Wang, Mater. Chem. Phys. 102, 140 (2007). http://dx.doi.org/10.1016/j.matchemphys.2006.11.014
- K. Huang, Y. Zhang, Y. Long, J. Yuan, D. Han, Z. Wang, L. Niu and Z. Chen, Chem. Eur. J. 12, 5314 (2006). http://dx.doi.org/10.1002/chem.200501527
- T. Wejrzanowski, R. Pielaszek, A. Opaliniska, H. Matysiak, W. Lojkowski and K. J. Kurzydlowski, Appl. Surf. Sci. 253, 204 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.089
- R. Pielaszek, Appl. Crystallography Proceedings of the XIX Conference, Krakow, Poland, 43, 2003.
- A. Baykal, N. Bitrak, B. Ünal, H. Kavas, Z. Durmuş, Ş Özden and M. S. Toprak, J. Alloys Compd. 502, 199 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.04.143
- H. Kavas, Z. Durmus, M. Şenel, S. Kazan, A. Baykal and M. S. Toprak, Polyhedron 29, 1375 (2010). http://dx.doi.org/10.1016/j.poly.2009.12.034
- Z. Durmus, M. Tomas, A. Baykal, H. Kavas, T. G. Altinçekiç and M. S. Toprak, Russ. J. Inorg. Chem. 55, 1947 (2010). http://dx.doi.org/10.1134/S0036023610120211
- Z. Durmus, A. Baykal, H. Kavas and H. Sozeri, Physica B (2011). doi:10.1016/j.physb.2010.12.059.
- Y. Köseoğlu, A. Baykal, M. S. Toprak, F. Gözüak, A. C. Başaran and B. Aktaş J. Alloys Compd. 462, 209 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.08.023
- F. Gözüak, Y. Köseoğlu, A. Baykal and H. Kavas, J. Magn. Magn. Mater. 321, 2170 (2009). http://dx.doi.org/10.1016/j.jmmm.2009.01.008
- J. Liu, T. Xua, M. Gong, F. Yu and Y. Fu, J. Membrane Sci. 283, 190 (2006). http://dx.doi.org/10.1016/j.memsci.2006.06.027
- Y. Xiaotun, X. Lingge, N. S. Choon and C. S. Hardy, Nanotechnology 14, 624 (2003). http://dx.doi.org/10.1088/0957-4484/14/6/311
- Z. J. Zhang, X. Y. Chen, B. N. Wang and C. W. Shi, J. Cryst. Growth 310, 5453 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2008.08.064
- R. Tackett and G. Lawes, Phys. Rev. B 76, 024409 (2007). http://dx.doi.org/10.1103/PhysRevB.76.024409
- a) B. Unal, Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Matter. Phys. Chem. 123, 184 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.03.080; b) S. Ü. Çelik and A. Bozkurt, Eur. Polym. J. 44, 213 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2007.10.010
- B. Hallouet, B. Wetzel and R. Pelster, 11 (2007), Article ID 34527.
- L. Salwa, L. Abd-El-Messieh, S. El-Sabbagh and I. F. Abadir, J. Appl. Polym. Sci. 73, 1509 (1999). http://dx.doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1509::AID-APP20>3.0.CO;2-8
- S. Ukishima, M. Iijima, M. Sato, Y. Takahashi and E. Fukada, Thin Solid Films 308, 475 (1997). http://dx.doi.org/10.1016/S0040-6090(97)00438-0
- Wenli Qu, Tze-Man Ko, Rohit H. Vora and Tai-Shung Chung, Polymer, 42, 6393 (2001). http://dx.doi.org/10.1016/S0032-3861(01)00111-2
- B. Ünal, Z. Durmus, A. Baykal, H. Sözeri, M. S. Toprak and L. Alpsoy, J. Alloys. Compd. 505, 172 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.06.022
- H. Kavas, Z. Durmus, A. Baykal, A. Aslan, A. Bozkurt and M. S. Toprak, J. Non-cryst. Solids, 356, 484 (2010). http://dx.doi.org/10.1016/j.jnoncrysol.2009.12.022
References
A. R. Armstrong and P. G. Bruce, Nature 381, 499 (1996). http://dx.doi.org/10.1038/381499a0.
T. Özkaya, A. Baykal and M. S. Toprak, Cent. Eur. J. Chem. 6, 465 (2008).
T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu and M. S. Toprak, Physica. B 403, 3760 (2008). http://dx.doi.org/10.1016/j.physb.2008.07.002
Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Cent. Eur. J. Chem. 7, 555 (2009). http://dx.doi.org/10.2478/s11532-009-0049-4
Z. Durmus, A. Baykal, H. Kavas, M. Direkçi and M. S. Toprak, Polyhedron 28, 2119 (2009). http://dx.doi.org/10.1016/j.poly.2009.03.026
A. Vazquez-Olmos, R. Redon, G. Rodriguez-Gattorno, M. E. Mata-Zamora, F. Morales-Leal, A. L. Fernandez-Orosio and J. M. Saniger, J. Colloid Interf. Sci. 291, 175 (2005).
D. Portehault, S. Cassaignon, E. Baudrin and J. P. Jolivet, J. Mater. Chem. 19, 2407 (2009). http://dx.doi.org/10.1039/b816348k
E. Winkler, R. D. Zysler and D. Fiorani, Phys. Rev. B 70, 174406 (2004).
Z. Fang, K. Tang, L. Gao, D. Wang, S. Zeng and Q. Liu, Mater. Res. Bull. 42 (2007) 1761. http://dx.doi.org/10.1016/j.materresbull.2006.11.025
C. Feldmann, Adv. Funct. Mater. 13, 101 (2003). http://dx.doi.org/10.1002/adfm.200390014
I. Djerdj, D. Arcon, Z. Jaglicic and M. Niederberger, J. Phys. Chem. C 111, 3614 (2007). http://dx.doi.org/10.1021/jp067302t
X. Li, L. Zhou, J. Gao, H. Miao, H. Zhang and J. Xu, Powder Technol. 190, 324 (2009). http://dx.doi.org/10.1016/j.powtec.2008.08.010
Z. Weixin, W. Cheng, Z. Xiaoming, X. Yi and Q. Yitai, Solid State Ionics 117, 331 (1999). http://dx.doi.org/10.1016/S0167-2738(98)00432-9
N. Wang, L. Guo, L. He, X. Cao, C. Chen, R. Wang and S. Yang, Small 4, 606 (2007). http://dx.doi.org/10.1002/smll.200600283
J. Du, Y. Gao, L. Chai, G. Zou, Y. Li and Y. Qian, Nanotechnology 117, 4923 (2006). http://dx.doi.org/10.1088/0957-4484/17/19/024
R. D. Zysler and E. Winkler, Nanotechnology 18, 158001 (2007). http://dx.doi.org/10.1088/0957-4484/18/15/158001
E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948). http://dx.doi.org/10.1098/rsta.1948.0007
a) L. Neel and Ann. Geophysics 5, 99 (1949); (b) W. F. Brown, Phys. Rev. B 130, 1677 (1963). http://dx.doi.org/10.1103/PhysRev.130.1677
L. Sicard, J. M. L. Meins, C. Méthivier, F. Herbst and S. Ammar, J. Magn. Magn. Mater. 322, 2634 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.03.016
J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu and C. Pan, Langmuir 20, 9775 (2004). http://dx.doi.org/10.1021/la049197p
J. Dobryszycki and S. Biallozor, Corros. Sci. 43, 1309 (2001). http://dx.doi.org/10.1016/S0010-938X(00)00155-4
M. Bognitzki, H. Q. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, Adv. Mater. 12, 637 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
X. H. Lu, J. Yang, L. Wang, X. J. Yang, L. D. Lu and X. Wang, Mater. Sci. Eng. A 289, 241 (2000).
J. G. Deng, X. B. Ding and Y. X. Peng, Polymerica 43, 2179 (2002). http://dx.doi.org/10.1016/S0032-3861(02)00046-0
J. Zhang, A. L. Barker, D. Mandler and P. R. Unwin, J. Am. Chem. Soc. 125, 9312 (2003). http://dx.doi.org/10.1021/ja036146q
G. V. Kurlyandskaya, J. Cunanan, S. M. Bhagat, J. C. Aphesteguy and S. E. Jacobo, J. Phys. Chem. Solids 28, 1527 (2007). http://dx.doi.org/10.1016/j.jpcs.2007.03.031
S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro and M. F. Bertino, Chem. Mater. 17, 5941 (2005). http://dx.doi.org/10.1021/cm050827y
C. Danielle, S. Michelle, A. Ivo and Z. Aldo, Chem. Mater. 15, 4658 (2003). http://dx.doi.org/10.1021/cm034292p
Y. Qiu and L. Gao, J. Phys. Chem. B 109, 19732 (2005). http://dx.doi.org/10.1021/jp053845b
X. Li and X. Li, G. Wang, Mater. Chem. Phys. 102, 140 (2007). http://dx.doi.org/10.1016/j.matchemphys.2006.11.014
K. Huang, Y. Zhang, Y. Long, J. Yuan, D. Han, Z. Wang, L. Niu and Z. Chen, Chem. Eur. J. 12, 5314 (2006). http://dx.doi.org/10.1002/chem.200501527
T. Wejrzanowski, R. Pielaszek, A. Opaliniska, H. Matysiak, W. Lojkowski and K. J. Kurzydlowski, Appl. Surf. Sci. 253, 204 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.089
R. Pielaszek, Appl. Crystallography Proceedings of the XIX Conference, Krakow, Poland, 43, 2003.
A. Baykal, N. Bitrak, B. Ünal, H. Kavas, Z. Durmuş, Ş Özden and M. S. Toprak, J. Alloys Compd. 502, 199 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.04.143
H. Kavas, Z. Durmus, M. Şenel, S. Kazan, A. Baykal and M. S. Toprak, Polyhedron 29, 1375 (2010). http://dx.doi.org/10.1016/j.poly.2009.12.034
Z. Durmus, M. Tomas, A. Baykal, H. Kavas, T. G. Altinçekiç and M. S. Toprak, Russ. J. Inorg. Chem. 55, 1947 (2010). http://dx.doi.org/10.1134/S0036023610120211
Z. Durmus, A. Baykal, H. Kavas and H. Sozeri, Physica B (2011). doi:10.1016/j.physb.2010.12.059.
Y. Köseoğlu, A. Baykal, M. S. Toprak, F. Gözüak, A. C. Başaran and B. Aktaş J. Alloys Compd. 462, 209 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.08.023
F. Gözüak, Y. Köseoğlu, A. Baykal and H. Kavas, J. Magn. Magn. Mater. 321, 2170 (2009). http://dx.doi.org/10.1016/j.jmmm.2009.01.008
J. Liu, T. Xua, M. Gong, F. Yu and Y. Fu, J. Membrane Sci. 283, 190 (2006). http://dx.doi.org/10.1016/j.memsci.2006.06.027
Y. Xiaotun, X. Lingge, N. S. Choon and C. S. Hardy, Nanotechnology 14, 624 (2003). http://dx.doi.org/10.1088/0957-4484/14/6/311
Z. J. Zhang, X. Y. Chen, B. N. Wang and C. W. Shi, J. Cryst. Growth 310, 5453 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2008.08.064
R. Tackett and G. Lawes, Phys. Rev. B 76, 024409 (2007). http://dx.doi.org/10.1103/PhysRevB.76.024409
a) B. Unal, Z. Durmus, H. Kavas, A. Baykal and M. S. Toprak, Matter. Phys. Chem. 123, 184 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.03.080; b) S. Ü. Çelik and A. Bozkurt, Eur. Polym. J. 44, 213 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2007.10.010
B. Hallouet, B. Wetzel and R. Pelster, 11 (2007), Article ID 34527.
L. Salwa, L. Abd-El-Messieh, S. El-Sabbagh and I. F. Abadir, J. Appl. Polym. Sci. 73, 1509 (1999). http://dx.doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1509::AID-APP20>3.0.CO;2-8
S. Ukishima, M. Iijima, M. Sato, Y. Takahashi and E. Fukada, Thin Solid Films 308, 475 (1997). http://dx.doi.org/10.1016/S0040-6090(97)00438-0
Wenli Qu, Tze-Man Ko, Rohit H. Vora and Tai-Shung Chung, Polymer, 42, 6393 (2001). http://dx.doi.org/10.1016/S0032-3861(01)00111-2
B. Ünal, Z. Durmus, A. Baykal, H. Sözeri, M. S. Toprak and L. Alpsoy, J. Alloys. Compd. 505, 172 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.06.022
H. Kavas, Z. Durmus, A. Baykal, A. Aslan, A. Bozkurt and M. S. Toprak, J. Non-cryst. Solids, 356, 484 (2010). http://dx.doi.org/10.1016/j.jnoncrysol.2009.12.022