Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells
Corresponding Author: Masao Isomura
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 36
Abstract
The photovoltaic performance of perovskite solar cells (PSCs) can be improved by utilizing efficient front contact. However, it has always been a significant challenge for fabricating high-quality, scalable, controllable, and cost-effective front contact. This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells (TSCs). As a critical part of the front contact, we prepared a highly compact titanium oxide (TiO2) film by industrially viable Spray Pyrolysis Deposition (SPD), which acts as a potential electron transport layer (ETL) for the fabrication of PSCs. Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs. As the front contact has a significant influence on the optoelectronic properties of PSCs, hence, we investigated the optics and electrical effects of PSCs by three-dimensional (3D) finite-difference time-domain (FDTD) and finite element method (FEM) rigorous simulations. The investigation allows us to compare experimental results with the outcome from simulations. Furthermore, an optimized single-junction PSC is designed to enhance the energy conversion efficiency (ECE) by > 30% compared to the planar reference PSC. Finally, the study has been progressed to the realization of all-perovskite TSC that can reach the ECE, exceeding 30%. Detailed guidance for the completion of high-performance PSCs is provided.
Highlights:
1 Industrially viable bottom-up spray pyrolysis deposition technique was used to prepare the highly compact TiO2 film, which is a vital element for the multi-layer front contact.
2 The optimization of the front contact is presented by fabricating reproducible and efficient perovskite solar cells
3 Multi-layer front contact is applied to realize efficient perovskite single-junction and perovskite/perovskite tandem solar cells, where optics and electrical effects of solar cells are studied by optically coupled 3D electromagnetic simulations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258 (2020). https://doi.org/10.1039/C9EE02162K
- F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
- N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Pervasive functional translation of noncanonical human open reading frames. Science 367, 1135 (2020). https://doi.org/10.1126/science.aay0262
- NREL Transforming Energy (2020). https://www.nrel.gov/pv/cell-efficiency.html (accessed October 1, 2020)
- D. Forgács, L. Gil-Escrig, D. Pérez-Del-Rey, C. Momblona, J. Werner et al., Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201602121
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864 (2019)
- M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells. J. Mater. Chem. A 6, 3625 (2018). https://doi.org/10.1039/C8TA00628H
- J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story?–An overview. Adv. Mater. Interfaces 5, 1700731 (2018). https://doi.org/10.1002/admi.201700731
- M.I. Hossain, A.M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman et al., Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy 79, 105400 (2021). https://doi.org/10.1016/j.nanoen.2020.105400
- M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
- W. Shockley, H. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034
- A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
- M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai et al., Optics of perovskite solar cell front contacts. ACS Appl. Mater. Interface. 11, 14693 (2019). https://doi.org/10.1021/acsami.8b16586
- E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel et al., Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680 (2014). https://doi.org/10.1021/jz500059v
- T. Moehl, J.H. Im, Y.H. Lee, K. Domanski, F. Giordano et al., Strong photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J. Phys. Chem. Lett. 5, 3931 (2014). https://doi.org/10.1021/jz502039k
- M.I. Hossain, A. Mohammad, W. Qarony, S. Ilhom, D.R. Shukla et al., Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Adv. 10, 14856 (2020). https://doi.org/10.1039/D0RA00939C
- M. Shahiduzzaman, S. Visal, M. Kuniyoshi, T. Kaneko, S. Umezu et al., Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. Nano Lett. 19, 598 (2019). https://doi.org/10.1021/acs.nanolett.8b04744
- W. Qarony, M.I. Hossain, A. Salleo, D. Knipp, Y.H. Tsang, Rough versus planar interfaces: How to maximize the short circuit current of perovskite single and tandem solar cells. Mater. Today Energy 11, 106 (2019). https://doi.org/10.1016/j.mtener.2018.10.001
- M.I. Hossain, N. Yumnam, W. Qarony, A. Salleo, V. Wagner et al., Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 198, 570 (2020). https://doi.org/10.1016/j.solener.2020.01.082
- K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J. Mater. Chem. A 3, 9051 (2015). https://doi.org/10.1039/C4TA04883K
- Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin et al., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014). https://doi.org/10.7567/APEX.7.052301
- A. Möllmann, D. Gedamu, P. Vivo, R. Frohnhoven, D. Stadler et al., Highly compact TiO2 films by spray pyrolysis and application in perovskite solar cells. Adv. Eng. Mater. 21, 1801196 (2019). https://doi.org/10.1002/adem.201801196
- S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato et al., Photonic-structured TiO2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
- M. Shahiduzzaman, H. Ashikawa, M. Kuniyoshi, S. Visal, S. Sakakibara et al., Compact TiO2/Anatase TiO2 single-crystalline nanoparticle electron-transport bilayer for efficient planar perovskite solar cells. ACS Sustain. Chem. Eng. 6, 12070 (2018). https://doi.org/10.1021/acssuschemeng.8b02406
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013) https://doi.org/10.1021/nl400349b
- A.K. Jena, H.-W. Chen, A. Kogo, Y. Sanehira, M. Ikegami et al., The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817 (2015). https://doi.org/10.1021/acsami.5b01789
- M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang et al., High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742 (2014). https://doi.org/10.1039/C4TA04385E
- C. Chen, Y. Cheng, Q. Dai, H. Song, Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci. Rep. 5, 17684 (2016). https://doi.org/10.1038/srep17684
- U. Schulz, R.W. Schaffer, Chapter 13-Optical coatings on plastic for antireflection purposes. in Opt. Thin Film. Coatings (Elsevier, 2018), pp. 517–537. https://doi.org/https://doi.org/10.1016/B978-0-08-102073-9.00013-8
- A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi et al., Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. Chem. Lett. 43, 711 (2014). https://doi.org/10.1246/cl.140074
- M. Anaya, J.P. Correa-Baena, G. Lozano, M. Saliba, P. Anguita et al., Optical analysis of CH3NH3SnxPb1−xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. J. Mater. Chem. A 4, 11214 (2016). https://doi.org/10.1039/C6TA04840D
- E. Raoult, R. Bodeux, S. Jutteau, S. Rives, A. Yaiche et al., Optical characterizations and modelling of semitransparent perovskite solar cells for tandem applications, 36th EU PVSEC 757 (2019). https://doi.org/https://doi.org/10.4229/EUPVSEC20192019-3BV.2.53
- S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
- S. Zandi, M. Razaghi, Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy 179, 298 (2019). https://doi.org/10.1016/j.solener.2018.12.032
- Y. Da, Y. Xuan, Q. Li, Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 174, 206 (2018). https://doi.org/10.1016/j.solmat.2017.09.002
- P. Zhao, Z. Lin, J. Wang, M. Yue, J. Su et al., Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 4504 (2019). https://doi.org/10.1021/acsaem.9b00755
- L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539 (2017). https://doi.org/10.1021/acsenergylett.7b00276
- Q. Deng, Y. Li, L. Chen, S. Wang, G. Wang et al., The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod. Phys. Lett. B 30, 1650341 (2016). https://doi.org/10.1142/S0217984916503413
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013). https://doi.org/10.1038/nature12509
- M. Shahiduzzaman, S. Fukaya, E.Y. Muslih, L. Wang, M. Nakano et al., Metal oxide compact electron transport layer modification for efficient and stable perovskite solar cells. Materials 13, 2207 (2020). https://doi.org/10.3390/ma13092207
- A. Al Mamun, T.T. Ava, K. Zhang, H. Baumgart, G. Namkoong, New PCBM/carbon based electron transport layer for perovskite solar cells. Phys. Chem, 19: 17960 (2017) https://doi.org/10.1039/C7CP02523H
- M. Shahiduzzaman, A. Kulkarni, S. Visal, L. Wang, M. Nakano et al., A single-phase brookite TiO2 nanoparticle bridge enhances the stability of perovskite solar cells. Sustain. Energy Fuels 4, 2009 (2020). https://doi.org/10.1039/C9SE01133A
- S. Haque, M. Alexandre, M.J. Mendes, H. Águas, E. Fortunato et al., Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Appl. Mater. Today 20, 100720 (2020). https://doi.org/10.1016/j.apmt.2020.100720
- R. Dewan, S. Fischer, V. Benno Meyer-Rochow, Y. Özdemir, S. Hamraz et al., Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspiration Biomimetics, 7: 016003 (2012) https://doi.org/10.1088/1748-3182/7/1/016003
- W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow et al., Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv. Theory Simulations 1, 1800030 (2018). https://doi.org/10.1002/adts.201800030
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 252% power conversion efficiency. Nat. Mater, 17: 820 (2018) https://doi.org/10.1038/s41563-018-0115-4
- J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between spin–orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 6, 3503 (2015). https://doi.org/10.1021/acs.jpclett.5b01738
- F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks et al., Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445 (2015). https://doi.org/10.1021/jacs.5b06658
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014). https://doi.org/10.1039/c4ee01076k
- A.K.M. Hasan, K. Sobayel, I. Raifuku, Y. Ishikawa, M. Shahiduzzaman et al., Optoelectronic properties of electron beam-deposited NiOx thin films for solar cell application. Results Phys. 17, 103122 (2020). https://doi.org/10.1016/j.rinp.2020.103122
- A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.-W. Liang et al., Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017). https://doi.org/10.1002/adma.201702140
- D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093 (2018). https://doi.org/10.1038/s41560-018-0278-x
- D.P. McMeekin, S. Mahesh, N.K. Noel, M.T. Klug, J. Lim et al., Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387 (2019). https://doi.org/10.1016/j.joule.2019.01.007
- Y. Hu, L. Song, Y. Chen, W. Huang, Two-terminal perovskites tandem solar cells: recent advances and perspectives. Sol. RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080
- M.J. Mendes, S. Haque, O. Sanchez-Sobrado, A. Araújo, H. Águas et al., Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture. IScience 3, 238 (2018). https://doi.org/10.1016/j.isci.2018.04.018
- M. Alexandre, M. Chapa, S. Haque, M.J. Mendes, H. Águas et al., Optimum luminescent down-shifting properties for high efficiency and stable perovskite solar cells. ACS Appl. Energy Mater. 2, 2930 (2019). https://doi.org/10.1021/acsaem.9b00271
- O. Sanchez-Sobrado, M.J. Mendes, S. Haque, T. Mateus, H. Aguas et al., Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. J. Mater. Chem. C 7, 6456 (2019). https://doi.org/10.1039/C8TC06092D
- O. Sanchez-Sobrado, M.J. Mendes, S. Haque, T. Mateus, A. Araujo et al., Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. J. Mater. Chem. C 5, 6852–6861 (2017). https://doi.org/10.1039/c7tc01756a
References
S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258 (2020). https://doi.org/10.1039/C9EE02162K
F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Pervasive functional translation of noncanonical human open reading frames. Science 367, 1135 (2020). https://doi.org/10.1126/science.aay0262
NREL Transforming Energy (2020). https://www.nrel.gov/pv/cell-efficiency.html (accessed October 1, 2020)
D. Forgács, L. Gil-Escrig, D. Pérez-Del-Rey, C. Momblona, J. Werner et al., Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201602121
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864 (2019)
M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells. J. Mater. Chem. A 6, 3625 (2018). https://doi.org/10.1039/C8TA00628H
J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story?–An overview. Adv. Mater. Interfaces 5, 1700731 (2018). https://doi.org/10.1002/admi.201700731
M.I. Hossain, A.M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman et al., Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy 79, 105400 (2021). https://doi.org/10.1016/j.nanoen.2020.105400
M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
W. Shockley, H. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034
A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai et al., Optics of perovskite solar cell front contacts. ACS Appl. Mater. Interface. 11, 14693 (2019). https://doi.org/10.1021/acsami.8b16586
E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel et al., Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680 (2014). https://doi.org/10.1021/jz500059v
T. Moehl, J.H. Im, Y.H. Lee, K. Domanski, F. Giordano et al., Strong photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J. Phys. Chem. Lett. 5, 3931 (2014). https://doi.org/10.1021/jz502039k
M.I. Hossain, A. Mohammad, W. Qarony, S. Ilhom, D.R. Shukla et al., Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Adv. 10, 14856 (2020). https://doi.org/10.1039/D0RA00939C
M. Shahiduzzaman, S. Visal, M. Kuniyoshi, T. Kaneko, S. Umezu et al., Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. Nano Lett. 19, 598 (2019). https://doi.org/10.1021/acs.nanolett.8b04744
W. Qarony, M.I. Hossain, A. Salleo, D. Knipp, Y.H. Tsang, Rough versus planar interfaces: How to maximize the short circuit current of perovskite single and tandem solar cells. Mater. Today Energy 11, 106 (2019). https://doi.org/10.1016/j.mtener.2018.10.001
M.I. Hossain, N. Yumnam, W. Qarony, A. Salleo, V. Wagner et al., Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 198, 570 (2020). https://doi.org/10.1016/j.solener.2020.01.082
K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J. Mater. Chem. A 3, 9051 (2015). https://doi.org/10.1039/C4TA04883K
Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin et al., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014). https://doi.org/10.7567/APEX.7.052301
A. Möllmann, D. Gedamu, P. Vivo, R. Frohnhoven, D. Stadler et al., Highly compact TiO2 films by spray pyrolysis and application in perovskite solar cells. Adv. Eng. Mater. 21, 1801196 (2019). https://doi.org/10.1002/adem.201801196
S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato et al., Photonic-structured TiO2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
M. Shahiduzzaman, H. Ashikawa, M. Kuniyoshi, S. Visal, S. Sakakibara et al., Compact TiO2/Anatase TiO2 single-crystalline nanoparticle electron-transport bilayer for efficient planar perovskite solar cells. ACS Sustain. Chem. Eng. 6, 12070 (2018). https://doi.org/10.1021/acssuschemeng.8b02406
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013) https://doi.org/10.1021/nl400349b
A.K. Jena, H.-W. Chen, A. Kogo, Y. Sanehira, M. Ikegami et al., The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817 (2015). https://doi.org/10.1021/acsami.5b01789
M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang et al., High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742 (2014). https://doi.org/10.1039/C4TA04385E
C. Chen, Y. Cheng, Q. Dai, H. Song, Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci. Rep. 5, 17684 (2016). https://doi.org/10.1038/srep17684
U. Schulz, R.W. Schaffer, Chapter 13-Optical coatings on plastic for antireflection purposes. in Opt. Thin Film. Coatings (Elsevier, 2018), pp. 517–537. https://doi.org/https://doi.org/10.1016/B978-0-08-102073-9.00013-8
A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi et al., Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. Chem. Lett. 43, 711 (2014). https://doi.org/10.1246/cl.140074
M. Anaya, J.P. Correa-Baena, G. Lozano, M. Saliba, P. Anguita et al., Optical analysis of CH3NH3SnxPb1−xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. J. Mater. Chem. A 4, 11214 (2016). https://doi.org/10.1039/C6TA04840D
E. Raoult, R. Bodeux, S. Jutteau, S. Rives, A. Yaiche et al., Optical characterizations and modelling of semitransparent perovskite solar cells for tandem applications, 36th EU PVSEC 757 (2019). https://doi.org/https://doi.org/10.4229/EUPVSEC20192019-3BV.2.53
S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
S. Zandi, M. Razaghi, Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy 179, 298 (2019). https://doi.org/10.1016/j.solener.2018.12.032
Y. Da, Y. Xuan, Q. Li, Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 174, 206 (2018). https://doi.org/10.1016/j.solmat.2017.09.002
P. Zhao, Z. Lin, J. Wang, M. Yue, J. Su et al., Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 4504 (2019). https://doi.org/10.1021/acsaem.9b00755
L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539 (2017). https://doi.org/10.1021/acsenergylett.7b00276
Q. Deng, Y. Li, L. Chen, S. Wang, G. Wang et al., The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod. Phys. Lett. B 30, 1650341 (2016). https://doi.org/10.1142/S0217984916503413
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013). https://doi.org/10.1038/nature12509
M. Shahiduzzaman, S. Fukaya, E.Y. Muslih, L. Wang, M. Nakano et al., Metal oxide compact electron transport layer modification for efficient and stable perovskite solar cells. Materials 13, 2207 (2020). https://doi.org/10.3390/ma13092207
A. Al Mamun, T.T. Ava, K. Zhang, H. Baumgart, G. Namkoong, New PCBM/carbon based electron transport layer for perovskite solar cells. Phys. Chem, 19: 17960 (2017) https://doi.org/10.1039/C7CP02523H
M. Shahiduzzaman, A. Kulkarni, S. Visal, L. Wang, M. Nakano et al., A single-phase brookite TiO2 nanoparticle bridge enhances the stability of perovskite solar cells. Sustain. Energy Fuels 4, 2009 (2020). https://doi.org/10.1039/C9SE01133A
S. Haque, M. Alexandre, M.J. Mendes, H. Águas, E. Fortunato et al., Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Appl. Mater. Today 20, 100720 (2020). https://doi.org/10.1016/j.apmt.2020.100720
R. Dewan, S. Fischer, V. Benno Meyer-Rochow, Y. Özdemir, S. Hamraz et al., Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspiration Biomimetics, 7: 016003 (2012) https://doi.org/10.1088/1748-3182/7/1/016003
W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow et al., Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv. Theory Simulations 1, 1800030 (2018). https://doi.org/10.1002/adts.201800030
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 252% power conversion efficiency. Nat. Mater, 17: 820 (2018) https://doi.org/10.1038/s41563-018-0115-4
J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between spin–orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 6, 3503 (2015). https://doi.org/10.1021/acs.jpclett.5b01738
F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks et al., Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445 (2015). https://doi.org/10.1021/jacs.5b06658
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014). https://doi.org/10.1039/c4ee01076k
A.K.M. Hasan, K. Sobayel, I. Raifuku, Y. Ishikawa, M. Shahiduzzaman et al., Optoelectronic properties of electron beam-deposited NiOx thin films for solar cell application. Results Phys. 17, 103122 (2020). https://doi.org/10.1016/j.rinp.2020.103122
A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.-W. Liang et al., Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017). https://doi.org/10.1002/adma.201702140
D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093 (2018). https://doi.org/10.1038/s41560-018-0278-x
D.P. McMeekin, S. Mahesh, N.K. Noel, M.T. Klug, J. Lim et al., Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387 (2019). https://doi.org/10.1016/j.joule.2019.01.007
Y. Hu, L. Song, Y. Chen, W. Huang, Two-terminal perovskites tandem solar cells: recent advances and perspectives. Sol. RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080
M.J. Mendes, S. Haque, O. Sanchez-Sobrado, A. Araújo, H. Águas et al., Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture. IScience 3, 238 (2018). https://doi.org/10.1016/j.isci.2018.04.018
M. Alexandre, M. Chapa, S. Haque, M.J. Mendes, H. Águas et al., Optimum luminescent down-shifting properties for high efficiency and stable perovskite solar cells. ACS Appl. Energy Mater. 2, 2930 (2019). https://doi.org/10.1021/acsaem.9b00271
O. Sanchez-Sobrado, M.J. Mendes, S. Haque, T. Mateus, H. Aguas et al., Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. J. Mater. Chem. C 7, 6456 (2019). https://doi.org/10.1039/C8TC06092D
O. Sanchez-Sobrado, M.J. Mendes, S. Haque, T. Mateus, A. Araujo et al., Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. J. Mater. Chem. C 5, 6852–6861 (2017). https://doi.org/10.1039/c7tc01756a