Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na–S Batteries
Corresponding Author: Yun‑Xiao Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 121
Abstract
This work reports influence of two different electrolytes, carbonate ester and ether electrolytes, on the sulfur redox reactions in room-temperature Na–S batteries. Two sulfur cathodes with different S loading ratio and status are investigated. A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio (72% S). In contrast, a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio (44% S). In carbonate ester electrolyte, only the sulfur trapped in porous structures is active via ‘solid–solid’ behavior during cycling. The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents. To improve the capacity of the sulfur-rich cathode, ether electrolyte with NaNO3 additive is explored to realize a ‘solid–liquid’ sulfur redox process and confine the shuttle effect of the dissolved polysulfides. As a result, the sulfur-rich cathode achieved high reversible capacity (483 mAh g−1), corresponding to a specific energy of 362 Wh kg−1 after 200 cycles, shedding light on the use of ether electrolyte for high-loading sulfur cathode.
Highlights:
1 A ‘solid–liquid’ conversion for increasing the sulfur content from ~ 50 to 72% for RT Na–S batteries is developed.
2 The redox mechanisms of two types of sulfur: sulfur on the surface of a cathode host (155S) and sulfur in the pores of the host (300S) in ether and carbonate ester electrolytes are studied.
3 The function of NaNO3 additive on modifying Na anode and confining the shuttle effect of dissolving polysulfides during ‘solid–liquid’ conversion is visualized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang et al., A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na–S batteries. Adv. Mater. 32(8), 1906700 (2020). https://doi.org/10.1002/adma.201906700
- Y. Wang, Y. Wang, Y.-X. Wang, X. Feng, W. Chen et al., Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5(10), 2547–2570 (2019). https://doi.org/10.1016/j.chempr.2019.05.026
- Y.X. Wang, W.H. Lai, Y.X. Wang, S.L. Chou, X. Ai et al., Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage. Angew. Chem. Int. Ed. 58(51), 18324–18337 (2019). https://doi.org/10.1002/anie.201902552
- H. Liu, W. Pei, W.-H. Lai, Z. Yan, H. Yang et al., Electrocatalysing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries. ACS Nano 14(6), 7259–7268 (2020). https://doi.org/10.1021/acsnano.0c02488
- H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
- Y.-X. Wang, J. Yang, W. Lai, S.-L. Chou, Q.-F. Gu et al., Achieving high-performance room-temperature sodium–sulfur batteries with S@ interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138(51), 16576–16579 (2016). https://doi.org/10.1021/jacs.6b08685
- H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu et al., Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13(33), 1700758 (2017). https://doi.org/10.1002/smll.201700758
- X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 10(32), 1904163 (2020). https://doi.org/10.1002/aenm.201904163
- Z. Zheng, J. Jiang, H. Guo, C. Li, K. Konstantinov et al., Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na–O2 batteries. Nano Energy 81, 105529 (2021). https://doi.org/10.1016/j.nanoen.2020.105529
- G. Liang, C. Didier, Z. Guo, W.K. Pang, V.K. Peterson, Understanding rechargeable battery function using in operando neutron powder diffraction. Adv. Mater. 32(18), 1904528 (2020). https://doi.org/10.1002/adma.201904528
- G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59(26), 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
- S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du et al., Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 33(1), 2006313 (2020). https://doi.org/10.1002/adma.202006313
- S.L. Chou, S.X. Dou, X. Wang, From fundamental research to applications: the success story of the institute for superconducting and electronic materials. Small 17(9), 2007636 (2021). https://doi.org/10.1002/smll.202007636
- C. Wu, Y. Hou, J. Jiang, H. Guo, H.-K. Liu et al., Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. J. Power Sour. 470, 228317 (2020). https://doi.org/10.1016/j.jpowsour.2020.228317
- Y.F. Zhu, Y. Xiao, W.B. Hua, S. Indris, S.X. Dou et al., Manipulating layered P2@ P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 132(24), 9385–9390 (2020). https://doi.org/10.1002/ange.201915650
- P. Li, X. Zheng, H. Yu, G. Zhao, J. Shu et al., Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Mater. 16, 512–518 (2019). https://doi.org/10.1016/j.ensm.2018.09.014
- J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov et al., Li2S-based Li-ion sulfur batteries: progress and prospects. Small 17(9), 1903934 (2019). https://doi.org/10.1002/smll.201903934
- J. Jiang, Q. Fan, Z. Zheng, M.R. Kaiser, Q. Gu et al., Nanostructured CoS2-decorated hollow carbon spheres-a performance booster for Li-ion/sulfur batteries. ACS Appl. Energy Mater. 3(7), 6447–6459 (2020). https://doi.org/10.1021/acsaem.0c00699
- B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9(1), 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
- W.H. Lai, H. Wang, L. Zheng, Q. Jiang, Z.C. Yan et al., General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na–S batteries. Angew. Chem. Int. Ed. 132(49), 22355–22362 (2020). https://doi.org/10.1002/ange.202009400
- Z. Yan, J. Xiao, W. Lai, L. Wang, F. Gebert et al., Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 10(1), 4793 (2019). https://doi.org/10.1038/s41467-019-11600-3
- C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
- Z. Ma, L. Tao, D. Liu, Z. Li, Y. Zhang et al., Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. J. Mater. Chem. A 5(19), 9412–9417 (2017). https://doi.org/10.1039/C7TA01981E
- H. Yang, A. Naveed, Q. Li, C. Guo, J. Chen et al., Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Mater. 15, 299–307 (2018). https://doi.org/10.1016/j.ensm.2018.05.014
- Y. Wang, D. Zhou, V.P. Duran, D. Shanmukaraj, B. Sun et al., Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13(11), 3848–3879 (2020). https://doi.org/10.1039/D0EE02203A
- N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang et al., High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 2 (2020). https://doi.org/10.1039/C9EE03251G
- T. Yim, M.-S. Park, J.-S. Yu, K.J. Kim, K.Y. Im et al., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013). https://doi.org/10.1016/j.electacta.2013.06.039
- C. Fu, M.B.N. Oviedo, Y. Zhu, A. von Wald Cresce, K. Xu et al., Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 12(10), 9775–9784 (2018). https://doi.org/10.1021/acsnano.7b08778
- K. Liao, S. Chen, H. Wei, J. Fan, Q. Xu et al., Micropores of pure nanographite spheres for long cycle life and high-rate lithium–sulfur batteries. J. Mater. Chem. A 6(45), 23062–23070 (2018). https://doi.org/10.1039/C8TA08361D
- S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–sulfur battery cathodes based on pan–sulfur composites. J. Am. Chem. Soc. 137(37), 12143–12152 (2015). https://doi.org/10.1021/jacs.5b08113
- J. Ma, G. Xu, Y. Li, C. Ge, X. Li, An in situ chemically and physically confined sulfur–polymer composite for lithium–sulfur batteries with carbonate-based electrolytes. Chem. Commun. 54(100), 14093–14096 (2018). https://doi.org/10.1039/C8CC07623E
- J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9(16), 1803774 (2019). https://doi.org/10.1002/aenm.201803774
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201909339
- M.R. Kaiser, S. Chou, H.K. Liu, S.X. Dou, C. Wang et al., Structure–property relationships of organic electrolytes and their effects on Li/S battery performance. Adv. Mater. 29(48), 1700449 (2017). https://doi.org/10.1002/adma.201700449
- S. Zheng, P. Han, Z. Han, H. Zhang, Z. Tang et al., High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. Sci. Rep. 4(1), 1–7 (2014). https://doi.org/10.1038/srep04842
- Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen et al., Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angew. Chem. Int. Ed. 55(35), 10372–10375 (2016). https://doi.org/10.1002/anie.201605931
- S.S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sour. 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium–sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 1(3), 239–293 (2018). https://doi.org/10.1007/s41918-018-0010-3
- R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao et al., Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv. Energy Mater. 10(9), 1903550 (2020). https://doi.org/10.1002/aenm.201903550
- M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
- J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed et al., Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Mater. 27, 307–315 (2020). https://doi.org/10.1016/j.ensm.2020.02.013
- W.G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58(52), 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
- H. Liu, W.-H. Lai, H.-L. Yang, Y.-F. Zhu, Y.-J. Lei et al., Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. Chem. Eng. J. 408, 127348 (2020). https://doi.org/10.1016/j.cej.2020.127348
- Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu et al., NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9(11), 1803477 (2019). https://doi.org/10.1002/aenm.201803477
- G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20(2), 1252–1261 (2019). https://doi.org/10.1021/acs.nanolett.9b04719
- J. He, A. Bhargav, H. Yaghoobnejad Asl, Y. Chen, A. Manthiram, 1T’-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries. Adv. Energy Mater. 10(23), 2001017 (2020). https://doi.org/10.1002/aenm.202001017
- Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J. Mater. Chem. A 1(2), 295–301 (2013). https://doi.org/10.1039/C2TA00105E
- J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su et al., Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium–sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
- A. Manthiram, X. Yu, Ambient temperature sodium–sulfur batteries. Small 11(18), 2108–2114 (2015). https://doi.org/10.1002/smll.201403257
- H. Liu, W.-H. Lai, Y. Liang, X. Liang, Z. Yan et al., Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries. J. Mater. Chem. A 9(1), 566–574 (2021). https://doi.org/10.1039/D0TA08748C
- Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun et al., Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 57(47), 15549–15552 (2018). https://doi.org/10.1002/anie.201808311
- L. Wang, X. Chen, S. Li, J. Yang, Y. Sun et al., Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. J. Mater. Chem. A 7(20), 12732–12739 (2019). https://doi.org/10.1039/C9TA02831E
- Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
- S.S. Zhang, Role of lino3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
- F. Huang, L. Gao, Y. Zou, G. Ma, J. Zhang et al., Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 7(20), 12498–12506 (2019). https://doi.org/10.1039/C9TA02877C
- A. Gupta, A. Bhargav, A. Manthiram, Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 9(6), 1803096 (2019). https://doi.org/10.1002/aenm.201803096
- X. Zhang, T. Schiros, D. Nordlund, Y.C. Shin, J. Kong et al., X-ray spectroscopic investigation of chlorinated graphene: Surface structure and electronic effects. Adv. Funct. Mater. 25(26), 4163–4169 (2015). https://doi.org/10.1002/adfm.201500541
- H. Nesbitt, G. Bancroft, G. Henderson, R. Ho, K. Dalby et al., Bridging, non-bridging and free (O2–) oxygen in Na2O–SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study. J. Non-Cryst. Solids 357(1), 170–180 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.09.031
- S. Kumar, B. Kishore, N. Munichandraiah, Electrochemical studies of non-aqueous Na–O2 cells employing Ag-RGO as the bifunctional catalyst. RSC Adv. 6(68), 63477–63479 (2016). https://doi.org/10.1039/C6RA13596J
- R.S.C. Smart, W.M. Skinner, A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur. Surf. Interface Anal. 28(1), 101–105 (1999). https://doi.org/10.1002/(SICI)1096-9918(199908)28:1%3c101::AID-SIA627%3e3.0.CO;2-0
- M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K
- H. Wang, C. Wang, E. Matios, W. Li, Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. Int. Ed. 130(26), 7860–7863 (2018). https://doi.org/10.1002/ange.201801818
- Q. Xia, Y. Liang, Z. Lin, S. Wang, W. Lai et al., Confining ultrathin 2d superlattices in mesoporous hollow spheres renders ultrafast and high-capacity na-ion storage. Adv. Energy Mater. 10(36), 2001033 (2020). https://doi.org/10.1002/aenm.202001033
- H. Liu, L. Tao, Y. Zhang, C. Xie, P. Zhou et al., Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 9(42), 36849–36856 (2017). https://doi.org/10.1021/acsami.7b11599
- Q. Xia, Y. Huang, J. Xiao, L. Wang, Z. Lin et al., Phosphorus-modulation-triggered surface disorder in titanium dioxide nanocrystals enables exceptional sodium-storage performance. Angew. Chem. Int. Ed. 131(12), 4062–4066 (2019). https://doi.org/10.1002/anie.201813721
References
Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang et al., A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na–S batteries. Adv. Mater. 32(8), 1906700 (2020). https://doi.org/10.1002/adma.201906700
Y. Wang, Y. Wang, Y.-X. Wang, X. Feng, W. Chen et al., Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5(10), 2547–2570 (2019). https://doi.org/10.1016/j.chempr.2019.05.026
Y.X. Wang, W.H. Lai, Y.X. Wang, S.L. Chou, X. Ai et al., Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage. Angew. Chem. Int. Ed. 58(51), 18324–18337 (2019). https://doi.org/10.1002/anie.201902552
H. Liu, W. Pei, W.-H. Lai, Z. Yan, H. Yang et al., Electrocatalysing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries. ACS Nano 14(6), 7259–7268 (2020). https://doi.org/10.1021/acsnano.0c02488
H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
Y.-X. Wang, J. Yang, W. Lai, S.-L. Chou, Q.-F. Gu et al., Achieving high-performance room-temperature sodium–sulfur batteries with S@ interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138(51), 16576–16579 (2016). https://doi.org/10.1021/jacs.6b08685
H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu et al., Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13(33), 1700758 (2017). https://doi.org/10.1002/smll.201700758
X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 10(32), 1904163 (2020). https://doi.org/10.1002/aenm.201904163
Z. Zheng, J. Jiang, H. Guo, C. Li, K. Konstantinov et al., Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na–O2 batteries. Nano Energy 81, 105529 (2021). https://doi.org/10.1016/j.nanoen.2020.105529
G. Liang, C. Didier, Z. Guo, W.K. Pang, V.K. Peterson, Understanding rechargeable battery function using in operando neutron powder diffraction. Adv. Mater. 32(18), 1904528 (2020). https://doi.org/10.1002/adma.201904528
G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59(26), 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du et al., Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 33(1), 2006313 (2020). https://doi.org/10.1002/adma.202006313
S.L. Chou, S.X. Dou, X. Wang, From fundamental research to applications: the success story of the institute for superconducting and electronic materials. Small 17(9), 2007636 (2021). https://doi.org/10.1002/smll.202007636
C. Wu, Y. Hou, J. Jiang, H. Guo, H.-K. Liu et al., Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. J. Power Sour. 470, 228317 (2020). https://doi.org/10.1016/j.jpowsour.2020.228317
Y.F. Zhu, Y. Xiao, W.B. Hua, S. Indris, S.X. Dou et al., Manipulating layered P2@ P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 132(24), 9385–9390 (2020). https://doi.org/10.1002/ange.201915650
P. Li, X. Zheng, H. Yu, G. Zhao, J. Shu et al., Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Mater. 16, 512–518 (2019). https://doi.org/10.1016/j.ensm.2018.09.014
J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov et al., Li2S-based Li-ion sulfur batteries: progress and prospects. Small 17(9), 1903934 (2019). https://doi.org/10.1002/smll.201903934
J. Jiang, Q. Fan, Z. Zheng, M.R. Kaiser, Q. Gu et al., Nanostructured CoS2-decorated hollow carbon spheres-a performance booster for Li-ion/sulfur batteries. ACS Appl. Energy Mater. 3(7), 6447–6459 (2020). https://doi.org/10.1021/acsaem.0c00699
B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9(1), 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
W.H. Lai, H. Wang, L. Zheng, Q. Jiang, Z.C. Yan et al., General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na–S batteries. Angew. Chem. Int. Ed. 132(49), 22355–22362 (2020). https://doi.org/10.1002/ange.202009400
Z. Yan, J. Xiao, W. Lai, L. Wang, F. Gebert et al., Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 10(1), 4793 (2019). https://doi.org/10.1038/s41467-019-11600-3
C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
Z. Ma, L. Tao, D. Liu, Z. Li, Y. Zhang et al., Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. J. Mater. Chem. A 5(19), 9412–9417 (2017). https://doi.org/10.1039/C7TA01981E
H. Yang, A. Naveed, Q. Li, C. Guo, J. Chen et al., Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Mater. 15, 299–307 (2018). https://doi.org/10.1016/j.ensm.2018.05.014
Y. Wang, D. Zhou, V.P. Duran, D. Shanmukaraj, B. Sun et al., Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13(11), 3848–3879 (2020). https://doi.org/10.1039/D0EE02203A
N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang et al., High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 2 (2020). https://doi.org/10.1039/C9EE03251G
T. Yim, M.-S. Park, J.-S. Yu, K.J. Kim, K.Y. Im et al., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013). https://doi.org/10.1016/j.electacta.2013.06.039
C. Fu, M.B.N. Oviedo, Y. Zhu, A. von Wald Cresce, K. Xu et al., Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 12(10), 9775–9784 (2018). https://doi.org/10.1021/acsnano.7b08778
K. Liao, S. Chen, H. Wei, J. Fan, Q. Xu et al., Micropores of pure nanographite spheres for long cycle life and high-rate lithium–sulfur batteries. J. Mater. Chem. A 6(45), 23062–23070 (2018). https://doi.org/10.1039/C8TA08361D
S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–sulfur battery cathodes based on pan–sulfur composites. J. Am. Chem. Soc. 137(37), 12143–12152 (2015). https://doi.org/10.1021/jacs.5b08113
J. Ma, G. Xu, Y. Li, C. Ge, X. Li, An in situ chemically and physically confined sulfur–polymer composite for lithium–sulfur batteries with carbonate-based electrolytes. Chem. Commun. 54(100), 14093–14096 (2018). https://doi.org/10.1039/C8CC07623E
J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9(16), 1803774 (2019). https://doi.org/10.1002/aenm.201803774
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201909339
M.R. Kaiser, S. Chou, H.K. Liu, S.X. Dou, C. Wang et al., Structure–property relationships of organic electrolytes and their effects on Li/S battery performance. Adv. Mater. 29(48), 1700449 (2017). https://doi.org/10.1002/adma.201700449
S. Zheng, P. Han, Z. Han, H. Zhang, Z. Tang et al., High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. Sci. Rep. 4(1), 1–7 (2014). https://doi.org/10.1038/srep04842
Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen et al., Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angew. Chem. Int. Ed. 55(35), 10372–10375 (2016). https://doi.org/10.1002/anie.201605931
S.S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sour. 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium–sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 1(3), 239–293 (2018). https://doi.org/10.1007/s41918-018-0010-3
R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao et al., Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv. Energy Mater. 10(9), 1903550 (2020). https://doi.org/10.1002/aenm.201903550
M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed et al., Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Mater. 27, 307–315 (2020). https://doi.org/10.1016/j.ensm.2020.02.013
W.G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58(52), 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
H. Liu, W.-H. Lai, H.-L. Yang, Y.-F. Zhu, Y.-J. Lei et al., Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. Chem. Eng. J. 408, 127348 (2020). https://doi.org/10.1016/j.cej.2020.127348
Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu et al., NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9(11), 1803477 (2019). https://doi.org/10.1002/aenm.201803477
G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20(2), 1252–1261 (2019). https://doi.org/10.1021/acs.nanolett.9b04719
J. He, A. Bhargav, H. Yaghoobnejad Asl, Y. Chen, A. Manthiram, 1T’-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries. Adv. Energy Mater. 10(23), 2001017 (2020). https://doi.org/10.1002/aenm.202001017
Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J. Mater. Chem. A 1(2), 295–301 (2013). https://doi.org/10.1039/C2TA00105E
J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su et al., Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium–sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
A. Manthiram, X. Yu, Ambient temperature sodium–sulfur batteries. Small 11(18), 2108–2114 (2015). https://doi.org/10.1002/smll.201403257
H. Liu, W.-H. Lai, Y. Liang, X. Liang, Z. Yan et al., Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries. J. Mater. Chem. A 9(1), 566–574 (2021). https://doi.org/10.1039/D0TA08748C
Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun et al., Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 57(47), 15549–15552 (2018). https://doi.org/10.1002/anie.201808311
L. Wang, X. Chen, S. Li, J. Yang, Y. Sun et al., Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. J. Mater. Chem. A 7(20), 12732–12739 (2019). https://doi.org/10.1039/C9TA02831E
Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
S.S. Zhang, Role of lino3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
F. Huang, L. Gao, Y. Zou, G. Ma, J. Zhang et al., Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 7(20), 12498–12506 (2019). https://doi.org/10.1039/C9TA02877C
A. Gupta, A. Bhargav, A. Manthiram, Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 9(6), 1803096 (2019). https://doi.org/10.1002/aenm.201803096
X. Zhang, T. Schiros, D. Nordlund, Y.C. Shin, J. Kong et al., X-ray spectroscopic investigation of chlorinated graphene: Surface structure and electronic effects. Adv. Funct. Mater. 25(26), 4163–4169 (2015). https://doi.org/10.1002/adfm.201500541
H. Nesbitt, G. Bancroft, G. Henderson, R. Ho, K. Dalby et al., Bridging, non-bridging and free (O2–) oxygen in Na2O–SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study. J. Non-Cryst. Solids 357(1), 170–180 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.09.031
S. Kumar, B. Kishore, N. Munichandraiah, Electrochemical studies of non-aqueous Na–O2 cells employing Ag-RGO as the bifunctional catalyst. RSC Adv. 6(68), 63477–63479 (2016). https://doi.org/10.1039/C6RA13596J
R.S.C. Smart, W.M. Skinner, A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur. Surf. Interface Anal. 28(1), 101–105 (1999). https://doi.org/10.1002/(SICI)1096-9918(199908)28:1%3c101::AID-SIA627%3e3.0.CO;2-0
M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K
H. Wang, C. Wang, E. Matios, W. Li, Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. Int. Ed. 130(26), 7860–7863 (2018). https://doi.org/10.1002/ange.201801818
Q. Xia, Y. Liang, Z. Lin, S. Wang, W. Lai et al., Confining ultrathin 2d superlattices in mesoporous hollow spheres renders ultrafast and high-capacity na-ion storage. Adv. Energy Mater. 10(36), 2001033 (2020). https://doi.org/10.1002/aenm.202001033
H. Liu, L. Tao, Y. Zhang, C. Xie, P. Zhou et al., Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 9(42), 36849–36856 (2017). https://doi.org/10.1021/acsami.7b11599
Q. Xia, Y. Huang, J. Xiao, L. Wang, Z. Lin et al., Phosphorus-modulation-triggered surface disorder in titanium dioxide nanocrystals enables exceptional sodium-storage performance. Angew. Chem. Int. Ed. 131(12), 4062–4066 (2019). https://doi.org/10.1002/anie.201813721