Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries
Corresponding Author: Hongge Pan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 151
Abstract
The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
Highlights:
1 SiO2-mediated ZIF-L is developed to prepare Co–N4@2D/3D carbon.
2 Co–N4@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support.
3 Co–N4@2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 21, 4743–4755 (2011). https://doi.org/10.1039/C0JM01921F
- H.G. Pan, Y.F. Liu, M.X. Gao, Y.F. Zhu, Y.Q. Lei et al., An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=3.15–3.80) hydrogen storage electrode alloys. J. Alloys Compd. 351, 228–234 (2003). https://doi.org/10.1016/S0925-8388(02)01045-9
- H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=2.5–5.0) hydrogen storage alloys. J. Electrochem. Soc. 150, 565–570 (2005). https://doi.org/10.1016/j.jallcom.2003.12.011
- B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan et al., A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9(M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd. 376, 186–195 (2004). https://doi.org/10.1016/j.jallcom.2003.12.011
- R.R. Wang, B.S. Li, L.F. Lai, M.Z. Hou, J.C. Gao et al., 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chem. Eng. J. 355, 752–759 (2019). https://doi.org/10.1016/j.cej.2018.08.136
- Z.L. Chen, R.B. Wu, H. Wang, K.H.L. Zhang, Y. Song et al., Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 11, 966–978 (2018). https://doi.org/10.1007/s12274-017-1709-x
- Y. Liu, Z.L. Chen, H.X. Jia, H.B. Xu, M. Liu et al., Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 13, 6113–6124 (2019). https://doi.org/10.1021/acsnano.9b02928
- S.Z. Zhang, N. Zhong, X. Zhou, M.J. Zhang, X.P. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
- Z. Zhang, D. Luo, G.R. Li, R. Gao, M. Li et al., Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries. Matter 3, 1–15 (2020). https://doi.org/10.1016/j.matt.2020.06.002
- J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu et al., Rational design of porous N–Ti3C2 MXene@CNT microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
- Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32, 2002168 (2020). https://doi.org/10.1002/adma.202002168
- Y.N. An, C. Luo, D.H. Yao, S.J. Wen, P.T. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
- B. Zhang, C. Luo, Y.Q. Deng, Z.J. Huang, G.M. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
- E. Cha, M. Patel, S. Bhoyate, V. Prasad, W.B. Choi, Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horiz. 5, 808–831 (2020). https://doi.org/10.1039/C9NH00730J
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- S.Y. Zhou, S. Yang, X.W. Ding, Y.C. Lai, H.G. Nie et al., Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries. ACS Nano 14, 7538–7551 (2020). https://doi.org/10.1021/acsnano.0c03403
- C. Ma, Y.M. Feng, X.J. Liu, Y. Yang, L.J. Zhou et al., Dual-engineered separator for highly robust, all-climate lithium–sulfur batteries. Energy Storage Mater. 32, 46–54 (2020). https://doi.org/10.1016/j.ensm.2020.07.034
- J. Zheng, G.B. Ji, X.L. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774
- L.L. Zhang, Y.J. Wang, Z.Q. Niu, J. Chen, Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries. Carbon 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067
- H.B. Xu, Y. Liu, Q.Y. Bai, R.B. Wu, Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries. J. Mater. Chem. A 7, 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F
- Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9, 3061–3070 (2016). https://doi.org/10.1016/j.nantod.2017.12.010
- J.J. Park, S.H. Yu, Y.E. Sung, Design of structural and functional nanomaterials for lithium–sulfur batteries. Nano Today 18, 35–64 (2018). https://doi.org/10.1016/j.nantod.2017.12.010
- R.R. Li, X.J. Zhou, H.J. Shen, M.H. Yang, C.L. Li, Conductive holey MoO2–Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries. ACS Nano 13, 10049–10061 (2019). https://doi.org/10.1021/acsnano.9b02231
- Y.G. Zhang, G.R. Li, J.Y. Wang, G.L. Cui, X.L. Wei et al., Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv. Funct. Mater. 30, 2001165 (2020). https://doi.org/10.1002/adfm.202001165
- Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
- X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
- J.D. Zhu, P. Zhu, C.Y. Yan, X. Dong, X.W. Zhang, Recent progress in polymer materials for advanced lithium–sulfur batteries. Prog. Polym. Sci. 90, 118–163 (2019). https://doi.org/10.1016/j.progpolymsci.2018.12.002
- G.M. Zhou, S.Y. Zhao, T.S. Wang, S.Z. Yang, H. Chen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20, 1252–1261 (2020). https://doi.org/10.1021/acs.nanolett.9b04719
- C.G. Wang, H.W. Song, C.C. Yu, Z. Ullah, Z.X. Guan et al., Iron single-atom catalyst anchored on nitrogenrich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 8, 3421–3430 (2020). https://doi.org/10.1039/C9TA11680J
- Y.J. Li, J.B. Wu, B. Zhang, W.Y. Wang, G.Q. Zhang et al., Fast conversion and controlled deposition of lithium(poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 30, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.05.022
- Y.J. Li, G.L. Chen, J.R. Mou, Y.Z. Liu, S.F. Xue et al., Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 28, 196–204 (2020). https://doi.org/10.1016/j.ensm.2020.03.008
- Z.Z. Du, X.J. Chen, W. Hu, C.H. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- J. Xie, B.Q. Li, H.J. Peng, Y.W. Song, M. Zhao et al., Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv. Mater. 31, 1903813 (2019). https://doi.org/10.1002/adma.201903813
- F. Ma, Y.Y. Wan, X.M. Wang, X.C. Wang, J.H. Liang et al., Bifunctional atomically dispersed Mo–N2/C nanosheets boost lithium sulfide deposition decomposition for stable lithium–sulfur batteries. ACS Nano 14, 10115–10126 (2020). https://doi.org/10.1021/acsnano.0c03325
- X.P. Han, X.F. Ling, Y. Wang, T.Y. Ma, C. Zhong et al., Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.201901109
- H.L. Fei, J.C. Dong, C.Z. Wan, Z.P. Zhao, X. Xu et al., Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146
- Y.H. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst et al., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/C8EE02694G
- Y. Ha, B. Fei, X.X. Yan, H.B. Xu, Z.L. Chen et al., Atomically dispersed co-pyridinic N–C for superior oxygen reduction reaction. Adv. Energy Mater. 10, 2002592 (2020). https://doi.org/10.1002/aenm.202002592
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
- F. Wu, C. Pan, C.T. He, Y.H. Han, W.J. Ma et al., A single-atom Co–N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 142, 16861–16867 (2020). https://doi.org/10.1021/jacs.0c07790
- H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie et al., A cooperative interface for highly efficient lithium–sulfur batteries. Adv. Mater. 28, 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
- Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, C.L. Li, Adenine derivative host with interlaced 2d structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li–S batteries. ACS Nano 13, 9520–9532 (2019). https://doi.org/10.1021/acsnano.9b04519
- X.C. Gao, D. Zhou, Y. Chen, W.J. Wu, D.W. Su et al., Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium–sulfur batteries. Commun. Chem. 2, 66 (2019). https://doi.org/10.1038/s42004-019-0166-8
- B. Fei, C.Q. Zhang, D.P. Cai, J.Y. Zheng, Q.D. Chen et al., Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries. ACS Nano 15, 6849–6860 (2021). https://doi.org/10.1021/acsnano.0c10603
- Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31, 1902228 (2019). https://doi.org/10.1002/adma.201970236
- L.L. Zhang, D.B. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31, 1903955 (2019). https://doi.org/10.1002/adma.201903955
- R.C. Wang, C. Luo, T.S. Wang, G.M. Zhou, Y.Q. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32, 2000315 (2020). https://doi.org/10.1002/adma.202000315
- R.R. Wang, Z.L. Chen, Y.Q. Sun, C. Chang, C.F. Ding et al., Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium–sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686
- D. Luo, Z. Zhang, G.R. Li, S.B. Cheng, S. Li et al., Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5–x nanocluster toward superior Li–S performance. ACS Nano 14, 4849–4860 (2020). https://doi.org/10.1021/acsnano.0c00799
- Y.F. Yang, W.K. Wang, L.X. Li, B.C. Li, J.P. Zhang, Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 8, 3692–3700 (2020). https://doi.org/10.1039/C9TA12921A
- Z.L. Chen, R.B. Wu, M. Liu, H. Wang, H.B. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046
- Y. Tian, G.R. Li, Y.G. Zhang, D. Luo, X. Wang et al., Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Adv. Mater. 32, 1904876 (2020). https://doi.org/10.1002/adma.201904876
- X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu et al., Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries. Adv. Mater. 31, 1901220 (2019). https://doi.org/10.1002/adma.201901220
References
Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 21, 4743–4755 (2011). https://doi.org/10.1039/C0JM01921F
H.G. Pan, Y.F. Liu, M.X. Gao, Y.F. Zhu, Y.Q. Lei et al., An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=3.15–3.80) hydrogen storage electrode alloys. J. Alloys Compd. 351, 228–234 (2003). https://doi.org/10.1016/S0925-8388(02)01045-9
H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=2.5–5.0) hydrogen storage alloys. J. Electrochem. Soc. 150, 565–570 (2005). https://doi.org/10.1016/j.jallcom.2003.12.011
B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan et al., A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9(M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd. 376, 186–195 (2004). https://doi.org/10.1016/j.jallcom.2003.12.011
R.R. Wang, B.S. Li, L.F. Lai, M.Z. Hou, J.C. Gao et al., 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chem. Eng. J. 355, 752–759 (2019). https://doi.org/10.1016/j.cej.2018.08.136
Z.L. Chen, R.B. Wu, H. Wang, K.H.L. Zhang, Y. Song et al., Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 11, 966–978 (2018). https://doi.org/10.1007/s12274-017-1709-x
Y. Liu, Z.L. Chen, H.X. Jia, H.B. Xu, M. Liu et al., Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 13, 6113–6124 (2019). https://doi.org/10.1021/acsnano.9b02928
S.Z. Zhang, N. Zhong, X. Zhou, M.J. Zhang, X.P. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
Z. Zhang, D. Luo, G.R. Li, R. Gao, M. Li et al., Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries. Matter 3, 1–15 (2020). https://doi.org/10.1016/j.matt.2020.06.002
J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu et al., Rational design of porous N–Ti3C2 MXene@CNT microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32, 2002168 (2020). https://doi.org/10.1002/adma.202002168
Y.N. An, C. Luo, D.H. Yao, S.J. Wen, P.T. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
B. Zhang, C. Luo, Y.Q. Deng, Z.J. Huang, G.M. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
E. Cha, M. Patel, S. Bhoyate, V. Prasad, W.B. Choi, Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horiz. 5, 808–831 (2020). https://doi.org/10.1039/C9NH00730J
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
S.Y. Zhou, S. Yang, X.W. Ding, Y.C. Lai, H.G. Nie et al., Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries. ACS Nano 14, 7538–7551 (2020). https://doi.org/10.1021/acsnano.0c03403
C. Ma, Y.M. Feng, X.J. Liu, Y. Yang, L.J. Zhou et al., Dual-engineered separator for highly robust, all-climate lithium–sulfur batteries. Energy Storage Mater. 32, 46–54 (2020). https://doi.org/10.1016/j.ensm.2020.07.034
J. Zheng, G.B. Ji, X.L. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774
L.L. Zhang, Y.J. Wang, Z.Q. Niu, J. Chen, Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries. Carbon 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067
H.B. Xu, Y. Liu, Q.Y. Bai, R.B. Wu, Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries. J. Mater. Chem. A 7, 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F
Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9, 3061–3070 (2016). https://doi.org/10.1016/j.nantod.2017.12.010
J.J. Park, S.H. Yu, Y.E. Sung, Design of structural and functional nanomaterials for lithium–sulfur batteries. Nano Today 18, 35–64 (2018). https://doi.org/10.1016/j.nantod.2017.12.010
R.R. Li, X.J. Zhou, H.J. Shen, M.H. Yang, C.L. Li, Conductive holey MoO2–Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries. ACS Nano 13, 10049–10061 (2019). https://doi.org/10.1021/acsnano.9b02231
Y.G. Zhang, G.R. Li, J.Y. Wang, G.L. Cui, X.L. Wei et al., Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv. Funct. Mater. 30, 2001165 (2020). https://doi.org/10.1002/adfm.202001165
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
J.D. Zhu, P. Zhu, C.Y. Yan, X. Dong, X.W. Zhang, Recent progress in polymer materials for advanced lithium–sulfur batteries. Prog. Polym. Sci. 90, 118–163 (2019). https://doi.org/10.1016/j.progpolymsci.2018.12.002
G.M. Zhou, S.Y. Zhao, T.S. Wang, S.Z. Yang, H. Chen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20, 1252–1261 (2020). https://doi.org/10.1021/acs.nanolett.9b04719
C.G. Wang, H.W. Song, C.C. Yu, Z. Ullah, Z.X. Guan et al., Iron single-atom catalyst anchored on nitrogenrich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 8, 3421–3430 (2020). https://doi.org/10.1039/C9TA11680J
Y.J. Li, J.B. Wu, B. Zhang, W.Y. Wang, G.Q. Zhang et al., Fast conversion and controlled deposition of lithium(poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 30, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.05.022
Y.J. Li, G.L. Chen, J.R. Mou, Y.Z. Liu, S.F. Xue et al., Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 28, 196–204 (2020). https://doi.org/10.1016/j.ensm.2020.03.008
Z.Z. Du, X.J. Chen, W. Hu, C.H. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
J. Xie, B.Q. Li, H.J. Peng, Y.W. Song, M. Zhao et al., Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv. Mater. 31, 1903813 (2019). https://doi.org/10.1002/adma.201903813
F. Ma, Y.Y. Wan, X.M. Wang, X.C. Wang, J.H. Liang et al., Bifunctional atomically dispersed Mo–N2/C nanosheets boost lithium sulfide deposition decomposition for stable lithium–sulfur batteries. ACS Nano 14, 10115–10126 (2020). https://doi.org/10.1021/acsnano.0c03325
X.P. Han, X.F. Ling, Y. Wang, T.Y. Ma, C. Zhong et al., Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.201901109
H.L. Fei, J.C. Dong, C.Z. Wan, Z.P. Zhao, X. Xu et al., Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146
Y.H. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst et al., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/C8EE02694G
Y. Ha, B. Fei, X.X. Yan, H.B. Xu, Z.L. Chen et al., Atomically dispersed co-pyridinic N–C for superior oxygen reduction reaction. Adv. Energy Mater. 10, 2002592 (2020). https://doi.org/10.1002/aenm.202002592
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
F. Wu, C. Pan, C.T. He, Y.H. Han, W.J. Ma et al., A single-atom Co–N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 142, 16861–16867 (2020). https://doi.org/10.1021/jacs.0c07790
H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019). https://doi.org/10.1002/aenm.201802768
H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie et al., A cooperative interface for highly efficient lithium–sulfur batteries. Adv. Mater. 28, 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, C.L. Li, Adenine derivative host with interlaced 2d structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li–S batteries. ACS Nano 13, 9520–9532 (2019). https://doi.org/10.1021/acsnano.9b04519
X.C. Gao, D. Zhou, Y. Chen, W.J. Wu, D.W. Su et al., Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium–sulfur batteries. Commun. Chem. 2, 66 (2019). https://doi.org/10.1038/s42004-019-0166-8
B. Fei, C.Q. Zhang, D.P. Cai, J.Y. Zheng, Q.D. Chen et al., Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries. ACS Nano 15, 6849–6860 (2021). https://doi.org/10.1021/acsnano.0c10603
Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31, 1902228 (2019). https://doi.org/10.1002/adma.201970236
L.L. Zhang, D.B. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31, 1903955 (2019). https://doi.org/10.1002/adma.201903955
R.C. Wang, C. Luo, T.S. Wang, G.M. Zhou, Y.Q. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32, 2000315 (2020). https://doi.org/10.1002/adma.202000315
R.R. Wang, Z.L. Chen, Y.Q. Sun, C. Chang, C.F. Ding et al., Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium–sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686
D. Luo, Z. Zhang, G.R. Li, S.B. Cheng, S. Li et al., Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5–x nanocluster toward superior Li–S performance. ACS Nano 14, 4849–4860 (2020). https://doi.org/10.1021/acsnano.0c00799
Y.F. Yang, W.K. Wang, L.X. Li, B.C. Li, J.P. Zhang, Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 8, 3692–3700 (2020). https://doi.org/10.1039/C9TA12921A
Z.L. Chen, R.B. Wu, M. Liu, H. Wang, H.B. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046
Y. Tian, G.R. Li, Y.G. Zhang, D. Luo, X. Wang et al., Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Adv. Mater. 32, 1904876 (2020). https://doi.org/10.1002/adma.201904876
X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu et al., Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries. Adv. Mater. 31, 1901220 (2019). https://doi.org/10.1002/adma.201901220