Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review
Corresponding Author: Andrei L. Kholkin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 199
Abstract
Motion-driven electromagnetic-triboelectric energy generators (E-TENGs) hold a great potential to provide higher voltages, higher currents and wider operating bandwidths than both electromagnetic and triboelectric generators standing alone. Therefore, they are promising solutions to autonomously supply a broad range of highly sophisticated devices. This paper provides a thorough review focused on major recent breakthroughs in the area of electromagnetic-triboelectric vibrational energy harvesting. A detailed analysis was conducted on various architectures including rotational, pendulum, linear, sliding, cantilever, flexible blade, multidimensional and magnetoelectric, and the following hybrid technologies. They enable highly efficient ways to harvest electric energy from many forms of vibrational, rotational, biomechanical, wave, wind and thermal sources, among others. Open-circuit voltages up to 75 V, short-circuit currents up to 60 mA and instantaneous power up to 144 mW were already achieved by these nanogenerators. Their transduction mechanisms, including proposed models to make intelligible the involved physical phenomena, are also overviewed here. A comprehensive analysis was performed to compare their respective construction designs, external excitations and electric outputs. The results highlight the potential of hybrid E-TENGs to convert unused mechanical motion into electric energy for both large- and small-scale applications. Finally, this paper proposes future research directions toward optimization of energy conversion efficiency, power management, durability and stability, packaging, energy storage, operation input, research of transduction mechanisms, quantitative standardization, system integration, miniaturization and multi-energy hybrid cells.
Highlights:
1 An up-to-date review of hybrid triboelectric-electromagnetic nanogenerators is provided.
2 Rotational, pendulum, linear, sliding, cantilever, flexible blade, multidimensional, and magnetoelectric hybrid technologies are thoroughly analyzed.
3 Promising results highlight the potential of these hybrid technologies for both small-scale and large-scale powering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250 (2015). https://doi.org/10.1039/C5EE01532D
- Z.L. Wang, Self-powered nanotech. Sci. Am. 298(1), 82 (2008). https://doi.org/10.1038/scientificamerican0108-82
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533 (2013). https://doi.org/10.1021/nn404614z
- M.P. Soares dos Santos, J. Coutinho, A. Marote, B. Sousa, A. Ramos et al., Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9(1), 5001 (2019). https://doi.org/10.1038/s41598-019-41540-3
- M.P. Soares Dos Santos, R. Bernardo, L. Henriques, A. Ramos, J.A.F. Ferreira et al., Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci. Rep. 11(1), 3449 (2021). https://doi.org/10.1038/s41598-021-82589-3
- B. Otis, J. Rabaey, Ultra-Low Power Wireless Technologies for Sensor Networks (Springer, 2007). https://doi.org/10.1007/978-0-387-49313-8
- S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations (Springer, 2004). https://doi.org/10.1007/978-1-4615-0485-6
- S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra et al., A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3 (2017). https://doi.org/10.1515/ehs-2016-0028
- S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19(1), 167 (2007). https://doi.org/10.1007/s10832-007-9043-4
- K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17(4), 043001 (2008). https://doi.org/10.1088/0964-1726/17/4/043001
- S. Priya, D.J. Inman, Energy Harvesting Technologies (Springer, 2009). https://doi.org/10.1007/978-0-387-76464-1
- N.E. Dutoit, B.L. Wardle, S.-G. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121 (2005). https://doi.org/10.1080/10584580590964574
- S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
- E. Romero, R.O. Warrington, M.R. Neuman, Energy scavenging sources for biomedical sensors. Physiol. Meas. 30(9), R35 (2009). https://doi.org/10.1088/0967-3334/30/9/R01
- J.W. Matiko, N.J. Grabham, S.P. Beeby, M.J. Tudor, Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 012002 (2014). https://doi.org/10.1088/0957-0233/25/1/012002
- S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Compet. Comm. 26(11), 1131 (2003). https://doi.org/10.1016/S0140-3664(02)00248-7
- F.U. Khan, Izhar, State of the art in acoustic energy harvesting. J. Micromech. Microeng. 25(2), 023001 (2015). https://doi.org/10.1088/0960-1317/25/2/023001
- W. Gao, R. Brennan, Y. Hu, M. Wuttig, G. Yuan et al., Energy transduction ferroic materials. Mater. Today 21(7), 771 (2018). https://doi.org/10.1016/j.mattod.2018.01.032
- J.V. Vidal, A.V. Turutin, I.V. Kubasov, A.M. Kislyuk, M.D. Malinkovich et al., Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(9), 1480 (2019). https://doi.org/10.1109/tuffc.2019.2908396
- J.V. Vidal, A.V. Turutin, I.V. Kubasov, A.M. Kislyuk, D.A. Kiselev et al., Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2020). https://doi.org/10.1109/tuffc.2020.2967842
- S.D. Moss, O.R. Payne, G.A. Hart, C. Ung, Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater. Struct. 24(2), 023001 (2015). https://doi.org/10.1088/0964-1726/24/2/023001
- A. Khaligh, P. Zeng, C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art. IEEE Trans. Ind. Electron. 57(3), 850 (2010). https://doi.org/10.1109/TIE.2009.2024652
- F.U. Khan, M.U. Qadir, State-of-the-art in vibration-based electrostatic energy harvesting. J. Micromech. Microeng. 26(10), 103001 (2016). https://doi.org/10.1088/0960-1317/26/10/103001
- S. Boisseau, G. Despesse, B.A. Seddik, Electrostatic conversion for vibration energy harvesting, in Small-Scale Energy Harvesting. ed. by M. Lallart (IntechOpen, 2012). https://doi.org/10.5772/51360
- F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283 (2016). https://doi.org/10.1002/adma.201504299
- Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. 4(7), 1700029 (2017). https://doi.org/10.1002/advs.201700029
- Z. Lin, J. Chen, J. Yang, Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 5651613 (2016). https://doi.org/10.1155/2016/5651613
- J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480 (2017). https://doi.org/10.1016/j.joule.2017.09.004
- Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 1(1), 10 (2017). https://doi.org/10.1038/s41528-017-0007-8
- Q. Shi, T. He, C. Lee, More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
- Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
- Z. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators (Springer, 2016). https://doi.org/10.1007/978-3-319-40039-6
- Y. Zi, Z.L. Wang, Nanogenerators: an emerging technology towards nanoenergy. APL Mater. 5(7), 074103 (2017). https://doi.org/10.1063/1.4977208
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- M.A. Halim, R. Rantz, Q. Zhang, L. Gu, K. Yang et al., An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy 217, 66 (2018). https://doi.org/10.1016/j.apenergy.2018.02.093
- D.F. Berdy, D.J. Valentino, D. Peroulis, Design and optimization of a magnetically sprung block magnet vibration energy harvester. Sensors Actuators A-Phys. 218, 69 (2014). https://doi.org/10.1016/j.sna.2014.06.011
- J. He, X. Fan, J. Mu, C. Wang, J. Qian et al., 3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system. Energy 194, 116871 (2020). https://doi.org/10.1016/j.energy.2019.116871
- A. Khaligh, P. Zeng, C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57(3), 850 (2010). https://doi.org/10.1109/TIE.2009.2024652
- A. Harb, Energy harvesting: state-of-the-art. Renew. Energy 36(10), 2641 (2011). https://doi.org/10.1016/j.renene.2010.06.014
- P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457 (2008). https://doi.org/10.1109/JPROC.2008.927494
- T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435 (2017). https://doi.org/10.1016/j.rser.2016.12.073
- S.P. Beeby, T. O’Donnell, Electromagnetic energy harvesting, in Energy Harvesting Technologies. ed. by S. Priya, D.J. Inman (Springer, Boston, 2009). https://doi.org/10.1007/978-0-387-76464-1_5
- C. Cepnik, R. Lausecker, U. Wallrabe, Review on electrodynamic energy harvesters—a classification approach. Micromachines 4(2), 168 (2013). https://doi.org/10.3390/mi4020168
- B. Maamer, A. Boughamoura, A.M.R. Fath El-Bab, L.A. Francis, F. Tounsi, A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manag. 199, 111973 (2019). https://doi.org/10.1016/j.enconman.2019.111973
- W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10(1), 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
- Y. Hu, J. Yang, S. Niu, W. Wu, Z.L. Wang, Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 8(7), 7442 (2014). https://doi.org/10.1021/nn502684f
- X. Wang, S. Wang, Y. Yang, Z.L. Wang, Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 9(4), 4553 (2015). https://doi.org/10.1021/acsnano.5b01187
- Y. Wu, X. Zhong, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 7(11), 1631 (2014). https://doi.org/10.1007/s12274-014-0523-y
- L. Zheng, Z.-H. Lin, G. Cheng, W. Wu, X. Wen et al., Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9, 291 (2014). https://doi.org/10.1016/j.nanoen.2014.07.024
- Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429 (2013). https://doi.org/10.1039/C3EE41485J
- Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou et al., Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6(6), 1744 (2013). https://doi.org/10.1039/C3EE40764K
- Y. Bai, H. Jantunen, J. Juuti, Hybrid, multi-source, and integrated energy harvesters. Front. Mater. 5, 65 (2018). https://doi.org/10.3389/fmats.2018.00065
- T. Zhang, T. Yang, M. Zhang, C.R. Bowen, Y. Yang, Recent progress in hybridized nanogenerators for energy scavenging. iScience 23(11), 101689 (2020). https://doi.org/10.1016/j.isci.2020.101689
- T. Zhang, Z. Wen, Y. Liu, Z. Zhang, Y. Xie et al., Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives. iScience 23(12), 101813 (2020). https://doi.org/10.1016/j.isci.2020.101813
- P.D. Mitcheson, E.K. Reilly, T. Toh, P.K. Wright, E.M. Yeatman, Performance limits of the three MEMS inertial energy generator transduction types. J. Micromech. Microeng. 17(9), S211 (2007). https://doi.org/10.1088/0960-1317/17/9/s01
- H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu, Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustain. Energy Fuels 4(3), 1063 (2020). https://doi.org/10.1039/C9SE01184F
- A. Marin, S. Bressers, S. Priya, Multiple cell configuration electromagnetic vibration energy harvester. J. Phys. D-Appl. Phys. 44(29), 295501 (2011). https://doi.org/10.1088/0022-3727/44/29/295501
- Y. Zi, H. Guo, Z. Wen, M.H. Yeh, C. Hu et al., Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797 (2016). https://doi.org/10.1021/acsnano.6b01569
- U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429 (2016). https://doi.org/10.1021/acsnano.6b04213
- J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
- S. Xu, X. Fu, G. Liu, T. Tong, T. Bu et al., Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. iScience 24(4), 102318 (2021). https://doi.org/10.1016/j.isci.2021.102318
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580 (2014). https://doi.org/10.1002/adma.201400207
- X. Zhong, Y. Yang, X. Wang, Z.L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13, 771 (2015). https://doi.org/10.1016/j.nanoen.2015.03.012
- H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A Water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
- Y. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy Environ. Sci. 12(9), 2678 (2019). https://doi.org/10.1039/C9EE01245A
- R. Cao, T. Zhou, B. Wang, Y. Yin, Z. Yuan et al., Rotating-sleeve triboelectric–electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 11(8), 8370 (2017). https://doi.org/10.1021/acsnano.7b03683
- B. Zhang, J. Chen, L. Jin, W. Deng, L. Zhang et al., Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10(6), 6241 (2016). https://doi.org/10.1021/acsnano.6b02384
- P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433 (2018). https://doi.org/10.1021/acsnano.8b04654
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- Z. Wen, H. Guo, Y. Zi, M.-H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526 (2016). https://doi.org/10.1021/acsnano.6b03293
- Y. Zhong, H. Zhao, Y. Guo, P. Rui, S. Shi et al., An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Materi. Technol. 4(12), 1900741 (2019). https://doi.org/10.1002/admt.201900741
- R. Ahmed, Y. Kim, M.U. Mehmood, U. Shaislamov et al., Power generation by a thermomagnetic engine by hybrid operation of an electromagnetic generator and a triboelectric nanogenerator. Int. J. Energy Res. 43(11), 5852 (2019). https://doi.org/10.1002/er.4691
- X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
- C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi et al., A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63, 103871 (2019). https://doi.org/10.1016/j.nanoen.2019.103871
- Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
- F.-R. Fan, W. Tang, Y. Yao, J. Luo, C. Zhang et al., Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 25(13), 135402 (2014). https://doi.org/10.1088/0957-4484/25/13/135402
- M.T. Rahman, S.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
- Y. Wu, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162 (2015). https://doi.org/10.1016/j.nanoen.2014.10.035
- Z. Saadatnia, E. Asadi, H. Askari, E. Esmailzadeh, H.E. Naguib, A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: an efficient approach toward blue energy. Int. J. Energy Res. 42(7), 2431 (2018). https://doi.org/10.1002/er.4024
- Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, Dynamic modeling and electrical characterization of a heaving hybrid triboelectric-electromagnetic energy harvester, in Proceedings of the ASME 2018 International Design Engineering (2018). https://doi.org/10.1115/DETC2018-86068
- H. Askari, E. Asadi, Z. Saadatnia, A. Khajepour, M.B. Khamesee et al., A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy 32, 105 (2017). https://doi.org/10.1016/j.nanoen.2016.12.024
- M. Salauddin, J.Y. Park, A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators. J. Phys. Conf. Ser. 773, 012004 (2016). https://doi.org/10.1088/1742-6596/773/1/012004
- M. Salauddin, R.M. Toyabur, J.Y. Park, A free motion driven electromagnetic and triboelectric hybridized nanogenerator for scavenging low frequency vibrations, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018). https://doi.org/10.1109/MEMSYS.2018.8346527
- J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian et al., Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 43, 326 (2018). https://doi.org/10.1016/j.nanoen.2017.11.039
- T. Ma, Q. Gao, Y. Li, Z. Wang, X. Lu et al., An integrated triboelectric–electromagnetic–piezoelectric hybrid energy harvester induced by a multifunction magnet for rotational motion. Adv. Eng. Mater. 22(2), 1900872 (2020). https://doi.org/10.1002/adem.201900872
- X. He, Q. Wen, Y. Sun, Z. Wen, A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy 40, 300 (2017). https://doi.org/10.1016/j.nanoen.2017.08.024
- C. Rodrigues, A. Gomes, A. Ghosh, A. Pereira, J. Ventura, Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator. Nano Energy 62, 660 (2019). https://doi.org/10.1016/j.nanoen.2019.05.063
- K. Zhang, X. Wang, Y. Yang, Z.L. Wang, Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 9(4), 3521 (2015). https://doi.org/10.1021/nn507455f
- H. Liu, Y. Xia, T. Chen, Z. Yang, W. Liu et al., Study of a hybrid generator based on triboelectric and electromagnetic mechanisms. IEEE Sensors J. 17(12), 3853 (2017). https://doi.org/10.1109/JSEN.2017.2694458
- R.K. Gupta, Q. Shi, L. Dhakar, T. Wang, C.H. Heng et al., Broadband energy harvester using non-linear polymer spring and electromagnetic/triboelectric hybrid mechanism. Sci. Rep. 7(1), 41396 (2017). https://doi.org/10.1038/srep41396
- T. Quan, Y. Wu, Y. Yang, Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 8(10), 3272 (2015). https://doi.org/10.1007/s12274-015-0827-6
- R. Huang, J. Zhu, A hybrid electromagnetic and leaf-shaped polytetrafluoroethylene triboelectric with an arc-shaped brace structure for energy harvesting. RSC Adv. 7(78), 49562 (2017). https://doi.org/10.1039/C7RA08572A
- X. Ren, H. Fan, C. Wang, J. Ma, S. Lei et al., Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 35, 233 (2017). https://doi.org/10.1016/j.nanoen.2017.03.047
- H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
- L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
- H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
- K. Zhang, Y. Yang, Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 9(4), 974 (2016). https://doi.org/10.1007/s12274-016-0985-1
- T. Quan, Z.L. Wang, Y. Yang, A shared-electrode-based hybridized electromagnetic-triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8(30), 19573 (2016). https://doi.org/10.1021/acsami.6b07162
- J. Zhu, A. Wang, H. Hu, H. Zhu, Hybrid electromagnetic and triboelectric nanogenerators with multi-impact for wideband frequency energy harvesting. Energies 10, 2024 (2017). https://doi.org/10.3390/EN10122024
- T. Quan, Y. Yang, Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 9(8), 2226 (2016). https://doi.org/10.1007/s12274-016-1109-7
- X. Du, S. Zhao, Y. Xing, N. Li, J. Wang et al., Hybridized nanogenerators for harvesting vibrational energy by triboelectric–piezoelectric–electromagnetic effects. Adv. Mater. Technol. 3(6), 1800019 (2018). https://doi.org/10.1002/admt.201800019
- X. Wang, Y. Yang, Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 32, 36 (2017). https://doi.org/10.1016/j.nanoen.2016.12.006
- C. Hao, J. He, C. Zhai, W. Jia, L. Song et al., Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 58, 147 (2019). https://doi.org/10.1016/j.nanoen.2019.01.033
- T. Quan, X. Wang, Z.L. Wang, Y. Yang, Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 9(12), 12301 (2015). https://doi.org/10.1021/acsnano.5b05598
- Z. Wu, H. Guo, W. Ding, Y.-C. Wang, L. Zhang et al., A hybridized triboelectric–electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349 (2019). https://doi.org/10.1021/acsnano.8b09088
- P. Maharjan, R.M. Toyabur, J.Y. Park, A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy 46, 383 (2018). https://doi.org/10.1016/j.nanoen.2018.02.033
- K.-W. Lim, M. Peddigari, C.H. Park, H.Y. Lee, Y. Min et al., A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 12(2), 666 (2019). https://doi.org/10.1039/C8EE03008A
- L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
- Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z.L. Wang et al., Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4(1), 116 (2021). https://doi.org/10.1016/j.matt.2020.10.018
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447 (2014). https://doi.org/10.1039/C4FD00159A
- Y.S. Zhou, Y. Liu, G. Zhu, Z.H. Lin, C. Pan et al., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771 (2013). https://doi.org/10.1021/nl401006x
- Y.S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu et al., Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 14(3), 1567 (2014). https://doi.org/10.1021/nl404819w
- C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
- X. Xia, H. Wang, H. Guo, C. Xu, Y. Zi, On the material-dependent charge transfer mechanism of the contact electrification. Nano Energy 78, 105343 (2020). https://doi.org/10.1016/j.nanoen.2020.105343
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). https://doi.org/10.1038/ncomms9376
- X. Xia, J. Fu, Y. Zi, A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 10(1), 4428 (2019). https://doi.org/10.1038/s41467-019-12465-2
- Y.S. Zhou, S. Li, S. Niu, Z.L. Wang, Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705 (2016). https://doi.org/10.1007/s12274-016-1241-4
- S. Pan, Z. Zhang, Fundamental theories and basic principles of triboelectric effect: a review. Friction 7(1), 2 (2019). https://doi.org/10.1007/s40544-018-0217-7
- B.-Y. Lee, D.H. Kim, J. Park, K.-I. Park, K.J. Lee et al., Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20(1), 758 (2019). https://doi.org/10.1080/14686996.2019.1631716
- X. Yin, D. Liu, L. Zhou, X. Li, C. Zhang et al., Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 13(1), 698 (2019). https://doi.org/10.1021/acsnano.8b07935
- R. Wen, J. Guo, A. Yu, J. Zhai, Z.L. Wang, Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv. Funct. Mater. 29(20), 1807655 (2019). https://doi.org/10.1002/adfm.201807655
- S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, R.A. Dorey, S.R.P. Silva, A unified theoretical model for Triboelectric Nanogenerators. Nano Energy 48, 391 (2018). https://doi.org/10.1016/j.nanoen.2018.03.073
- H. Zhang, L. Quan, Electrostatic Discharge—From Electrical Breakdown in Micro-Gaps to Nano-Generators—4. Theoretical Prediction and Optimization Approach to Triboelectric Nanogenerator (IntechOpen, 2019). https://doi.org/10.5772/intechopen.86992
- J. Shao, D. Liu, M. Willatzen, Z.L. Wang, Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 7(1), 011405 (2020). https://doi.org/10.1063/1.5133023
- M. Lu, W. Yin, A. Peyton, Z. Qu, X. Meng et al., A model for the triboelectric nanogenerator with inductive load and its energy boost potential. Nano Energy 63, 103883 (2019). https://doi.org/10.1016/j.nanoen.2019.103883
- R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, J.H.B. Deane, J.V. Anguita et al., Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10(8), 1801 (2017). https://doi.org/10.1039/C7EE01139C
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576 (2013). https://doi.org/10.1039/C3EE42571A
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184 (2013). https://doi.org/10.1002/adma.201302808
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332 (2014). https://doi.org/10.1002/adfm.201303799
- S. Niu, Y. Liu, X. Chen, S. Wang, Y.S. Zhou et al., Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760 (2015). https://doi.org/10.1016/j.nanoen.2015.01.013
- G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960 (2012). https://doi.org/10.1021/nl302560k
- S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339 (2012). https://doi.org/10.1021/nl303573d
- F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109 (2012). https://doi.org/10.1021/nl300988z
- S. Niu, Y. Liu, Y.S. Zhou, S. Wang, L. Lin et al., Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 62(2), 641 (2015). https://doi.org/10.1109/TED.2014.2377728
- S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu et al., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13(5), 2226 (2013). https://doi.org/10.1021/nl400738p
- G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou et al., Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13(5), 2282 (2013). https://doi.org/10.1021/nl4008985
- G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing et al., A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788 (2014). https://doi.org/10.1002/adma.201400021
- G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5(1), 3426 (2014). https://doi.org/10.1038/ncomms4426
- J. Shao, T. Jiang, W. Tang, L. Xu, T.W. Kim et al., Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy 48, 292 (2018). https://doi.org/10.1016/j.nanoen.2018.03.067
- S. Niu, S. Wang, Y. Liu, Y.S. Zhou, L. Lin et al., A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 7(7), 2339 (2014). https://doi.org/10.1039/C4EE00498A
- Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8), 7342 (2013). https://doi.org/10.1021/nn403021m
- H. Zhang, Y. Yang, X. Zhong, Y. Su, Y. Zhou et al., Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8(1), 680 (2014). https://doi.org/10.1021/nn4053292
- K. Dai, X. Wang, S. Niu, F. Yi, Y. Yin et al., Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 10(1), 157 (2017). https://doi.org/10.1007/s12274-016-1275-7
- S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818 (2014). https://doi.org/10.1002/adma.201305303
- L. Lin, Y. Xie, S. Niu, S. Wang, P.-K. Yang et al., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%. ACS Nano 9(1), 922 (2015). https://doi.org/10.1021/nn506673x
- Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599 (2014). https://doi.org/10.1002/adma.201402428
- C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sensors Actuators A-Phys. 52(1), 8 (1996). https://doi.org/10.1016/0924-4247(96)80118-X
- C.B. Williams, C. Shearwood, M.A. Harradine, P.H. Mellor, T.S. Birch et al., Development of an electromagnetic micro-generator. IEEE Proc. Circuits Devices Syst. 148(6), 337 (2001). https://doi.org/10.1049/ip-cds:20010525
- P. Carneiro, M.P. Soares dos Santos, A. Rodrigues, J.A.F. Ferreira, J.A.O. Simões et al., Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy 260, 114191 (2020). https://doi.org/10.1016/j.apenergy.2019.114191
- P. Constantinou, P.H. Mellor, P.D. Wilcox, A magnetically sprung generator for energy harvesting applications. IEEE/ASME Trans. Mechatron. 17(3), 415 (2012). https://doi.org/10.1109/TMECH.2012.2188834
- M.P. Soares dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão et al., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep. 6, 18579 (2016). https://doi.org/10.1038/srep18579
- E. Dallago, M. Marchesi, G. Venchi, Analytical model of a vibrating electromagnetic harvester considering nonlinear effects. IEEE Trans. Power Electron. 25(8), 1989 (2010). https://doi.org/10.1109/TPEL.2010.2044893
- X.Y. Wang, S. Palagummi, L. Liu, F.G. Yuan, A magnetically levitated vibration energy harvester. Smart Mater. Struct. 22(5), 055016 (2013). https://doi.org/10.1088/0964-1726/22/5/055016
- C.M. Saravia, On the electromechanical coupling in electromagnetic vibration energy harvesters. Mech. Syst. Signal Process. 136, 106027 (2020). https://doi.org/10.1016/j.ymssp.2019.03.026
- C.M. Saravia, A formulation for modeling levitation based vibration energy harvesters undergoing finite motion. Mech. Syst. Signal Process. 117, 862 (2019). https://doi.org/10.1016/j.ymssp.2018.08.023
- B.P. Mann, N.D. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1), 515 (2009). https://doi.org/10.1016/j.jsv.2008.06.011
- A.G. Avila Bernal, L.E. Linares García, The modelling of an electromagnetic energy harvesting architecture. Appl. Math. Model. 36(10), 4728 (2012). https://doi.org/10.1016/j.apm.2011.12.007
- G. Aldawood, H.T. Nguyen, H. Bardaweel, High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Appl. Energy 253, 113546 (2019). https://doi.org/10.1016/j.apenergy.2019.113546
- C.M. Saravia, J.M. Ramírez, C.D. Gatti, A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sensors Actuators A-Phys. 257, 20 (2017). https://doi.org/10.1016/j.sna.2017.01.023
- N.G. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293(1), 409 (2006). https://doi.org/10.1016/j.jsv.2005.10.003
- L. Liu, F.G. Yuan, Diamagnetic levitation for nonlinear vibration energy harvesting: Theoretical modeling and analysis. J. Sound Vib. 332(2), 455 (2013). https://doi.org/10.1016/j.jsv.2012.08.004
- J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
- E.P. Furlani, Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications (Academic Press, 2001). https://doi.org/10.1016/B978-012269951-1/50001-2
- S. Palagummi, F.G. Yuan, An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester. J. Sound Vib. 342, 330 (2015). https://doi.org/10.1016/j.jsv.2014.12.034
- G. Akoun, J. Yonnet, 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Trans. Magn. 20(5), 1962 (1984). https://doi.org/10.1109/TMAG.1984.1063554
- B.P. Mann, B.A. Owens, Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329(9), 1215 (2010). https://doi.org/10.1016/j.jsv.2009.11.034
- W. Muller, Comparison of different methods of force calculation. IEEE Trans. Magn. 26(2), 1058 (1990). https://doi.org/10.1109/20.106503
- T. Tarnhuvud, K. Reichert, Accuracy problems of force and torque calculation in FE-systems. IEEE Trans. Magn. 24(1), 443 (1988). https://doi.org/10.1109/20.43952
- R. Ravaud, G. Lemarquand, S. Babic, V. Lemarquand, C. Akyel, Cylindrical magnets and coils: fields, forces, and inductances. IEEE Trans. Magn. 46(9), 3585 (2010). https://doi.org/10.1109/TMAG.2010.2049026
- M.L. Morgado, L.F. Morgado, N. Silva, R. Morais, Mathematical modelling of cylindrical electromagnetic vibration energy harvesters. Int. J. Comput. Math. 92(1), 101 (2015). https://doi.org/10.1080/00207160.2014.884715
- W. Wang, J. Cao, N. Zhang, J. Lin, W.-H. Liao, Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189 (2017). https://doi.org/10.1016/j.enconman.2016.11.026
- M. Masoumi, Y. Wang, Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: modeling, simulation and experiment. J. Sound Vib. 381, 192 (2016). https://doi.org/10.1016/j.jsv.2016.06.024
- M. Geisler, S. Boisseau, M. Perez, P. Gasnier, J. Willemin et al., Human-motion energy harvester for autonomous body area sensors. Smart Mater. Struct. 26(3), 035028 (2017). https://doi.org/10.1088/1361-665x/aa548a
- K. Pancharoen, D. Zhu, S.P. Beeby, Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester. Sensors Actuators A-Phys. 256, 1 (2017). https://doi.org/10.1016/j.sna.2017.01.011
- M.N. Struwig, R. Wolhuter, T. Niesler, Nonlinear model and optimization method for a single-axis linear-motion energy harvester for footstep excitation. Smart Mater. Struct. 27(12), 125007 (2018). https://doi.org/10.1088/1361-665x/aae6e7
- L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916 (2013). https://doi.org/10.1021/nl4013002
- W. Tang, T. Zhou, C. Zhang, F.R. Fan, C.B. Han et al., A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology 25(22), 225402 (2014). https://doi.org/10.1088/0957-4484/25/22/225402
- S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4(10), 3728 (2016). https://doi.org/10.1039/C5TA10239A
- W. Seung, H.-J. Yoon, T.Y. Kim, H. Ryu, J. Kim et al., Nanogenerators: boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7(2), 1770007 (2017). https://doi.org/10.1002/aenm.201770007
- H. Guo, J. Chen, L. Wang, A.C. Wang, Y. Li et al., A highly efficient triboelectric negative air ion generator. Nat. Sustain. 4(2), 147 (2021). https://doi.org/10.1038/s41893-020-00628-9
- W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang et al., Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 3718 (2015). https://doi.org/10.1002/adfm.201501331
- H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11(1), 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
- S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26(39), 6720 (2014). https://doi.org/10.1002/adma.201402491
- R. Lei, Y. Shi, Y. Ding, J. Nie, S. Li et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178 (2020). https://doi.org/10.1039/D0EE01236J
- J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang et al., Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8(1), 88 (2017). https://doi.org/10.1038/s41467-017-00131-4
- F. Xi, Y. Pang, W. Li, T. Jiang, L. Zhang et al., Universal power management strategy for triboelectric nanogenerator. Nano Energy 37, 168 (2017). https://doi.org/10.1016/j.nanoen.2017.05.027
- S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6(1), 8975 (2015). https://doi.org/10.1038/ncomms9975
- Y. Zi, H. Guo, J. Wang, Z. Wen, S. Li et al., An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31, 302 (2017). https://doi.org/10.1016/j.nanoen.2016.11.025
- Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7(1), 10987 (2016). https://doi.org/10.1038/ncomms10987
- W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen et al., 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090 (2014). https://doi.org/10.1002/adfm.201304211
- S. Li, S. Wang, Y. Zi, Z. Wen, L. Lin et al., Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 9(7), 7479 (2015). https://doi.org/10.1021/acsnano.5b02575
- C. Zhang, Y. Liu, B. Zhang, O. Yang, W. Yuan et al., Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 6(4), 1490 (2021). https://doi.org/10.1021/acsenergylett.1c00368
- L. Zhou, D. Liu, Z. Zhao, S. Li, Y. Liu et al., Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10(45), 2002920 (2020). https://doi.org/10.1002/aenm.202002920
- C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang et al., Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 30(38), 1803968 (2018). https://doi.org/10.1002/adma.201803968
- S. Li, D. Zhang, X. Meng, Q.-A. Huang, C. Sun et al., A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Mater. 12, 17 (2018). https://doi.org/10.1016/j.ensm.2017.11.013
- D. Zhu, M.J. Tudor, S.P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21(2), 022001 (2009). https://doi.org/10.1088/0957-0233/21/2/022001
- Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851 (2014). https://doi.org/10.1002/adma.201402064
- J. Wang, S. Li, F. Yi, Y. Zi, J. Lin et al., Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7(1), 12744 (2016). https://doi.org/10.1038/ncomms12744
- X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
- J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu et al., Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8(6), 6273 (2014). https://doi.org/10.1021/nn501732z
- K. Dong, J. Deng, Y. Zi, Y.-C. Wang, C. Xu et al., 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
- B. Meng, Fabrication of triboelectric nanogenerators, in Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. ed. by M. Han, X. Zhang, H. Zhang (Wiley-VCH Verlag, 2019), pp. 41–57. https://doi.org/10.1002/9783527820153.ch3
References
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250 (2015). https://doi.org/10.1039/C5EE01532D
Z.L. Wang, Self-powered nanotech. Sci. Am. 298(1), 82 (2008). https://doi.org/10.1038/scientificamerican0108-82
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533 (2013). https://doi.org/10.1021/nn404614z
M.P. Soares dos Santos, J. Coutinho, A. Marote, B. Sousa, A. Ramos et al., Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9(1), 5001 (2019). https://doi.org/10.1038/s41598-019-41540-3
M.P. Soares Dos Santos, R. Bernardo, L. Henriques, A. Ramos, J.A.F. Ferreira et al., Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci. Rep. 11(1), 3449 (2021). https://doi.org/10.1038/s41598-021-82589-3
B. Otis, J. Rabaey, Ultra-Low Power Wireless Technologies for Sensor Networks (Springer, 2007). https://doi.org/10.1007/978-0-387-49313-8
S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations (Springer, 2004). https://doi.org/10.1007/978-1-4615-0485-6
S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra et al., A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3 (2017). https://doi.org/10.1515/ehs-2016-0028
S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19(1), 167 (2007). https://doi.org/10.1007/s10832-007-9043-4
K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17(4), 043001 (2008). https://doi.org/10.1088/0964-1726/17/4/043001
S. Priya, D.J. Inman, Energy Harvesting Technologies (Springer, 2009). https://doi.org/10.1007/978-0-387-76464-1
N.E. Dutoit, B.L. Wardle, S.-G. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121 (2005). https://doi.org/10.1080/10584580590964574
S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
E. Romero, R.O. Warrington, M.R. Neuman, Energy scavenging sources for biomedical sensors. Physiol. Meas. 30(9), R35 (2009). https://doi.org/10.1088/0967-3334/30/9/R01
J.W. Matiko, N.J. Grabham, S.P. Beeby, M.J. Tudor, Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 012002 (2014). https://doi.org/10.1088/0957-0233/25/1/012002
S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Compet. Comm. 26(11), 1131 (2003). https://doi.org/10.1016/S0140-3664(02)00248-7
F.U. Khan, Izhar, State of the art in acoustic energy harvesting. J. Micromech. Microeng. 25(2), 023001 (2015). https://doi.org/10.1088/0960-1317/25/2/023001
W. Gao, R. Brennan, Y. Hu, M. Wuttig, G. Yuan et al., Energy transduction ferroic materials. Mater. Today 21(7), 771 (2018). https://doi.org/10.1016/j.mattod.2018.01.032
J.V. Vidal, A.V. Turutin, I.V. Kubasov, A.M. Kislyuk, M.D. Malinkovich et al., Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(9), 1480 (2019). https://doi.org/10.1109/tuffc.2019.2908396
J.V. Vidal, A.V. Turutin, I.V. Kubasov, A.M. Kislyuk, D.A. Kiselev et al., Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2020). https://doi.org/10.1109/tuffc.2020.2967842
S.D. Moss, O.R. Payne, G.A. Hart, C. Ung, Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater. Struct. 24(2), 023001 (2015). https://doi.org/10.1088/0964-1726/24/2/023001
A. Khaligh, P. Zeng, C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art. IEEE Trans. Ind. Electron. 57(3), 850 (2010). https://doi.org/10.1109/TIE.2009.2024652
F.U. Khan, M.U. Qadir, State-of-the-art in vibration-based electrostatic energy harvesting. J. Micromech. Microeng. 26(10), 103001 (2016). https://doi.org/10.1088/0960-1317/26/10/103001
S. Boisseau, G. Despesse, B.A. Seddik, Electrostatic conversion for vibration energy harvesting, in Small-Scale Energy Harvesting. ed. by M. Lallart (IntechOpen, 2012). https://doi.org/10.5772/51360
F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283 (2016). https://doi.org/10.1002/adma.201504299
Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. 4(7), 1700029 (2017). https://doi.org/10.1002/advs.201700029
Z. Lin, J. Chen, J. Yang, Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 5651613 (2016). https://doi.org/10.1155/2016/5651613
J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480 (2017). https://doi.org/10.1016/j.joule.2017.09.004
Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 1(1), 10 (2017). https://doi.org/10.1038/s41528-017-0007-8
Q. Shi, T. He, C. Lee, More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
Z. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators (Springer, 2016). https://doi.org/10.1007/978-3-319-40039-6
Y. Zi, Z.L. Wang, Nanogenerators: an emerging technology towards nanoenergy. APL Mater. 5(7), 074103 (2017). https://doi.org/10.1063/1.4977208
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
M.A. Halim, R. Rantz, Q. Zhang, L. Gu, K. Yang et al., An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy 217, 66 (2018). https://doi.org/10.1016/j.apenergy.2018.02.093
D.F. Berdy, D.J. Valentino, D. Peroulis, Design and optimization of a magnetically sprung block magnet vibration energy harvester. Sensors Actuators A-Phys. 218, 69 (2014). https://doi.org/10.1016/j.sna.2014.06.011
J. He, X. Fan, J. Mu, C. Wang, J. Qian et al., 3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system. Energy 194, 116871 (2020). https://doi.org/10.1016/j.energy.2019.116871
A. Khaligh, P. Zeng, C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57(3), 850 (2010). https://doi.org/10.1109/TIE.2009.2024652
A. Harb, Energy harvesting: state-of-the-art. Renew. Energy 36(10), 2641 (2011). https://doi.org/10.1016/j.renene.2010.06.014
P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457 (2008). https://doi.org/10.1109/JPROC.2008.927494
T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435 (2017). https://doi.org/10.1016/j.rser.2016.12.073
S.P. Beeby, T. O’Donnell, Electromagnetic energy harvesting, in Energy Harvesting Technologies. ed. by S. Priya, D.J. Inman (Springer, Boston, 2009). https://doi.org/10.1007/978-0-387-76464-1_5
C. Cepnik, R. Lausecker, U. Wallrabe, Review on electrodynamic energy harvesters—a classification approach. Micromachines 4(2), 168 (2013). https://doi.org/10.3390/mi4020168
B. Maamer, A. Boughamoura, A.M.R. Fath El-Bab, L.A. Francis, F. Tounsi, A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manag. 199, 111973 (2019). https://doi.org/10.1016/j.enconman.2019.111973
W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10(1), 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
Y. Hu, J. Yang, S. Niu, W. Wu, Z.L. Wang, Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 8(7), 7442 (2014). https://doi.org/10.1021/nn502684f
X. Wang, S. Wang, Y. Yang, Z.L. Wang, Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 9(4), 4553 (2015). https://doi.org/10.1021/acsnano.5b01187
Y. Wu, X. Zhong, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 7(11), 1631 (2014). https://doi.org/10.1007/s12274-014-0523-y
L. Zheng, Z.-H. Lin, G. Cheng, W. Wu, X. Wen et al., Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9, 291 (2014). https://doi.org/10.1016/j.nanoen.2014.07.024
Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429 (2013). https://doi.org/10.1039/C3EE41485J
Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou et al., Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6(6), 1744 (2013). https://doi.org/10.1039/C3EE40764K
Y. Bai, H. Jantunen, J. Juuti, Hybrid, multi-source, and integrated energy harvesters. Front. Mater. 5, 65 (2018). https://doi.org/10.3389/fmats.2018.00065
T. Zhang, T. Yang, M. Zhang, C.R. Bowen, Y. Yang, Recent progress in hybridized nanogenerators for energy scavenging. iScience 23(11), 101689 (2020). https://doi.org/10.1016/j.isci.2020.101689
T. Zhang, Z. Wen, Y. Liu, Z. Zhang, Y. Xie et al., Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives. iScience 23(12), 101813 (2020). https://doi.org/10.1016/j.isci.2020.101813
P.D. Mitcheson, E.K. Reilly, T. Toh, P.K. Wright, E.M. Yeatman, Performance limits of the three MEMS inertial energy generator transduction types. J. Micromech. Microeng. 17(9), S211 (2007). https://doi.org/10.1088/0960-1317/17/9/s01
H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu, Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustain. Energy Fuels 4(3), 1063 (2020). https://doi.org/10.1039/C9SE01184F
A. Marin, S. Bressers, S. Priya, Multiple cell configuration electromagnetic vibration energy harvester. J. Phys. D-Appl. Phys. 44(29), 295501 (2011). https://doi.org/10.1088/0022-3727/44/29/295501
Y. Zi, H. Guo, Z. Wen, M.H. Yeh, C. Hu et al., Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797 (2016). https://doi.org/10.1021/acsnano.6b01569
U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429 (2016). https://doi.org/10.1021/acsnano.6b04213
J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
S. Xu, X. Fu, G. Liu, T. Tong, T. Bu et al., Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. iScience 24(4), 102318 (2021). https://doi.org/10.1016/j.isci.2021.102318
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580 (2014). https://doi.org/10.1002/adma.201400207
X. Zhong, Y. Yang, X. Wang, Z.L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13, 771 (2015). https://doi.org/10.1016/j.nanoen.2015.03.012
H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A Water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
Y. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy Environ. Sci. 12(9), 2678 (2019). https://doi.org/10.1039/C9EE01245A
R. Cao, T. Zhou, B. Wang, Y. Yin, Z. Yuan et al., Rotating-sleeve triboelectric–electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 11(8), 8370 (2017). https://doi.org/10.1021/acsnano.7b03683
B. Zhang, J. Chen, L. Jin, W. Deng, L. Zhang et al., Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10(6), 6241 (2016). https://doi.org/10.1021/acsnano.6b02384
P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433 (2018). https://doi.org/10.1021/acsnano.8b04654
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
Z. Wen, H. Guo, Y. Zi, M.-H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526 (2016). https://doi.org/10.1021/acsnano.6b03293
Y. Zhong, H. Zhao, Y. Guo, P. Rui, S. Shi et al., An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Materi. Technol. 4(12), 1900741 (2019). https://doi.org/10.1002/admt.201900741
R. Ahmed, Y. Kim, M.U. Mehmood, U. Shaislamov et al., Power generation by a thermomagnetic engine by hybrid operation of an electromagnetic generator and a triboelectric nanogenerator. Int. J. Energy Res. 43(11), 5852 (2019). https://doi.org/10.1002/er.4691
X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi et al., A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63, 103871 (2019). https://doi.org/10.1016/j.nanoen.2019.103871
Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
F.-R. Fan, W. Tang, Y. Yao, J. Luo, C. Zhang et al., Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 25(13), 135402 (2014). https://doi.org/10.1088/0957-4484/25/13/135402
M.T. Rahman, S.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
Y. Wu, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162 (2015). https://doi.org/10.1016/j.nanoen.2014.10.035
Z. Saadatnia, E. Asadi, H. Askari, E. Esmailzadeh, H.E. Naguib, A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: an efficient approach toward blue energy. Int. J. Energy Res. 42(7), 2431 (2018). https://doi.org/10.1002/er.4024
Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, Dynamic modeling and electrical characterization of a heaving hybrid triboelectric-electromagnetic energy harvester, in Proceedings of the ASME 2018 International Design Engineering (2018). https://doi.org/10.1115/DETC2018-86068
H. Askari, E. Asadi, Z. Saadatnia, A. Khajepour, M.B. Khamesee et al., A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy 32, 105 (2017). https://doi.org/10.1016/j.nanoen.2016.12.024
M. Salauddin, J.Y. Park, A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators. J. Phys. Conf. Ser. 773, 012004 (2016). https://doi.org/10.1088/1742-6596/773/1/012004
M. Salauddin, R.M. Toyabur, J.Y. Park, A free motion driven electromagnetic and triboelectric hybridized nanogenerator for scavenging low frequency vibrations, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018). https://doi.org/10.1109/MEMSYS.2018.8346527
J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian et al., Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 43, 326 (2018). https://doi.org/10.1016/j.nanoen.2017.11.039
T. Ma, Q. Gao, Y. Li, Z. Wang, X. Lu et al., An integrated triboelectric–electromagnetic–piezoelectric hybrid energy harvester induced by a multifunction magnet for rotational motion. Adv. Eng. Mater. 22(2), 1900872 (2020). https://doi.org/10.1002/adem.201900872
X. He, Q. Wen, Y. Sun, Z. Wen, A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy 40, 300 (2017). https://doi.org/10.1016/j.nanoen.2017.08.024
C. Rodrigues, A. Gomes, A. Ghosh, A. Pereira, J. Ventura, Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator. Nano Energy 62, 660 (2019). https://doi.org/10.1016/j.nanoen.2019.05.063
K. Zhang, X. Wang, Y. Yang, Z.L. Wang, Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 9(4), 3521 (2015). https://doi.org/10.1021/nn507455f
H. Liu, Y. Xia, T. Chen, Z. Yang, W. Liu et al., Study of a hybrid generator based on triboelectric and electromagnetic mechanisms. IEEE Sensors J. 17(12), 3853 (2017). https://doi.org/10.1109/JSEN.2017.2694458
R.K. Gupta, Q. Shi, L. Dhakar, T. Wang, C.H. Heng et al., Broadband energy harvester using non-linear polymer spring and electromagnetic/triboelectric hybrid mechanism. Sci. Rep. 7(1), 41396 (2017). https://doi.org/10.1038/srep41396
T. Quan, Y. Wu, Y. Yang, Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 8(10), 3272 (2015). https://doi.org/10.1007/s12274-015-0827-6
R. Huang, J. Zhu, A hybrid electromagnetic and leaf-shaped polytetrafluoroethylene triboelectric with an arc-shaped brace structure for energy harvesting. RSC Adv. 7(78), 49562 (2017). https://doi.org/10.1039/C7RA08572A
X. Ren, H. Fan, C. Wang, J. Ma, S. Lei et al., Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 35, 233 (2017). https://doi.org/10.1016/j.nanoen.2017.03.047
H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
K. Zhang, Y. Yang, Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 9(4), 974 (2016). https://doi.org/10.1007/s12274-016-0985-1
T. Quan, Z.L. Wang, Y. Yang, A shared-electrode-based hybridized electromagnetic-triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8(30), 19573 (2016). https://doi.org/10.1021/acsami.6b07162
J. Zhu, A. Wang, H. Hu, H. Zhu, Hybrid electromagnetic and triboelectric nanogenerators with multi-impact for wideband frequency energy harvesting. Energies 10, 2024 (2017). https://doi.org/10.3390/EN10122024
T. Quan, Y. Yang, Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 9(8), 2226 (2016). https://doi.org/10.1007/s12274-016-1109-7
X. Du, S. Zhao, Y. Xing, N. Li, J. Wang et al., Hybridized nanogenerators for harvesting vibrational energy by triboelectric–piezoelectric–electromagnetic effects. Adv. Mater. Technol. 3(6), 1800019 (2018). https://doi.org/10.1002/admt.201800019
X. Wang, Y. Yang, Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 32, 36 (2017). https://doi.org/10.1016/j.nanoen.2016.12.006
C. Hao, J. He, C. Zhai, W. Jia, L. Song et al., Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 58, 147 (2019). https://doi.org/10.1016/j.nanoen.2019.01.033
T. Quan, X. Wang, Z.L. Wang, Y. Yang, Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 9(12), 12301 (2015). https://doi.org/10.1021/acsnano.5b05598
Z. Wu, H. Guo, W. Ding, Y.-C. Wang, L. Zhang et al., A hybridized triboelectric–electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349 (2019). https://doi.org/10.1021/acsnano.8b09088
P. Maharjan, R.M. Toyabur, J.Y. Park, A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy 46, 383 (2018). https://doi.org/10.1016/j.nanoen.2018.02.033
K.-W. Lim, M. Peddigari, C.H. Park, H.Y. Lee, Y. Min et al., A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 12(2), 666 (2019). https://doi.org/10.1039/C8EE03008A
L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z.L. Wang et al., Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4(1), 116 (2021). https://doi.org/10.1016/j.matt.2020.10.018
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447 (2014). https://doi.org/10.1039/C4FD00159A
Y.S. Zhou, Y. Liu, G. Zhu, Z.H. Lin, C. Pan et al., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771 (2013). https://doi.org/10.1021/nl401006x
Y.S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu et al., Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 14(3), 1567 (2014). https://doi.org/10.1021/nl404819w
C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
X. Xia, H. Wang, H. Guo, C. Xu, Y. Zi, On the material-dependent charge transfer mechanism of the contact electrification. Nano Energy 78, 105343 (2020). https://doi.org/10.1016/j.nanoen.2020.105343
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). https://doi.org/10.1038/ncomms9376
X. Xia, J. Fu, Y. Zi, A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 10(1), 4428 (2019). https://doi.org/10.1038/s41467-019-12465-2
Y.S. Zhou, S. Li, S. Niu, Z.L. Wang, Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705 (2016). https://doi.org/10.1007/s12274-016-1241-4
S. Pan, Z. Zhang, Fundamental theories and basic principles of triboelectric effect: a review. Friction 7(1), 2 (2019). https://doi.org/10.1007/s40544-018-0217-7
B.-Y. Lee, D.H. Kim, J. Park, K.-I. Park, K.J. Lee et al., Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20(1), 758 (2019). https://doi.org/10.1080/14686996.2019.1631716
X. Yin, D. Liu, L. Zhou, X. Li, C. Zhang et al., Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 13(1), 698 (2019). https://doi.org/10.1021/acsnano.8b07935
R. Wen, J. Guo, A. Yu, J. Zhai, Z.L. Wang, Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv. Funct. Mater. 29(20), 1807655 (2019). https://doi.org/10.1002/adfm.201807655
S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, R.A. Dorey, S.R.P. Silva, A unified theoretical model for Triboelectric Nanogenerators. Nano Energy 48, 391 (2018). https://doi.org/10.1016/j.nanoen.2018.03.073
H. Zhang, L. Quan, Electrostatic Discharge—From Electrical Breakdown in Micro-Gaps to Nano-Generators—4. Theoretical Prediction and Optimization Approach to Triboelectric Nanogenerator (IntechOpen, 2019). https://doi.org/10.5772/intechopen.86992
J. Shao, D. Liu, M. Willatzen, Z.L. Wang, Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 7(1), 011405 (2020). https://doi.org/10.1063/1.5133023
M. Lu, W. Yin, A. Peyton, Z. Qu, X. Meng et al., A model for the triboelectric nanogenerator with inductive load and its energy boost potential. Nano Energy 63, 103883 (2019). https://doi.org/10.1016/j.nanoen.2019.103883
R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, J.H.B. Deane, J.V. Anguita et al., Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10(8), 1801 (2017). https://doi.org/10.1039/C7EE01139C
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576 (2013). https://doi.org/10.1039/C3EE42571A
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184 (2013). https://doi.org/10.1002/adma.201302808
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332 (2014). https://doi.org/10.1002/adfm.201303799
S. Niu, Y. Liu, X. Chen, S. Wang, Y.S. Zhou et al., Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760 (2015). https://doi.org/10.1016/j.nanoen.2015.01.013
G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960 (2012). https://doi.org/10.1021/nl302560k
S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339 (2012). https://doi.org/10.1021/nl303573d
F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109 (2012). https://doi.org/10.1021/nl300988z
S. Niu, Y. Liu, Y.S. Zhou, S. Wang, L. Lin et al., Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 62(2), 641 (2015). https://doi.org/10.1109/TED.2014.2377728
S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu et al., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13(5), 2226 (2013). https://doi.org/10.1021/nl400738p
G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou et al., Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13(5), 2282 (2013). https://doi.org/10.1021/nl4008985
G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing et al., A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788 (2014). https://doi.org/10.1002/adma.201400021
G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5(1), 3426 (2014). https://doi.org/10.1038/ncomms4426
J. Shao, T. Jiang, W. Tang, L. Xu, T.W. Kim et al., Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy 48, 292 (2018). https://doi.org/10.1016/j.nanoen.2018.03.067
S. Niu, S. Wang, Y. Liu, Y.S. Zhou, L. Lin et al., A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 7(7), 2339 (2014). https://doi.org/10.1039/C4EE00498A
Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8), 7342 (2013). https://doi.org/10.1021/nn403021m
H. Zhang, Y. Yang, X. Zhong, Y. Su, Y. Zhou et al., Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8(1), 680 (2014). https://doi.org/10.1021/nn4053292
K. Dai, X. Wang, S. Niu, F. Yi, Y. Yin et al., Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 10(1), 157 (2017). https://doi.org/10.1007/s12274-016-1275-7
S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818 (2014). https://doi.org/10.1002/adma.201305303
L. Lin, Y. Xie, S. Niu, S. Wang, P.-K. Yang et al., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%. ACS Nano 9(1), 922 (2015). https://doi.org/10.1021/nn506673x
Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599 (2014). https://doi.org/10.1002/adma.201402428
C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sensors Actuators A-Phys. 52(1), 8 (1996). https://doi.org/10.1016/0924-4247(96)80118-X
C.B. Williams, C. Shearwood, M.A. Harradine, P.H. Mellor, T.S. Birch et al., Development of an electromagnetic micro-generator. IEEE Proc. Circuits Devices Syst. 148(6), 337 (2001). https://doi.org/10.1049/ip-cds:20010525
P. Carneiro, M.P. Soares dos Santos, A. Rodrigues, J.A.F. Ferreira, J.A.O. Simões et al., Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy 260, 114191 (2020). https://doi.org/10.1016/j.apenergy.2019.114191
P. Constantinou, P.H. Mellor, P.D. Wilcox, A magnetically sprung generator for energy harvesting applications. IEEE/ASME Trans. Mechatron. 17(3), 415 (2012). https://doi.org/10.1109/TMECH.2012.2188834
M.P. Soares dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão et al., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep. 6, 18579 (2016). https://doi.org/10.1038/srep18579
E. Dallago, M. Marchesi, G. Venchi, Analytical model of a vibrating electromagnetic harvester considering nonlinear effects. IEEE Trans. Power Electron. 25(8), 1989 (2010). https://doi.org/10.1109/TPEL.2010.2044893
X.Y. Wang, S. Palagummi, L. Liu, F.G. Yuan, A magnetically levitated vibration energy harvester. Smart Mater. Struct. 22(5), 055016 (2013). https://doi.org/10.1088/0964-1726/22/5/055016
C.M. Saravia, On the electromechanical coupling in electromagnetic vibration energy harvesters. Mech. Syst. Signal Process. 136, 106027 (2020). https://doi.org/10.1016/j.ymssp.2019.03.026
C.M. Saravia, A formulation for modeling levitation based vibration energy harvesters undergoing finite motion. Mech. Syst. Signal Process. 117, 862 (2019). https://doi.org/10.1016/j.ymssp.2018.08.023
B.P. Mann, N.D. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1), 515 (2009). https://doi.org/10.1016/j.jsv.2008.06.011
A.G. Avila Bernal, L.E. Linares García, The modelling of an electromagnetic energy harvesting architecture. Appl. Math. Model. 36(10), 4728 (2012). https://doi.org/10.1016/j.apm.2011.12.007
G. Aldawood, H.T. Nguyen, H. Bardaweel, High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Appl. Energy 253, 113546 (2019). https://doi.org/10.1016/j.apenergy.2019.113546
C.M. Saravia, J.M. Ramírez, C.D. Gatti, A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sensors Actuators A-Phys. 257, 20 (2017). https://doi.org/10.1016/j.sna.2017.01.023
N.G. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293(1), 409 (2006). https://doi.org/10.1016/j.jsv.2005.10.003
L. Liu, F.G. Yuan, Diamagnetic levitation for nonlinear vibration energy harvesting: Theoretical modeling and analysis. J. Sound Vib. 332(2), 455 (2013). https://doi.org/10.1016/j.jsv.2012.08.004
J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
E.P. Furlani, Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications (Academic Press, 2001). https://doi.org/10.1016/B978-012269951-1/50001-2
S. Palagummi, F.G. Yuan, An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester. J. Sound Vib. 342, 330 (2015). https://doi.org/10.1016/j.jsv.2014.12.034
G. Akoun, J. Yonnet, 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Trans. Magn. 20(5), 1962 (1984). https://doi.org/10.1109/TMAG.1984.1063554
B.P. Mann, B.A. Owens, Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329(9), 1215 (2010). https://doi.org/10.1016/j.jsv.2009.11.034
W. Muller, Comparison of different methods of force calculation. IEEE Trans. Magn. 26(2), 1058 (1990). https://doi.org/10.1109/20.106503
T. Tarnhuvud, K. Reichert, Accuracy problems of force and torque calculation in FE-systems. IEEE Trans. Magn. 24(1), 443 (1988). https://doi.org/10.1109/20.43952
R. Ravaud, G. Lemarquand, S. Babic, V. Lemarquand, C. Akyel, Cylindrical magnets and coils: fields, forces, and inductances. IEEE Trans. Magn. 46(9), 3585 (2010). https://doi.org/10.1109/TMAG.2010.2049026
M.L. Morgado, L.F. Morgado, N. Silva, R. Morais, Mathematical modelling of cylindrical electromagnetic vibration energy harvesters. Int. J. Comput. Math. 92(1), 101 (2015). https://doi.org/10.1080/00207160.2014.884715
W. Wang, J. Cao, N. Zhang, J. Lin, W.-H. Liao, Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189 (2017). https://doi.org/10.1016/j.enconman.2016.11.026
M. Masoumi, Y. Wang, Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: modeling, simulation and experiment. J. Sound Vib. 381, 192 (2016). https://doi.org/10.1016/j.jsv.2016.06.024
M. Geisler, S. Boisseau, M. Perez, P. Gasnier, J. Willemin et al., Human-motion energy harvester for autonomous body area sensors. Smart Mater. Struct. 26(3), 035028 (2017). https://doi.org/10.1088/1361-665x/aa548a
K. Pancharoen, D. Zhu, S.P. Beeby, Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester. Sensors Actuators A-Phys. 256, 1 (2017). https://doi.org/10.1016/j.sna.2017.01.011
M.N. Struwig, R. Wolhuter, T. Niesler, Nonlinear model and optimization method for a single-axis linear-motion energy harvester for footstep excitation. Smart Mater. Struct. 27(12), 125007 (2018). https://doi.org/10.1088/1361-665x/aae6e7
L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916 (2013). https://doi.org/10.1021/nl4013002
W. Tang, T. Zhou, C. Zhang, F.R. Fan, C.B. Han et al., A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology 25(22), 225402 (2014). https://doi.org/10.1088/0957-4484/25/22/225402
S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4(10), 3728 (2016). https://doi.org/10.1039/C5TA10239A
W. Seung, H.-J. Yoon, T.Y. Kim, H. Ryu, J. Kim et al., Nanogenerators: boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7(2), 1770007 (2017). https://doi.org/10.1002/aenm.201770007
H. Guo, J. Chen, L. Wang, A.C. Wang, Y. Li et al., A highly efficient triboelectric negative air ion generator. Nat. Sustain. 4(2), 147 (2021). https://doi.org/10.1038/s41893-020-00628-9
W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang et al., Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 3718 (2015). https://doi.org/10.1002/adfm.201501331
H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11(1), 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26(39), 6720 (2014). https://doi.org/10.1002/adma.201402491
R. Lei, Y. Shi, Y. Ding, J. Nie, S. Li et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178 (2020). https://doi.org/10.1039/D0EE01236J
J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang et al., Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8(1), 88 (2017). https://doi.org/10.1038/s41467-017-00131-4
F. Xi, Y. Pang, W. Li, T. Jiang, L. Zhang et al., Universal power management strategy for triboelectric nanogenerator. Nano Energy 37, 168 (2017). https://doi.org/10.1016/j.nanoen.2017.05.027
S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6(1), 8975 (2015). https://doi.org/10.1038/ncomms9975
Y. Zi, H. Guo, J. Wang, Z. Wen, S. Li et al., An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31, 302 (2017). https://doi.org/10.1016/j.nanoen.2016.11.025
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7(1), 10987 (2016). https://doi.org/10.1038/ncomms10987
W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen et al., 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090 (2014). https://doi.org/10.1002/adfm.201304211
S. Li, S. Wang, Y. Zi, Z. Wen, L. Lin et al., Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 9(7), 7479 (2015). https://doi.org/10.1021/acsnano.5b02575
C. Zhang, Y. Liu, B. Zhang, O. Yang, W. Yuan et al., Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 6(4), 1490 (2021). https://doi.org/10.1021/acsenergylett.1c00368
L. Zhou, D. Liu, Z. Zhao, S. Li, Y. Liu et al., Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10(45), 2002920 (2020). https://doi.org/10.1002/aenm.202002920
C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang et al., Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 30(38), 1803968 (2018). https://doi.org/10.1002/adma.201803968
S. Li, D. Zhang, X. Meng, Q.-A. Huang, C. Sun et al., A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Mater. 12, 17 (2018). https://doi.org/10.1016/j.ensm.2017.11.013
D. Zhu, M.J. Tudor, S.P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21(2), 022001 (2009). https://doi.org/10.1088/0957-0233/21/2/022001
Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851 (2014). https://doi.org/10.1002/adma.201402064
J. Wang, S. Li, F. Yi, Y. Zi, J. Lin et al., Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7(1), 12744 (2016). https://doi.org/10.1038/ncomms12744
X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu et al., Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8(6), 6273 (2014). https://doi.org/10.1021/nn501732z
K. Dong, J. Deng, Y. Zi, Y.-C. Wang, C. Xu et al., 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
B. Meng, Fabrication of triboelectric nanogenerators, in Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. ed. by M. Han, X. Zhang, H. Zhang (Wiley-VCH Verlag, 2019), pp. 41–57. https://doi.org/10.1002/9783527820153.ch3