Cavity-Suppressing Electrode Integrated with Multi-Quantum Well Emitter: A Universal Approach Toward High-Performance Blue TADF Top Emission OLED
Corresponding Author: Tae Geun Kim
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 60
Abstract
A novel device structure for thermally activated delayed fluorescence (TADF) top emission organic light-emitting diodes (TEOLEDs) that improves the viewing angle characteristics and reduces the efficiency roll-off is presented. Furthermore, we describe the design and fabrication of a cavity-suppressing electrode (CSE), Ag (12 nm)/WO3 (65 nm)/Ag (12 nm) that can be used as a transparent cathode. While the TADF-TEOLED fabricated using the CSE exhibits higher external quantum efficiency (EQE) and improved angular dependency than the device fabricated using the microcavity-based Ag electrode, it suffers from low color purity and severe efficiency roll-off. These drawbacks can be reduced by using an optimized multi-quantum well emissive layer (MQW EML). The CSE-based TADF-TEOLED with an MQW EML fabricated herein exhibits a high EQE (18.05%), high color purity (full width at half maximum ~ 59 nm), reduced efficiency roll-off (~ 46% at 1000 cd m−2), and low angular dependence. These improvements can be attributed to the synergistic effect of the CSE and MQW EML. An optimized transparent CSE improves charge injection and light outcoupling with low angular dependence, and the MQW EML effectively confines charges and excitons, thereby improving the color purity and EQE significantly. The proposed approach facilitates the optimization of multiple output characteristics of TEOLEDs for future display applications.
Highlights:
1 A blue thermally activated delayed fluorescence top-emission organic light-emitting diode (TEOLED) structure that combines a cavity-suppressing transparent electrode and a multi-quantum-well emissive layer is proposed.
2 The TEOLED exhibits high external quantum efficiency (18.05%), high color purity (full width at half maximum ~ 59 nm), reduced efficiency roll-off (~ 46% at 1000 cd m−2), and low angular dependence
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913 (1987). https://doi.org/10.1063/1.98799
- A.K. Narsaria, F. Rauch, J. Krebs, P. Endres, A. Friedrich et al., Computationally guided molecular design to minimize the LE/CT gap in D-π-A fluorinated triarylboranes for efficient TADF via D and π-bridge tuning. Adv. Funct. Mater. 30(31), 2002064 (2020). https://doi.org/10.1002/adfm.202002064
- Y. Deng, C. Keum, S. Hillebrandt, C. Murawski, M.C. Gather, Improving the thermal stability of top-emitting organic light-emitting diodes by modification of the anode interface. Adv. Opt. Mater. 9(14), 2001642 (2021). https://doi.org/10.1002/adom.202001642
- G. Xie, M. Chen, M. Mazilu, S. Zhang, A.K. Bandsal et al., Measuring and structuring the spatial coherence length of organic light-emitting diodes. Laser Photon. Rev. 10(1), 82–90 (2016). https://doi.org/10.1002/lpor.201500065
- S.W. Jung, K.S. Kim, H.U. Park, R. Lampande, S.K. Kim et al., Patternable semi-transparent cathode using thermal evaporation for OLED display applications. Adv. Electron. Mater. 7(4), 2001101 (2021). https://doi.org/10.1002/aelm.202001101
- M.G. Song, K.S. Kim, H.I. Yang, S.K. Kim, J.H. Kim et al., Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Org. Electron. 76, 105418 (2020). https://doi.org/10.1016/j.orgel.2019.105418
- Y. Qu, M. Slootsky, S.R. Forrest, Enhanced light extraction from organic light-emitting devices using a sub-anode grid. Nat. Photonics 9, 758–763 (2015). https://doi.org/10.1038/nphoton.2015.194
- A. Salehi, X. Fu, D.H. Shin, F. So, Recent advances in OLED optical design. Adv. Funct. Mater. 29(15), 1808803 (2019). https://doi.org/10.1002/adfm.201808803
- Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014). https://doi.org/10.1038/nphoton.2014.12
- S.K. Kim, M.J. Park, R. Pode, J.H. Kwon, A deep blue strong microcavity organic light-emitting diode optimized by a low absorption semitransparent cathode and a narrow bandwidth emitter. Adv. Photonics Res. 2(4), 2000122 (2021). https://doi.org/10.1002/adpr.202000122
- X.L. Zhang, J. Feng, X.C. Han, Y.F. Liu, Q.D. Chen et al., Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica 2(6), 579–584 (2015). https://doi.org/10.1364/optica.2.000579
- C.H. Park, S.W. Kang, S.G. Jung, D.J. Lee, Y.W. Park et al., Enhanced light extraction efficiency and viewing angle characteristics of microcavity OLEDs by using a diffusion layer. Sci. Rep. 11, 3430 (2021). https://doi.org/10.1038/s41598-021-82753-9
- N.S. Kim, W.Y. Lee, M.C. Suh, Suppression of the color shift of microcavity organic light-emitting diodes through the introduction of a circular polarizer with a nanoporous polymer film. J. Inf. Disp. 19(2), 91–98 (2018). https://doi.org/10.1080/15980316.2018.1454348
- S. Kim, H.J. Kwon, S. Lee, H. Shim, Y. Chun et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(31), 3511–3516 (2011). https://doi.org/10.1002/adma.201101066
- M.C. Suh, B. Pyo, H.S. Kim, Suppression of the viewing angle dependence by introduction of nanoporous diffuser film on blue OLEDs with strong microcavity effect. Org. Electron. 28, 31–38 (2016). https://doi.org/10.1016/j.orgel.2015.10.014
- B.W. Lim, M.C. Suh, Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes. Nanoscale 6, 14446–14452 (2014). https://doi.org/10.1039/c4nr04856c
- W. Wang, H. Peng, S. Wang, S. Chen, Top-emitting organic light-emitting diodes integrated with thermally evaporated scattering film for reducing angular dependence of emission spectra. Org. Electron. 24, 195–199 (2015). https://doi.org/10.1016/j.orgel.2015.05.049
- C. Dong, X. Fu, S. Amoah, A. Rozelle, D.H. Shin et al., Eliminate angular color shift in top emitting OLEDs through cavity design. J. Soc. Inf. Disp. 27(8), 469–479 (2019). https://doi.org/10.1002/jsid.792
- R. Yu, F. Yin, X. Huang, W. Ji, Molding hemispherical microlens arrays on flexible substrates for highly efficient inverted quantum dot light emitting diodes. J. Mater. Chem. C 5(27), 6682–6687 (2017). https://doi.org/10.1039/c7tc01339f
- K.J. Ko, S.R. Shin, H.B. Lee, E. Jeong, Y.J. Yoo et al., Fabrication of an oxide/metal/oxide structured electrode integrated with antireflective film to enhance performance in flexible organic light-emitting diodes. Mater. Today Energy 20, 100704 (2021). https://doi.org/10.1016/j.mtener.2021.100704
- X.D. Feng, C.J. Huang, V. Lui, R.S. Khangura, Z.H. Lu, Ohmic cathode for low-voltage organic light-emitting diodes. Appl. Phys. Lett. 86(14), 143511 (2005). https://doi.org/10.1063/1.1899766
- J.X. Man, S.J. He, T. Zhang, D.K. Wang, N. Jiang et al., Black phase-changing cathodes for high-contrast organic light-emitting diodes. ACS Photonics 4(6), 1316–1321 (2017). https://doi.org/10.1021/acsphotonics.7b00203
- Y.F. Liu, J. Feng, Y.G. Bi, D. Yin, H.B. Sun, Recent developments in flexible organic light-emitting devices. Adv. Mater. Technol. 4(1), 1800371 (2019). https://doi.org/10.1002/admt.201800371
- W.J. Sung, J. Lee, C.W. Joo, N.S. Cho, H. Lee et al., Colored semi-transparent organic light-emitting diodes. J. Inf. Disp. 15(4), 177–184 (2014). https://doi.org/10.1080/15980316.2014.951414
- J. Zhong, Z. Xiao, W. Liang, Y. Wu, Q. Ye et al., Highly efficient and high peak transmittance colorful semitransparent organic solar cells with hybrid-electrode-mirror microcavity structure. ACS Appl. Mater. Interfaces 11(51), 47992–48001 (2019). https://doi.org/10.1021/acsami.9b19174
- Y. Yao, D. Sang, L. Zou, Q. Wang, C. Liu, A review on the properties and applications of WO3 nanostructure-based and electronic devices. Nanomaterials 11(8), 2136 (2021). https://doi.org/10.3390/nano11082136
- S.M. Lee, C.S. Choi, K.C. Choi, H.C. Lee, Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes. Org. Electron. 13(9), 1654–1659 (2012). https://doi.org/10.1016/j.orgel.2012.05.014
- L. Zhan, A. Ying, Y. Qi, K. Wu, Y. Tang et al., Copper(I) complex as sensitizer enables high-performance organic light-emitting diodes with very low efficiency roll-off. Adv. Funct. Mater. 31(48), 2106345 (2021). https://doi.org/10.1002/adfm.202106345
- S.H. Li, S.F. Wu, Y.K. Wang, J.J. Liang, Q. Sun et al., Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. J. Mater. Chem. C 6(2), 342–349 (2018). https://doi.org/10.1039/c7tc04441k
- Q. Wang, I.W.H. Oswald, M.R. Perez, H. Jia, A.A. Shahub et al., Doping-free organic light-emitting diodes with very high power efficiency, simple device structure, and superior spectral performance. Adv. Funct. Mater. 24(30), 4746–4752 (2014). https://doi.org/10.1002/adfm.201400597
- S.H. Rhee, C.S. Kim, M. Song, S.Y. Ryu, Correlation between interlayer thickness and device performance in blue phosphorescent organic light emitting diodes with a quantum well structure. Org. Electron. 42, 343–347 (2017). https://doi.org/10.1016/j.orgel.2016.12.056
- L. Meng, H. Wang, X. Wei, J. Liu, Y. Chen et al., Highly efficient nondoped organic light emitting diodes based on thermally activated delayed fluorescence emitter with quantum-well structure. ACS Appl. Mater. Interfaces 8(32), 20955–20961 (2016). https://doi.org/10.1021/acsami.6b07563
- C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling et al., An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26(32), 5696–5701 (2014). https://doi.org/10.1002/adma.201306091
- L. Xing, Z.L. Zhu, J. He, Z. Qiu, Z. Yang et al., Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chem. Eng. J. 421, 127748 (2021). https://doi.org/10.1016/j.cej.2020.127748
- Y. Chen, C. Qian, K. Qin, H. Li, X. Shi et al., Ultrapure blue phosphorescent organic light-emitting diodes employing a twisted Pt(II) complex. ACS Appl. Mater. Interfaces 13(44), 52833–52839 (2021). https://doi.org/10.1021/acsami.1c13843
- J. Troughton, M. Neophytou, N. Gasparini, A. Seitkhan, F.H. Isikgor et al., A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy Environ. Sci. 13(1), 268–276 (2020). https://doi.org/10.1039/c9ee02202c
- X. Guo, X. Liu, F. Lin, H. Li, Y. Fan et al., Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics. Sci. Rep. 5, 10569 (2015). https://doi.org/10.1038/srep10569
- Y. Pan, Y. Fan, J. Niu, Optical properties of ultra-thin silver films deposited by thermal evaporation and its application in optical filters. Infrared Phys. Technol. 104, 103123 (2020). https://doi.org/10.1016/j.infrared.2019.103123
- H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
- J.H. Chang, W.H. Lin, P.C. Wang, J.I. Taur, T.A. Ku et al., Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Sci. Rep. 5, 9693 (2015). https://doi.org/10.1038/srep09693
- R.N. Chauhan, N. Tiwari, R.S. Anand, J. Kumar, Development of Al-doped ZnO thin film as a transparent cathode and anode for application in transparent organic light-emitting diodes. RSC Adv. 6(90), 86770–86781 (2016). https://doi.org/10.1039/c6ra14124b
- S. Park, J.T. Lim, W.Y. Jin, H. Lee, B.H. Kwon et al., Efficient large-area transparent OLEDs based on a laminated top electrode with an embedded auxiliary mesh. ACS Photonics 4(5), 1114–1122 (2017). https://doi.org/10.1021/acsphotonics.6b00942
- Y.M. Chien, F. Lefevre, I. Shih, R. Izquierdo, A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology 21, 134020 (2010). https://doi.org/10.1088/0957-4484/21/13/134020
- B. Tian, G. Williams, D. Ban, H. Aziz, Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode. J. Appl. Phys. 110, 104507 (2011). https://doi.org/10.1063/1.3662194
- D. Wang, J. Hauptmann, C. May, Y.J. Hofstetter, Y. Vaynzof et al., Roll-to-roll fabrication of highly transparent Ca: Ag top-electrode towards flexible large-area OLED lighting application. Flex. Print. Electron. 6, 035001 (2021). https://doi.org/10.1088/2058-8585/abf159
- C. Zang, S. Liu, M. Xu, R. Wang, C. Cao et al., Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10, 116 (2021). https://doi.org/10.1038/s41377-021-00559-w
- C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14(5), 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
- X. Shi, J. Liu, J. Wang, X. Wu, Y. Zheng et al., High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer. Org. Electron. 15(10), 2408–2413 (2014). https://doi.org/10.1016/j.orgel.2014.07.001
- C. Li, N. Wang, A. Guerrero, Y. Zhong, H. Long et al., Understanding the improvement in the stability of a self-assembled multiple-quantum well perovskite light-emitting diode. J. Phys. Chem. Lett. 10(21), 6857–6864 (2019). https://doi.org/10.1021/acs.jpclett.9b02467
- T. Xu, J.G. Zhou, C.C. Huang, L. Zhang, M.K. Fung et al., Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency. ACS Appl. Mater. Interfaces 9(12), 10955–10962 (2017). https://doi.org/10.1021/acsami.6b16094
- L. Zhang, Z.P. Yan, Z.L. Tu, Z.G. Wu, Y.X. Zheng, Green-emitting iridium(III) complexes containing pyridine sulfonic acid as ancillary ligands for efficient OLEDs with extremely low efficiency roll-off. J. Mater. Chem. C 7(37), 11606–11511 (2019). https://doi.org/10.1039/C9TC03937F
- T. Lin, X. Sun, Y. Hu, W. Mu, Y. Sun et al., Blended host ink for solution processing high performance phosphorescent OLEDs. Sci. Rep. 9, 6845 (2019). https://doi.org/10.1038/s41598-019-43359-4
- L. Xiao, S.J. Su, Y. Agata, H. Lan, J. Kido, Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21(12), 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
- G. Tan, J.H. Lee, S.C. Lin, R. Zhu, S.H. Choi et al., Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25(26), 33629 (2017). https://doi.org/10.1364/oe.25.033629
- Z. Jian, G. Juan, G. Zhuo, D. Ke, C. Jiule, An organic light-emitting device with ultrathin quantum-well structure as light emitting layer. Opt. Rev. 18, 394–397 (2011). https://doi.org/10.1007/s10043-011-0075-2
- W.H. Lee, P.J. Jesuraj, H. Hafeez, D.H. Kim, C.M. Lee et al., Comparison of organic light emitting diode performance using the spectroradiometer and the integrating sphere measurements. AIP Adv. 10(9), 095011 (2020). https://doi.org/10.1063/5.0013324
- W. Ren, K.R. Son, T.H. Park, V. Murugadoss, T.G. Kim, Manipulation of blue TADF top-emission OLEDs by the first-order optical cavity design: toward a highly pure blue emission and balanced charge transport. Photonics Res. 9(8), 1502–1512 (2021). https://doi.org/10.1364/prj.432042
References
C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913 (1987). https://doi.org/10.1063/1.98799
A.K. Narsaria, F. Rauch, J. Krebs, P. Endres, A. Friedrich et al., Computationally guided molecular design to minimize the LE/CT gap in D-π-A fluorinated triarylboranes for efficient TADF via D and π-bridge tuning. Adv. Funct. Mater. 30(31), 2002064 (2020). https://doi.org/10.1002/adfm.202002064
Y. Deng, C. Keum, S. Hillebrandt, C. Murawski, M.C. Gather, Improving the thermal stability of top-emitting organic light-emitting diodes by modification of the anode interface. Adv. Opt. Mater. 9(14), 2001642 (2021). https://doi.org/10.1002/adom.202001642
G. Xie, M. Chen, M. Mazilu, S. Zhang, A.K. Bandsal et al., Measuring and structuring the spatial coherence length of organic light-emitting diodes. Laser Photon. Rev. 10(1), 82–90 (2016). https://doi.org/10.1002/lpor.201500065
S.W. Jung, K.S. Kim, H.U. Park, R. Lampande, S.K. Kim et al., Patternable semi-transparent cathode using thermal evaporation for OLED display applications. Adv. Electron. Mater. 7(4), 2001101 (2021). https://doi.org/10.1002/aelm.202001101
M.G. Song, K.S. Kim, H.I. Yang, S.K. Kim, J.H. Kim et al., Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Org. Electron. 76, 105418 (2020). https://doi.org/10.1016/j.orgel.2019.105418
Y. Qu, M. Slootsky, S.R. Forrest, Enhanced light extraction from organic light-emitting devices using a sub-anode grid. Nat. Photonics 9, 758–763 (2015). https://doi.org/10.1038/nphoton.2015.194
A. Salehi, X. Fu, D.H. Shin, F. So, Recent advances in OLED optical design. Adv. Funct. Mater. 29(15), 1808803 (2019). https://doi.org/10.1002/adfm.201808803
Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014). https://doi.org/10.1038/nphoton.2014.12
S.K. Kim, M.J. Park, R. Pode, J.H. Kwon, A deep blue strong microcavity organic light-emitting diode optimized by a low absorption semitransparent cathode and a narrow bandwidth emitter. Adv. Photonics Res. 2(4), 2000122 (2021). https://doi.org/10.1002/adpr.202000122
X.L. Zhang, J. Feng, X.C. Han, Y.F. Liu, Q.D. Chen et al., Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica 2(6), 579–584 (2015). https://doi.org/10.1364/optica.2.000579
C.H. Park, S.W. Kang, S.G. Jung, D.J. Lee, Y.W. Park et al., Enhanced light extraction efficiency and viewing angle characteristics of microcavity OLEDs by using a diffusion layer. Sci. Rep. 11, 3430 (2021). https://doi.org/10.1038/s41598-021-82753-9
N.S. Kim, W.Y. Lee, M.C. Suh, Suppression of the color shift of microcavity organic light-emitting diodes through the introduction of a circular polarizer with a nanoporous polymer film. J. Inf. Disp. 19(2), 91–98 (2018). https://doi.org/10.1080/15980316.2018.1454348
S. Kim, H.J. Kwon, S. Lee, H. Shim, Y. Chun et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(31), 3511–3516 (2011). https://doi.org/10.1002/adma.201101066
M.C. Suh, B. Pyo, H.S. Kim, Suppression of the viewing angle dependence by introduction of nanoporous diffuser film on blue OLEDs with strong microcavity effect. Org. Electron. 28, 31–38 (2016). https://doi.org/10.1016/j.orgel.2015.10.014
B.W. Lim, M.C. Suh, Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes. Nanoscale 6, 14446–14452 (2014). https://doi.org/10.1039/c4nr04856c
W. Wang, H. Peng, S. Wang, S. Chen, Top-emitting organic light-emitting diodes integrated with thermally evaporated scattering film for reducing angular dependence of emission spectra. Org. Electron. 24, 195–199 (2015). https://doi.org/10.1016/j.orgel.2015.05.049
C. Dong, X. Fu, S. Amoah, A. Rozelle, D.H. Shin et al., Eliminate angular color shift in top emitting OLEDs through cavity design. J. Soc. Inf. Disp. 27(8), 469–479 (2019). https://doi.org/10.1002/jsid.792
R. Yu, F. Yin, X. Huang, W. Ji, Molding hemispherical microlens arrays on flexible substrates for highly efficient inverted quantum dot light emitting diodes. J. Mater. Chem. C 5(27), 6682–6687 (2017). https://doi.org/10.1039/c7tc01339f
K.J. Ko, S.R. Shin, H.B. Lee, E. Jeong, Y.J. Yoo et al., Fabrication of an oxide/metal/oxide structured electrode integrated with antireflective film to enhance performance in flexible organic light-emitting diodes. Mater. Today Energy 20, 100704 (2021). https://doi.org/10.1016/j.mtener.2021.100704
X.D. Feng, C.J. Huang, V. Lui, R.S. Khangura, Z.H. Lu, Ohmic cathode for low-voltage organic light-emitting diodes. Appl. Phys. Lett. 86(14), 143511 (2005). https://doi.org/10.1063/1.1899766
J.X. Man, S.J. He, T. Zhang, D.K. Wang, N. Jiang et al., Black phase-changing cathodes for high-contrast organic light-emitting diodes. ACS Photonics 4(6), 1316–1321 (2017). https://doi.org/10.1021/acsphotonics.7b00203
Y.F. Liu, J. Feng, Y.G. Bi, D. Yin, H.B. Sun, Recent developments in flexible organic light-emitting devices. Adv. Mater. Technol. 4(1), 1800371 (2019). https://doi.org/10.1002/admt.201800371
W.J. Sung, J. Lee, C.W. Joo, N.S. Cho, H. Lee et al., Colored semi-transparent organic light-emitting diodes. J. Inf. Disp. 15(4), 177–184 (2014). https://doi.org/10.1080/15980316.2014.951414
J. Zhong, Z. Xiao, W. Liang, Y. Wu, Q. Ye et al., Highly efficient and high peak transmittance colorful semitransparent organic solar cells with hybrid-electrode-mirror microcavity structure. ACS Appl. Mater. Interfaces 11(51), 47992–48001 (2019). https://doi.org/10.1021/acsami.9b19174
Y. Yao, D. Sang, L. Zou, Q. Wang, C. Liu, A review on the properties and applications of WO3 nanostructure-based and electronic devices. Nanomaterials 11(8), 2136 (2021). https://doi.org/10.3390/nano11082136
S.M. Lee, C.S. Choi, K.C. Choi, H.C. Lee, Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes. Org. Electron. 13(9), 1654–1659 (2012). https://doi.org/10.1016/j.orgel.2012.05.014
L. Zhan, A. Ying, Y. Qi, K. Wu, Y. Tang et al., Copper(I) complex as sensitizer enables high-performance organic light-emitting diodes with very low efficiency roll-off. Adv. Funct. Mater. 31(48), 2106345 (2021). https://doi.org/10.1002/adfm.202106345
S.H. Li, S.F. Wu, Y.K. Wang, J.J. Liang, Q. Sun et al., Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. J. Mater. Chem. C 6(2), 342–349 (2018). https://doi.org/10.1039/c7tc04441k
Q. Wang, I.W.H. Oswald, M.R. Perez, H. Jia, A.A. Shahub et al., Doping-free organic light-emitting diodes with very high power efficiency, simple device structure, and superior spectral performance. Adv. Funct. Mater. 24(30), 4746–4752 (2014). https://doi.org/10.1002/adfm.201400597
S.H. Rhee, C.S. Kim, M. Song, S.Y. Ryu, Correlation between interlayer thickness and device performance in blue phosphorescent organic light emitting diodes with a quantum well structure. Org. Electron. 42, 343–347 (2017). https://doi.org/10.1016/j.orgel.2016.12.056
L. Meng, H. Wang, X. Wei, J. Liu, Y. Chen et al., Highly efficient nondoped organic light emitting diodes based on thermally activated delayed fluorescence emitter with quantum-well structure. ACS Appl. Mater. Interfaces 8(32), 20955–20961 (2016). https://doi.org/10.1021/acsami.6b07563
C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling et al., An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26(32), 5696–5701 (2014). https://doi.org/10.1002/adma.201306091
L. Xing, Z.L. Zhu, J. He, Z. Qiu, Z. Yang et al., Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chem. Eng. J. 421, 127748 (2021). https://doi.org/10.1016/j.cej.2020.127748
Y. Chen, C. Qian, K. Qin, H. Li, X. Shi et al., Ultrapure blue phosphorescent organic light-emitting diodes employing a twisted Pt(II) complex. ACS Appl. Mater. Interfaces 13(44), 52833–52839 (2021). https://doi.org/10.1021/acsami.1c13843
J. Troughton, M. Neophytou, N. Gasparini, A. Seitkhan, F.H. Isikgor et al., A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy Environ. Sci. 13(1), 268–276 (2020). https://doi.org/10.1039/c9ee02202c
X. Guo, X. Liu, F. Lin, H. Li, Y. Fan et al., Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics. Sci. Rep. 5, 10569 (2015). https://doi.org/10.1038/srep10569
Y. Pan, Y. Fan, J. Niu, Optical properties of ultra-thin silver films deposited by thermal evaporation and its application in optical filters. Infrared Phys. Technol. 104, 103123 (2020). https://doi.org/10.1016/j.infrared.2019.103123
H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
J.H. Chang, W.H. Lin, P.C. Wang, J.I. Taur, T.A. Ku et al., Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Sci. Rep. 5, 9693 (2015). https://doi.org/10.1038/srep09693
R.N. Chauhan, N. Tiwari, R.S. Anand, J. Kumar, Development of Al-doped ZnO thin film as a transparent cathode and anode for application in transparent organic light-emitting diodes. RSC Adv. 6(90), 86770–86781 (2016). https://doi.org/10.1039/c6ra14124b
S. Park, J.T. Lim, W.Y. Jin, H. Lee, B.H. Kwon et al., Efficient large-area transparent OLEDs based on a laminated top electrode with an embedded auxiliary mesh. ACS Photonics 4(5), 1114–1122 (2017). https://doi.org/10.1021/acsphotonics.6b00942
Y.M. Chien, F. Lefevre, I. Shih, R. Izquierdo, A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology 21, 134020 (2010). https://doi.org/10.1088/0957-4484/21/13/134020
B. Tian, G. Williams, D. Ban, H. Aziz, Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode. J. Appl. Phys. 110, 104507 (2011). https://doi.org/10.1063/1.3662194
D. Wang, J. Hauptmann, C. May, Y.J. Hofstetter, Y. Vaynzof et al., Roll-to-roll fabrication of highly transparent Ca: Ag top-electrode towards flexible large-area OLED lighting application. Flex. Print. Electron. 6, 035001 (2021). https://doi.org/10.1088/2058-8585/abf159
C. Zang, S. Liu, M. Xu, R. Wang, C. Cao et al., Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10, 116 (2021). https://doi.org/10.1038/s41377-021-00559-w
C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14(5), 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
X. Shi, J. Liu, J. Wang, X. Wu, Y. Zheng et al., High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer. Org. Electron. 15(10), 2408–2413 (2014). https://doi.org/10.1016/j.orgel.2014.07.001
C. Li, N. Wang, A. Guerrero, Y. Zhong, H. Long et al., Understanding the improvement in the stability of a self-assembled multiple-quantum well perovskite light-emitting diode. J. Phys. Chem. Lett. 10(21), 6857–6864 (2019). https://doi.org/10.1021/acs.jpclett.9b02467
T. Xu, J.G. Zhou, C.C. Huang, L. Zhang, M.K. Fung et al., Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency. ACS Appl. Mater. Interfaces 9(12), 10955–10962 (2017). https://doi.org/10.1021/acsami.6b16094
L. Zhang, Z.P. Yan, Z.L. Tu, Z.G. Wu, Y.X. Zheng, Green-emitting iridium(III) complexes containing pyridine sulfonic acid as ancillary ligands for efficient OLEDs with extremely low efficiency roll-off. J. Mater. Chem. C 7(37), 11606–11511 (2019). https://doi.org/10.1039/C9TC03937F
T. Lin, X. Sun, Y. Hu, W. Mu, Y. Sun et al., Blended host ink for solution processing high performance phosphorescent OLEDs. Sci. Rep. 9, 6845 (2019). https://doi.org/10.1038/s41598-019-43359-4
L. Xiao, S.J. Su, Y. Agata, H. Lan, J. Kido, Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21(12), 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
G. Tan, J.H. Lee, S.C. Lin, R. Zhu, S.H. Choi et al., Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25(26), 33629 (2017). https://doi.org/10.1364/oe.25.033629
Z. Jian, G. Juan, G. Zhuo, D. Ke, C. Jiule, An organic light-emitting device with ultrathin quantum-well structure as light emitting layer. Opt. Rev. 18, 394–397 (2011). https://doi.org/10.1007/s10043-011-0075-2
W.H. Lee, P.J. Jesuraj, H. Hafeez, D.H. Kim, C.M. Lee et al., Comparison of organic light emitting diode performance using the spectroradiometer and the integrating sphere measurements. AIP Adv. 10(9), 095011 (2020). https://doi.org/10.1063/5.0013324
W. Ren, K.R. Son, T.H. Park, V. Murugadoss, T.G. Kim, Manipulation of blue TADF top-emission OLEDs by the first-order optical cavity design: toward a highly pure blue emission and balanced charge transport. Photonics Res. 9(8), 1502–1512 (2021). https://doi.org/10.1364/prj.432042