Dopant-Tunable Ultrathin Transparent Conductive Oxides for Efficient Energy Conversion Devices
Corresponding Author: Tae Geun Kim
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 211
Abstract
Ultrathin film-based transparent conductive oxides (TCOs) with a broad work function (WF) tunability are highly demanded for efficient energy conversion devices. However, reducing the film thickness below 50 nm is limited due to rapidly increasing resistance; furthermore, introducing dopants into TCOs such as indium tin oxide (ITO) to reduce the resistance decreases the transparency due to a trade-off between the two quantities. Herein, we demonstrate dopant-tunable ultrathin (≤ 50 nm) TCOs fabricated via electric field-driven metal implantation (m-TCOs; m = Ni, Ag, and Cu) without compromising their innate electrical and optical properties. The m-TCOs exhibit a broad WF variation (0.97 eV), high transmittance in the UV to visible range (89–93% at 365 nm), and low sheet resistance (30–60 Ω cm−2). Experimental and theoretical analyses show that interstitial metal atoms mainly affect the change in the WF without substantial losses in optical transparency. The m-ITOs are employed as anode or cathode electrodes for organic light-emitting diodes (LEDs), inorganic UV LEDs, and organic photovoltaics for their universal use, leading to outstanding performances, even without hole injection layer for OLED through the WF-tailored Ni-ITO. These results verify the proposed m-TCOs enable effective carrier transport and light extraction beyond the limits of traditional TCOs.
Highlights:
1 Dopant-tunable transparent conductive oxide (≤ 50 nm) fabricated via electric-field-driven metal implantation (m-TCOs; m= Ni, Ag, and Cu) is demonstrated.
2 The m-TCOs exhibit ultrahigh transparency, low sheet resistance, and broad work function tunability, leading to outstanding performance in various optoelectronic devices.
3 The work function change is attributed to the interstitial metal atoms that provide the empty d-orbital, resulting in the shift of the Fermi level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Dauzon, Y. Lin, H. Faber, E. Yengel, X. Sallenave et al., Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 30(28), 2001251 (2020). https://doi.org/10.1002/adfm.202001251
- S.J. Kwon, T.H. Han, T.Y. Ko, N. Li, Y. Kim et al., Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018). https://doi.org/10.1038/s41467-018-04385-4
- H.G. Im, S. Jeong, J. Jin, J. Lee, D.Y. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8, e282 (2016). https://doi.org/10.1038/am.2016.85
- J.G. Yun, Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27(18), 1606641 (2017). https://doi.org/10.1002/adfm.201606641
- S. Yu, L. Li, X. Lyu, W. Zhang, Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6, 20399 (2016). https://doi.org/10.1038/srep20399
- J.Y. Kim, H.M. Jin, S.J. Jeong, T. Chang, B.H. Kim et al., Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. Nanoscale 10(1), 100–108 (2018). https://doi.org/10.1039/C7NR07178G
- W. Li, Y.Q. Li, Y. Shen, Y.X. Zhang, T.Y. Jin et al., Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Optical Mater. 7(21), 1900985 (2019). https://doi.org/10.1002/adom.201900985
- T. Wang, L.C. Jing, Q. Zhu, A.S. Ethiraj, Y. Tian et al., Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs. Appl. Surf. Sci. 500, 143997 (2020). https://doi.org/10.1016/j.apsusc.2019.143997
- I.J. Park, T.I. Kim, T. Yoon, S. Kang, H. Cho et al., Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Adv. Funct. Mater. 28(10), 1704435 (2018). https://doi.org/10.1002/adfm.201704435
- G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013). https://doi.org/10.1038/ncomms3292
- C. Ji, D. Liu, C. Zhang, L.J. Guo, Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 11, 3367 (2020). https://doi.org/10.1038/s41467-020-17107-6
- A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer et al., Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials 3(11), 4892–4914 (2010). https://doi.org/10.3390/ma3114892
- D.S. Yang, D. Bilby, K. Chung, J.K. Wenderott, J. Jordahl et al., Work function modification via combined charge-based through-space interaction and surface interaction. Adv. Mater. Interfaces 5(15), 1800471 (2018). https://doi.org/10.1002/admi.201800471
- M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 23(2), 215–226 (2013). https://doi.org/10.1002/adfm.201200993
- K.H.L. Zhang, K. Xi, M.G. Blamire, R.G. Egdell, P-type transparent conducting oxides. J. Phys. Condens. Matter 28, 383002 (2016). https://doi.org/10.1088/0953-8984/28/38/383002
- C. Wang, H. Zhu, Y. Meng, S. Nie, Y. Zhao et al., Sol–gel processed p-type CuAlO2 semiconductor thin films and the integration in transistors. IEEE Trans. Electron Devices 66(3), 1458–1463 (2019). https://doi.org/10.1109/TED.2019.2893453
- J. Singh, R. Kumar, V. Verma, R. Kumar, Structural and optoelectronic properties of epitaxial Ni-substituted Cr2O3 thin films for p-type TCO applications. Mater. Sci. Semicond. Process. 123, 105483 (2021). https://doi.org/10.1016/j.mssp.2020.105483
- C.M. Hsu, J.W. Lee, T.H. Meen, W.T. Wu, Preparation and characterization of Ni–indium tin oxide cosputtered thin films for organic light-emitting diode application. Thin Solid Films 474, 19–24 (2005). https://doi.org/10.1016/j.tsf.2004.08.005
- D.W. Reagor, V.Y. Butko, Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. Nat. Mater. 4, 593–596 (2005). https://doi.org/10.1038/nmat1402
- S.J. Kim, K.H. Kim, H.Y. Chung, H.W. Shin, B.R. Lee et al., Enhanced current transport and injection in thin-film gallium-nitride light-emitting diodes by lase-based doping. ACS Appl. Mater. Interfaces 6(19), 16601–16609 (2014). https://doi.org/10.1021/am5031165
- S. Siol, J.C. Hellmann, S.D. Tilley, M. Graetzel, J. Morasch et al., Band alignment engineering at Cu2O/ZnO heterointerfaces. ACS Appl. Mater. Interfaces 8(33), 21824–21831 (2016). https://doi.org/10.1021/acsami.6b07325
- I. Valov, M.N. Kozicki, Cation-based resistance change memory. J. Phys. D 46, 074005 (2013). https://doi.org/10.1088/0022-3727/46/7/074005
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.Y. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- J. Heyd, G.E. Scuseria, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060
- A. Sebastian, M.L. Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
- T.H. Lee, T.H. Park, H.W. Shin, N. Maeda, M. Jo et al., Smart wide-bandgap omnidirectional reflector as an effective hole-injection electrode for deep-UV light-emitting diodes. Adv. Optical Mater. 8(2), 1901430 (2020). https://doi.org/10.1002/adom.201901430
- A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST X-ray Photoelectron Spectroscopy Database (Measurement Services Division of the National Institute of Standards and Technology Press). NIST Standard Reference Database 20, Version 4.1 (2012). https://doi.org/10.18434/T4T88K
- Y. Li, W. Xu, W. Liu, S. Han, P. Cao et al., High-performance thin-film transistors with aqueous solution-processed NiInO channel layer. ACS Appl. Electron. Mater. 1(9), 1842–1851 (2019). https://doi.org/10.1021/acsaelm.9b00377
- M.Y. Ali, M.K.R. Khan, A.M.M.T. Kaim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6(3), e03588 (2020). https://doi.org/10.1016/j.heliyon.2020.e03588
- D. Zhang, Y. Cao, Z. Yang, J. Wu, Nanoheterostructure construction and DFT study of Ni-doped In2O3 nanocubes/WS2 hexagon nanosheets formaldehyde sensing at room temperature. ACS Appl. Mater. Interfaces 12(10), 11979–11989 (2020). https://doi.org/10.1021/acsami.9b15200
- H.J. Yun, S.J. Kim, J.H. Hwang, Y.S. Shim, S.G. Jung et al., Silver nanowire-IZO-conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes. Sci. Rep. 6, 34150 (2016). https://doi.org/10.1038/srep34150
- S. De, P.E. Lyons, S. Sore, E.M. Doherty, P.J. King et al., Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3(3), 714–720 (2009). https://doi.org/10.1021/nn800858w
- B. Sarma, D. Barman, B.K. Sarma, AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 479, 786–795 (2019). https://doi.org/10.1016/j.apsusc.2019.02.146
- W.J. Lee, D.H. Cho, Y.D. Kim, M.W. Choi, J.C. Choi et al., Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells. J. Alloys Compd. 806, 976–982 (2019). https://doi.org/10.1016/j.jallcom.2019.07.321
- S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10, 638 (2020). https://doi.org/10.1038/s41598-020-57532-7
- J. Du, D. Zhang, X. Wang, H. Jin, W. Zhang et al., Extremely efficient flexible organic solar cells with a graphene transparent anode: dependence on number of layers and doping of graphene. Carbon 171, 350–358 (2021). https://doi.org/10.1016/j.carbon.2020.08.038
- D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi et al., Flexible organic solar cells over 15% efficiency with polymide-integrated graphene electrodes. Joule 4(5), 1021–1034 (2020). https://doi.org/10.1016/j.joule.2020.02.012
- M.T. Greiner, M.G. Helander, Z.B. Wang, W.M. Tang, Z.H. Lu, Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J. Phys. Chem. C 114(46), 19777–19781 (2010). https://doi.org/10.1021/jp108281m
- R. Hajimammadov, A. Bykov, A. Popov, K.L. Juhasz, G.S. Lorite et al., Random networks of core-shell-like Cu-Cu2O/CuO nanowires as surface plasmon resonance-enhanced sensors. Sci. Rep. 8, 4708 (2018). https://doi.org/10.1038/s41598-018-23119-6
- N.R.C. Raju, K.J. Kumar, A. Subrahmanyam, Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J. Phys. D: Appl. Phys. 42, 135411 (2009). https://doi.org/10.1088/0022-3727/42/13/135411
- M. Jo, N. Maeda, H. Hirayama, Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Exp. 9, 012102 (2016). https://doi.org/10.7567/APEX.9.012102
- B.R. Lee, J.S. Goo, Y.W. Kim, Y.J. You, H. Kim et al., Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications. J. Power Sources 417, 61–69 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.015
- N.K. Elumalai, A. Uddin, Open circuit voltage of organic solar cells: an in-depth review. Energy Environ. Sci. 9(2), 391–410 (2016). https://doi.org/10.1039/C5EE02871J
References
E. Dauzon, Y. Lin, H. Faber, E. Yengel, X. Sallenave et al., Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 30(28), 2001251 (2020). https://doi.org/10.1002/adfm.202001251
S.J. Kwon, T.H. Han, T.Y. Ko, N. Li, Y. Kim et al., Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018). https://doi.org/10.1038/s41467-018-04385-4
H.G. Im, S. Jeong, J. Jin, J. Lee, D.Y. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8, e282 (2016). https://doi.org/10.1038/am.2016.85
J.G. Yun, Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27(18), 1606641 (2017). https://doi.org/10.1002/adfm.201606641
S. Yu, L. Li, X. Lyu, W. Zhang, Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6, 20399 (2016). https://doi.org/10.1038/srep20399
J.Y. Kim, H.M. Jin, S.J. Jeong, T. Chang, B.H. Kim et al., Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. Nanoscale 10(1), 100–108 (2018). https://doi.org/10.1039/C7NR07178G
W. Li, Y.Q. Li, Y. Shen, Y.X. Zhang, T.Y. Jin et al., Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Optical Mater. 7(21), 1900985 (2019). https://doi.org/10.1002/adom.201900985
T. Wang, L.C. Jing, Q. Zhu, A.S. Ethiraj, Y. Tian et al., Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs. Appl. Surf. Sci. 500, 143997 (2020). https://doi.org/10.1016/j.apsusc.2019.143997
I.J. Park, T.I. Kim, T. Yoon, S. Kang, H. Cho et al., Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Adv. Funct. Mater. 28(10), 1704435 (2018). https://doi.org/10.1002/adfm.201704435
G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013). https://doi.org/10.1038/ncomms3292
C. Ji, D. Liu, C. Zhang, L.J. Guo, Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 11, 3367 (2020). https://doi.org/10.1038/s41467-020-17107-6
A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer et al., Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials 3(11), 4892–4914 (2010). https://doi.org/10.3390/ma3114892
D.S. Yang, D. Bilby, K. Chung, J.K. Wenderott, J. Jordahl et al., Work function modification via combined charge-based through-space interaction and surface interaction. Adv. Mater. Interfaces 5(15), 1800471 (2018). https://doi.org/10.1002/admi.201800471
M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 23(2), 215–226 (2013). https://doi.org/10.1002/adfm.201200993
K.H.L. Zhang, K. Xi, M.G. Blamire, R.G. Egdell, P-type transparent conducting oxides. J. Phys. Condens. Matter 28, 383002 (2016). https://doi.org/10.1088/0953-8984/28/38/383002
C. Wang, H. Zhu, Y. Meng, S. Nie, Y. Zhao et al., Sol–gel processed p-type CuAlO2 semiconductor thin films and the integration in transistors. IEEE Trans. Electron Devices 66(3), 1458–1463 (2019). https://doi.org/10.1109/TED.2019.2893453
J. Singh, R. Kumar, V. Verma, R. Kumar, Structural and optoelectronic properties of epitaxial Ni-substituted Cr2O3 thin films for p-type TCO applications. Mater. Sci. Semicond. Process. 123, 105483 (2021). https://doi.org/10.1016/j.mssp.2020.105483
C.M. Hsu, J.W. Lee, T.H. Meen, W.T. Wu, Preparation and characterization of Ni–indium tin oxide cosputtered thin films for organic light-emitting diode application. Thin Solid Films 474, 19–24 (2005). https://doi.org/10.1016/j.tsf.2004.08.005
D.W. Reagor, V.Y. Butko, Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. Nat. Mater. 4, 593–596 (2005). https://doi.org/10.1038/nmat1402
S.J. Kim, K.H. Kim, H.Y. Chung, H.W. Shin, B.R. Lee et al., Enhanced current transport and injection in thin-film gallium-nitride light-emitting diodes by lase-based doping. ACS Appl. Mater. Interfaces 6(19), 16601–16609 (2014). https://doi.org/10.1021/am5031165
S. Siol, J.C. Hellmann, S.D. Tilley, M. Graetzel, J. Morasch et al., Band alignment engineering at Cu2O/ZnO heterointerfaces. ACS Appl. Mater. Interfaces 8(33), 21824–21831 (2016). https://doi.org/10.1021/acsami.6b07325
I. Valov, M.N. Kozicki, Cation-based resistance change memory. J. Phys. D 46, 074005 (2013). https://doi.org/10.1088/0022-3727/46/7/074005
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.Y. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505
J. Heyd, G.E. Scuseria, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060
A. Sebastian, M.L. Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
T.H. Lee, T.H. Park, H.W. Shin, N. Maeda, M. Jo et al., Smart wide-bandgap omnidirectional reflector as an effective hole-injection electrode for deep-UV light-emitting diodes. Adv. Optical Mater. 8(2), 1901430 (2020). https://doi.org/10.1002/adom.201901430
A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST X-ray Photoelectron Spectroscopy Database (Measurement Services Division of the National Institute of Standards and Technology Press). NIST Standard Reference Database 20, Version 4.1 (2012). https://doi.org/10.18434/T4T88K
Y. Li, W. Xu, W. Liu, S. Han, P. Cao et al., High-performance thin-film transistors with aqueous solution-processed NiInO channel layer. ACS Appl. Electron. Mater. 1(9), 1842–1851 (2019). https://doi.org/10.1021/acsaelm.9b00377
M.Y. Ali, M.K.R. Khan, A.M.M.T. Kaim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6(3), e03588 (2020). https://doi.org/10.1016/j.heliyon.2020.e03588
D. Zhang, Y. Cao, Z. Yang, J. Wu, Nanoheterostructure construction and DFT study of Ni-doped In2O3 nanocubes/WS2 hexagon nanosheets formaldehyde sensing at room temperature. ACS Appl. Mater. Interfaces 12(10), 11979–11989 (2020). https://doi.org/10.1021/acsami.9b15200
H.J. Yun, S.J. Kim, J.H. Hwang, Y.S. Shim, S.G. Jung et al., Silver nanowire-IZO-conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes. Sci. Rep. 6, 34150 (2016). https://doi.org/10.1038/srep34150
S. De, P.E. Lyons, S. Sore, E.M. Doherty, P.J. King et al., Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3(3), 714–720 (2009). https://doi.org/10.1021/nn800858w
B. Sarma, D. Barman, B.K. Sarma, AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 479, 786–795 (2019). https://doi.org/10.1016/j.apsusc.2019.02.146
W.J. Lee, D.H. Cho, Y.D. Kim, M.W. Choi, J.C. Choi et al., Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells. J. Alloys Compd. 806, 976–982 (2019). https://doi.org/10.1016/j.jallcom.2019.07.321
S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10, 638 (2020). https://doi.org/10.1038/s41598-020-57532-7
J. Du, D. Zhang, X. Wang, H. Jin, W. Zhang et al., Extremely efficient flexible organic solar cells with a graphene transparent anode: dependence on number of layers and doping of graphene. Carbon 171, 350–358 (2021). https://doi.org/10.1016/j.carbon.2020.08.038
D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi et al., Flexible organic solar cells over 15% efficiency with polymide-integrated graphene electrodes. Joule 4(5), 1021–1034 (2020). https://doi.org/10.1016/j.joule.2020.02.012
M.T. Greiner, M.G. Helander, Z.B. Wang, W.M. Tang, Z.H. Lu, Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J. Phys. Chem. C 114(46), 19777–19781 (2010). https://doi.org/10.1021/jp108281m
R. Hajimammadov, A. Bykov, A. Popov, K.L. Juhasz, G.S. Lorite et al., Random networks of core-shell-like Cu-Cu2O/CuO nanowires as surface plasmon resonance-enhanced sensors. Sci. Rep. 8, 4708 (2018). https://doi.org/10.1038/s41598-018-23119-6
N.R.C. Raju, K.J. Kumar, A. Subrahmanyam, Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J. Phys. D: Appl. Phys. 42, 135411 (2009). https://doi.org/10.1088/0022-3727/42/13/135411
M. Jo, N. Maeda, H. Hirayama, Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Exp. 9, 012102 (2016). https://doi.org/10.7567/APEX.9.012102
B.R. Lee, J.S. Goo, Y.W. Kim, Y.J. You, H. Kim et al., Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications. J. Power Sources 417, 61–69 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.015
N.K. Elumalai, A. Uddin, Open circuit voltage of organic solar cells: an in-depth review. Energy Environ. Sci. 9(2), 391–410 (2016). https://doi.org/10.1039/C5EE02871J