Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins
Corresponding Author: Yu‑Zhong Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 76
Abstract
Ingenious microstructure design and rational composition selection are effective approaches to realize high-performance microwave absorbers, and the advancement of biomimetic manufacturing provides a new strategy. In nature, urchins are the animals without eyes but can “see”, because their special structure composed of regular spines and spherical photosensitive bodies “amplifies” the light-receiving ability. Herein, inspired by the above phenomenon, the biomimetic urchin-like Ti3C2Tx@ZnO hollow microspheres are rationally designed and fabricated, in which ZnO nanoarrays (length: ~ 2.3 μm, diameter: ~ 100 nm) as the urchin spines are evenly grafted onto the surface of the Ti3C2Tx hollow spheres (diameter: ~ 4.2 μm) as the urchin spherical photosensitive bodies. The construction of gradient impedance and hierarchical heterostructures enhance the attenuation of incident electromagnetic waves. And the EMW loss behavior is further revealed by limited integral simulation calculations, which fully highlights the advantages of the urchin-like architecture. As a result, the Ti3C2Tx@ZnO hollow spheres deliver a strong reflection loss of − 57.4 dB and broad effective absorption bandwidth of 6.56 GHz, superior to similar absorbents. This work provides a new biomimetic strategy for the design and manufacturing of advanced microwave absorbers.
Highlights:
1 Inspired by the photoreception mechanisms of urchins, the urchin-like Ti3C2Tx@ZnO hollow spheres are rationally designed as high-performance microwave absorbents by constructing ZnO nanoarrays onto the surface of Ti3C2Tx hollow spheres.
2 Both experimental and theoretical simulation results demonstrate that the microstructure of urchin-like possesses giant advantages in electromagnetic wave absorption performance, which is superior to most absorbers with similar components.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- Y. Wang, W. Zhong, S. Zhang, X. Zhang, C. Zhu et al., Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon 188, 254–264 (2022). https://doi.org/10.1016/j.Carbon.2021.12.030
- H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- Y. Lu, S. Zhang, M. He, L. Wei, Y. Chen et al., 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 178, 413–435 (2021). https://doi.org/10.1016/j.Carbon.2021.01.161
- J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.Carbon.2021.07.019
- J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15(36), 1902885 (2019). https://doi.org/10.1002/smll.201902885
- N. He, X. Yang, L. Shi, X. Yang, Y. Lu et al., Chemical conversion of Cu2O/PPy core-shell nanowires (CSNWs): a surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities. Carbon 166, 205–217 (2020). https://doi.org/10.1016/j.Carbon.2020.05.044
- C. Xu, F. Wu, L. Duan, Z. Xiong, Y. Xia et al., Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2(6), 1505–1513 (2020). https://doi.org/10.1021/acsaelm.0c00090
- M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540 (2014). https://doi.org/10.1039/c4ta01715c
- L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core–sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9(7), 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), e2003502 (2020). https://doi.org/10.1002/smll.202003502
- X. Ma, Y. Duan, L. Huang, H. Lei, X. Yang, Quasiperiodic metamaterials with broadband absorption: tailoring electromagnetic wave by Penrose tiling. Compos. B Eng. 233, 109659 (2022). https://doi.org/10.1016/j.compositesb.2022.109659
- B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
- E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu et al., Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 23(1), 2000827 (2020). https://doi.org/10.1002/adem.202000827
- P.A. Yang, Y. Huang, R. Li, X. Huang, H. Ruan et al., Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 430, 132878 (2022). https://doi.org/10.1016/j.cej.2021.132878
- H. Li, S. Bao, Y. Li, Y. Huang, J. Chen et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 10(34), 28839–28849 (2018). https://doi.org/10.1021/acsami.8b08040
- M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182, 806–814 (2021). https://doi.org/10.1016/j.Carbon.2021.06.054
- Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji et al., Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 6(1), 1900796 (2020). https://doi.org/10.1002/aelm.201900796
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- G. Wen, X. Zhao, Y. Liu, H. Zhang, C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 372, 1–11 (2019). https://doi.org/10.1016/j.cej.2019.04.152
- H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- H. Shin, W. Eom, K.H. Lee, W. Jeong, D.J. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
- L. Kong, J. Qi, M. Li, X. Chen, X. Yuan et al., Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon 183, 322–331 (2021). https://doi.org/10.1016/j.Carbon.2021.07.018
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- W. Ma, R. Yang, T. Wang, ZnO Nanorod-based microflowers decorated with Fe3O4 nanops for electromagnetic wave absorption. ACS Appl. Nano Mater. 3(8), 8319–8327 (2020). https://doi.org/10.1021/acsanm.0c01728
- L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15(18), 1900900 (2019). https://doi.org/10.1002/smll.201900900
- J.D. Kirwan, M.J. Bok, J. Smolka, J.J. Foster, J.C. Hernandez et al., The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies. J. Exp. Biol. 221(14), 176271 (2018). https://doi.org/10.1242/jeb.176271
- D. Yerramilli, S. Johnsen, Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). J. Exp. Biol. 213(2), 249–255 (2010). https://doi.org/10.1242/jeb.033159
- E.M. Ullrich-Luter, S. Dupont, E. Arboleda, H. Hausen, M.I. Arnone, Unique system of photoreceptors in sea urchin tube feet. PNAS 108(20), 8367–8372 (2011). https://doi.org/10.1073/PNAS1018495108
- Y. Wang, R. Liu, J. Zhang, M. Miao, X. Feng, Vulcanization of Ti3C2Tx MXene/natural rubber composite films for enhanced electromagnetic interference shielding. Appl. Surf. Sci. 546, 149143 (2021). https://doi.org/10.1016/j.apsusc.2021.149143
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
- M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu et al., Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26, e00219 (2020). https://doi.org/10.1016/j.susmat.2020.e00219
- S. Li, J. Wang, Z. Zhu, D. Liu, W. Li et al., CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. J. Mater. Chem. A 9(1), 358–370 (2021). https://doi.org/10.1039/d0ta09337h
- X. Li, L. Wang, W. You, X. Li, L. Yang et al., Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. Nanoscale 11(46), 22539–22549 (2019). https://doi.org/10.1039/c9nr07895a
- X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 100404 (2020). https://doi.org/10.1016/j.coco.2020.100404
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- Q. Liu, B. Cao, C. Feng, W. Zhang, S. Zhu et al., High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanops. Compos. Sci. Technol. 72(13), 1632–1636 (2012). https://doi.org/10.1016/j.compscitech.2012.06.022
- Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
- Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.Carbon.2020.12.060
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
- J.B. Cheng, H.B. Zhao, M. Cao, M.E. Li, A.N. Zhang et al., Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 12(23), 26301–26312 (2020). https://doi.org/10.1021/acsami.0c01841
- H.B. Zhao, J.B. Cheng, Y.Z. Wang, Biomass-derived Co@ crystalline carbon@ carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 736, 71–79 (2018). https://doi.org/10.1016/j.jallcom.2017.11.120
- X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
References
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
Y. Wang, W. Zhong, S. Zhang, X. Zhang, C. Zhu et al., Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon 188, 254–264 (2022). https://doi.org/10.1016/j.Carbon.2021.12.030
H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
Y. Lu, S. Zhang, M. He, L. Wei, Y. Chen et al., 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 178, 413–435 (2021). https://doi.org/10.1016/j.Carbon.2021.01.161
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.Carbon.2021.07.019
J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15(36), 1902885 (2019). https://doi.org/10.1002/smll.201902885
N. He, X. Yang, L. Shi, X. Yang, Y. Lu et al., Chemical conversion of Cu2O/PPy core-shell nanowires (CSNWs): a surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities. Carbon 166, 205–217 (2020). https://doi.org/10.1016/j.Carbon.2020.05.044
C. Xu, F. Wu, L. Duan, Z. Xiong, Y. Xia et al., Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2(6), 1505–1513 (2020). https://doi.org/10.1021/acsaelm.0c00090
M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540 (2014). https://doi.org/10.1039/c4ta01715c
L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core–sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9(7), 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), e2003502 (2020). https://doi.org/10.1002/smll.202003502
X. Ma, Y. Duan, L. Huang, H. Lei, X. Yang, Quasiperiodic metamaterials with broadband absorption: tailoring electromagnetic wave by Penrose tiling. Compos. B Eng. 233, 109659 (2022). https://doi.org/10.1016/j.compositesb.2022.109659
B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu et al., Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 23(1), 2000827 (2020). https://doi.org/10.1002/adem.202000827
P.A. Yang, Y. Huang, R. Li, X. Huang, H. Ruan et al., Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 430, 132878 (2022). https://doi.org/10.1016/j.cej.2021.132878
H. Li, S. Bao, Y. Li, Y. Huang, J. Chen et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 10(34), 28839–28849 (2018). https://doi.org/10.1021/acsami.8b08040
M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182, 806–814 (2021). https://doi.org/10.1016/j.Carbon.2021.06.054
Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji et al., Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 6(1), 1900796 (2020). https://doi.org/10.1002/aelm.201900796
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
G. Wen, X. Zhao, Y. Liu, H. Zhang, C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 372, 1–11 (2019). https://doi.org/10.1016/j.cej.2019.04.152
H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
H. Shin, W. Eom, K.H. Lee, W. Jeong, D.J. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
L. Kong, J. Qi, M. Li, X. Chen, X. Yuan et al., Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon 183, 322–331 (2021). https://doi.org/10.1016/j.Carbon.2021.07.018
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
W. Ma, R. Yang, T. Wang, ZnO Nanorod-based microflowers decorated with Fe3O4 nanops for electromagnetic wave absorption. ACS Appl. Nano Mater. 3(8), 8319–8327 (2020). https://doi.org/10.1021/acsanm.0c01728
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15(18), 1900900 (2019). https://doi.org/10.1002/smll.201900900
J.D. Kirwan, M.J. Bok, J. Smolka, J.J. Foster, J.C. Hernandez et al., The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies. J. Exp. Biol. 221(14), 176271 (2018). https://doi.org/10.1242/jeb.176271
D. Yerramilli, S. Johnsen, Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). J. Exp. Biol. 213(2), 249–255 (2010). https://doi.org/10.1242/jeb.033159
E.M. Ullrich-Luter, S. Dupont, E. Arboleda, H. Hausen, M.I. Arnone, Unique system of photoreceptors in sea urchin tube feet. PNAS 108(20), 8367–8372 (2011). https://doi.org/10.1073/PNAS1018495108
Y. Wang, R. Liu, J. Zhang, M. Miao, X. Feng, Vulcanization of Ti3C2Tx MXene/natural rubber composite films for enhanced electromagnetic interference shielding. Appl. Surf. Sci. 546, 149143 (2021). https://doi.org/10.1016/j.apsusc.2021.149143
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu et al., Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26, e00219 (2020). https://doi.org/10.1016/j.susmat.2020.e00219
S. Li, J. Wang, Z. Zhu, D. Liu, W. Li et al., CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. J. Mater. Chem. A 9(1), 358–370 (2021). https://doi.org/10.1039/d0ta09337h
X. Li, L. Wang, W. You, X. Li, L. Yang et al., Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. Nanoscale 11(46), 22539–22549 (2019). https://doi.org/10.1039/c9nr07895a
X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 100404 (2020). https://doi.org/10.1016/j.coco.2020.100404
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
Q. Liu, B. Cao, C. Feng, W. Zhang, S. Zhu et al., High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanops. Compos. Sci. Technol. 72(13), 1632–1636 (2012). https://doi.org/10.1016/j.compscitech.2012.06.022
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.Carbon.2020.12.060
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
J.B. Cheng, H.B. Zhao, M. Cao, M.E. Li, A.N. Zhang et al., Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 12(23), 26301–26312 (2020). https://doi.org/10.1021/acsami.0c01841
H.B. Zhao, J.B. Cheng, Y.Z. Wang, Biomass-derived Co@ crystalline carbon@ carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 736, 71–79 (2018). https://doi.org/10.1016/j.jallcom.2017.11.120
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761