Carbon-Nitride-Based Materials for Advanced Lithium–Sulfur Batteries
Corresponding Author: Qingli Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 222
Abstract
Lithium–sulfur (Li–S) batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost. However, critical challenges including severe shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics limit the practical application of Li–S batteries. Carbon nitrides (CxNy), represented by graphitic carbon nitride (g-C3N4), provide new opportunities for overcoming these challenges. With a graphene-like structure and high pyridinic-N content, g-C3N4 can effectively immobilize LiPSs and enhance the redox kinetics of S species. In addition, its structure and properties including electronic conductivity and catalytic activity can be regulated by simple methods that facilitate its application in Li–S batteries. Here, the recent progress of applying CxNy-based materials including the optimized g-C3N4, g-C3N4-based composites, and other novel CxNy materials is systematically reviewed in Li–S batteries, with a focus on the structure–activity relationship. The limitations of existing CxNy-based materials are identified, and the perspectives on the rational design of advanced CxNy-based materials are provided for high-performance Li–S batteries.
Highlights:
1 The recent advances in CxNy-based materials including the optimized g-C3N4, g-C3N4-based composites, and other novel CxNy materials are summarized.
2 The applications of CxNy-based materials in Li–S batteries are systematically discussed with a focus on the structure–activity relationship.
3 The perspectives on the rational design of advanced CxNy-based materials for high-performance Li–S batteries are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Tushar, T.K. Saha, C. Yuen, D. Smith, H.V. Poor, Peer-to-peer trading in electricity networks: an overview. IEEE Trans. Smart Grid 11(4), 3185–3200 (2020). https://doi.org/10.1109/tsg.2020.2969657
- T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020). https://doi.org/10.1016/j.egyr.2020.07.020
- S. Carley, D.M. Konisky, The justice and equity implications of the clean energy transition. Nat. Energy 5(8), 569–577 (2020). https://doi.org/10.1038/s41560-020-0641-6
- Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- S. Zhao, Y. Kang, M. Liu, B. Wen, Q. Fang et al., Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium–sulfur batteries. J. Mater. Chem. A 9(35), 18927–18946 (2021). https://doi.org/10.1039/d1ta02741g
- J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium–sulfur batteries. Energy Storage Mater. 20, 55–70 (2019). https://doi.org/10.1016/j.ensm.2019.04.038
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li-S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- Y. Li, S. Guo, Material design and structure optimization for rechargeable lithium–sulfur batteries. Matter 4(4), 1142–1188 (2021). https://doi.org/10.1016/j.matt.2021.01.012
- W. Deng, J. Phung, G. Li, X. Wang, Realizing high-performance lithium–sulfur batteries via rational design and engineering strategies. Nano Energy 82, 105761 (2021). https://doi.org/10.1016/j.nanoen.2021.105761
- C. Deng, Z. Wang, S. Wang, J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. J. Mater. Chem. A 7(20), 12381–12413 (2019). https://doi.org/10.1039/c9ta00535h
- L. Hou, X. Zhang, B. Li, Q. Zhang, Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 45, 62–76 (2021). https://doi.org/10.1016/j.mattod.2020.10.021
- Y. Yin, S. Xin, Y. Guo, L. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151(151), A1969–A1976 (2004). https://doi.org/10.1149/1.1806394
- C. Zu, S.H. Chung, A. Manthiram, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
- P.P.R.M.L. Harks, C.B. Robledo, T.W. Verhallen, P.H.L. Notten, F.M. Mulder, The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries. Adv. Energy Mater. 7(3), 1601635 (2017). Doi: https://doi.org/10.1002/aenm.201601635
- X.B. Cheng, J.Q. Huang, Q. Zhang, Review—Li metal anode in working lithium–sulfur batteries. J. Electrochem. Soc. 165(1), A6058–A6072 (2017). https://doi.org/10.1149/2.0111801jes
- W. Zhou, Y. Yu, H. Chen, F.J. DiSalvo, H.D. Abruna, Yolk-shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 135(44), 16736–16743 (2013). https://doi.org/10.1021/ja409508q
- Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4(4), 1331 (2013). https://doi.org/10.1038/ncomms2327
- J. Kim, S.J. Kim, E. Jung, D.H. Mok, V.K. Paidi et al., Atomic structure modification of Fe-N-C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2110857 (2022). https://doi.org/10.1002/adfm.202110857
- Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott–Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
- S. Li, Z. Fan, Encapsulation methods of sulfur ps for lithium–sulfur batteries: a review. Energy Storage Mater. 34, 107–127 (2021). https://doi.org/10.1016/j.ensm.2020.09.005
- X. Zhang, Y. Wei, B. Wang, M. Wang, Y. Zhang et al., Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium–sulfur batteries. Nano-Micro Lett. 11, 78 (2019). https://doi.org/10.1007/s40820-019-0313-x
- J.L. Yang, D.Q. Cai, Q. Lin, X.Y. Wang, Z.Q. Fang et al., Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium–sulfur batteries. Nano Energy 91, 106669 (2022). https://doi.org/10.1016/j.nanoen.2021.106669
- C. Zhou, J. Wang, X. Zhu, K. Chen, Y. Ouyang et al., A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li–S batteries. Nano Res. 14(5), 1541–1550 (2021). https://doi.org/10.1007/s12274-020-3213-y
- S. Wang, X. Liu, H. Duan, Y. Deng, G. Chen, Fe3C/Fe nanops embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li–S batteries. Chem. Eng. J. 415, 129001 (2021). https://doi.org/10.1016/j.cej.2021.129001
- J. Wang, W. Cai, X. Mu, L. Han, N. Wu et al., Designing of multifunctional and flame retardant separator towards safer high-performance lithium–sulfur batteries. Nano Res. 14(12), 4865–4877 (2021). https://doi.org/10.1007/s12274-021-3446-4
- N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium–sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
- Y. Zhan, A. Buffa, L. Yu, Z.J. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 12, 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
- B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano-Micro Lett. 14, 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
- J. Zhang, J.Y. Li, W.P. Wang, X.H. Zhang, X.H. Tan et al., Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
- W. He, X. He, M. Du, S. Bie, J. Liu et al., Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as the sulfur host for high-performance lithium–sulfur batteries. J. Phys. Chem. C 123(26), 15924–15934 (2019). https://doi.org/10.1021/acs.jpcc.9b02356
- J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo et al., Facile synthesis of rGO/g-C3N4/CNT microspheres via an ethanol-assisted spray-drying method for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11(1), 819–827 (2019). https://doi.org/10.1021/acsami.8b17590
- Q. Pang, L.F. Nazar, Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4), 4111–4118 (2016). https://doi.org/10.1021/acsnano.5b07347
- K. Liao, P. Mao, N. Li, M. Han, J. Yi et al., Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/c6ta00054a
- Z. Wang, B. Jin, J. Peng, W. Su, K. Zhang et al., Engineered polymeric carbon nitride additive for energy storage materials: a review. Adv. Funct. Mater. 31(43), 2102300 (2021). https://doi.org/10.1002/adfm.202102300
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
- C. Xiong, Y. Ren, H. Jiang, M. Wu, T. Zhao, Artificial bifunctional protective layer composed of carbon nitride nanosheets for high performance lithium–sulfur batteries. J. Energy Storage 26, 101006 (2019). https://doi.org/10.1016/j.est.2019.101006
- M. Bai, B. Hong, K. Zhang, K. Yuan, K. Xie et al., Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chem. Eng. J. 407, 127123 (2021). https://doi.org/10.1016/j.cej.2020.127123
- H. Li, H. Chen, Y. Xue, Y. Zhang, M. Zhang et al., Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li–S batteries. Adv. Energy Mater. 10(35), 2001683 (2020). https://doi.org/10.1002/aenm.202001683
- Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7(6), 1601630 (2016). https://doi.org/10.1002/aenm.201601630
- S. Yao, S. Xue, S. Peng, R. Guo, Z. Wu et al., Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Appl. Phys. A 124(11), 758 (2018). https://doi.org/10.1007/s00339-018-2189-x
- D. Versaci, M. Cozzarin, J. Amici, C. Francia, E.P.M. Leiva et all., Influence of synthesis parameters on g-C3N4 polysulfides trapping: a systematic study. Appl. Mater. Today 25, 101169 (2021). Doi: https://doi.org/10.1016/j.apmt.2021.101169
- Z. Meng, S. Li, H. Ying, X. Xu, X. Zhu et al., From silica sphere to hollow carbon nitride-based sphere: rational design of sulfur host with both chemisorption and physical confinement. Adv. Mater. Interfaces 4(11), 1601195 (2017). https://doi.org/10.1002/admi.201601195
- M. Du, X. Tian, R. Ran, W. Zhou, K. Liao et al., Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 34(9), 11557–11564 (2020). https://doi.org/10.1021/acs.energyfuels.0c02278
- X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2(8), 1596–1606 (2012). https://doi.org/10.1021/cs300240x
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Util. 21, 89–99 (2017). Doi: https://doi.org/10.1016/j.jcou.2017.06.022
- Z. Wang, X. Hu, Z. Liu, G. Zou, G. Wang et al., Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal. 9(11), 10260–10278 (2019). https://doi.org/10.1021/acscatal.9b03015
- F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2(6), 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
- D. Deng, C. Bai, F. Xue, J. Lei, P. Xu et al., Multifunctional ion-sieve constructed by 2D materials as an interlayer for Li–S batteries. ACS Appl. Mater. Interfaces 11(12), 11474–11480 (2019). https://doi.org/10.1021/acsami.8b22660
- Z. Wang, B. Jin, G. Zou, K. Zhang, X. Hu et al., Rationally designed copper-modified polymeric carbon nitride as a photocathode for solar water splitting. Chemsuschem 12(4), 866–872 (2019). https://doi.org/10.1002/cssc.201802495
- C. Merschjann, S. Tschierlei, T. Tyborski, K. Kailasam, S. Orthmann et al., Complementing graphenes: 1D interplanar charge transport in polymeric graphitic carbon nitrides. Adv. Mater. 27(48), 7993–7999 (2015). https://doi.org/10.1002/adma.201503448
- Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
- Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51(1), 68–89 (2012). https://doi.org/10.1002/anie.201101182
- X. Li, C. Xu, K. Zhao, Y. Wang, L. Pan, Carbon nitride based mesoporous materials as cathode matrix for high performance lithium–sulfur batteries. RSC Adv. 6(16), 13572–13580 (2016). https://doi.org/10.1039/c5ra26877j
- Z. Tong, L. Huang, H. Liu, W. Lei, H. Zhang et al., Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 31(11), 2010455 (2021). https://doi.org/10.1002/adfm.202010455
- S. Majumder, M. Shao, Y. Deng, G. Chen, Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045
- Z. Jia, H. Zhang, Y. Yu, Y. Chen, J. Yan et al., Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li–S batteries application. J. Energy Chem. 43, 71–77 (2020). https://doi.org/10.1016/j.jechem.2019.06.005
- S. Yao, S. Xue, S. Peng, M. Jing, X. Qian et al., Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. J. Mater. Sci. Mater. Electron. 29(20), 17921–17930 (2018). https://doi.org/10.1007/s10854-018-9906-2
- X. Yang, Core-shell S@C3N4 nano-spheres as advanced adsorbent material for excellent lithium storage. Mater. Res. Express 6(9), 96562 (2019). https://doi.org/10.1088/2053-1591/ab2f9c
- F. Zhao, M. Nani, Z. Kun, X. Keyu, S. Chao et al., Handheld spraying of g-C3N4 nanosheets on cathode for high-performance lithium–sulfur batteries. Ionics 25(7), 3099–3106 (2019). https://doi.org/10.1007/s11581-018-2821-y
- Y. Huangfu, T. Zheng, K. Zhang, X. She, H. Xu et al., Facile fabrication of permselective g-C3N4 separator for improved lithium–sulfur batteries. Electrochim. Acta 272, 60–67 (2018). https://doi.org/10.1016/j.electacta.2018.03.149
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
- D. Zhao, C.L. Dong, B. Wang, C. Chen, Y.C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31(43), 1903545 (2019). https://doi.org/10.1002/adma.201903545
- Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan et al., Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 32(28), 2001300 (2020). https://doi.org/10.1002/adma.202001300
- J. Wang, W.Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32(2), 2107166 (2021). https://doi.org/10.1002/adfm.202107166
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano-Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li–S batteries. Nano-Micro Lett. 12, 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
- Z. Zhuang, Q. Kang, D. Wang, Y. Li, Single-atom catalysis enables long-life, high-energy lithium–sulfur batteries. Nano Res. 13(7), 1856–1866 (2020). https://doi.org/10.1007/s12274-020-2827-4
- L. Fang, Z. Feng, L. Cheng, R.E. Winans, T. Li, Design principles of single atoms on carbons for lithium–sulfur batteries. Small Methods 4(10), 2000315 (2020). https://doi.org/10.1002/smtd.202000315
- Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni et al., Atomic iron catalysis of polysulfide conversion in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(23), 19311–19317 (2018). https://doi.org/10.1021/acsami.8b03830
- T. Yang, K. Liu, T. Wu, J. Zhang, X. Zheng et al., Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. J. Mater. Chem. A 8(35), 18032–18042 (2020). https://doi.org/10.1039/d0ta05927g
- Z. Shi, M. Li, J. Sun, Z. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
- Y. Zhang, G. Li, J. Wang, G. Cui, X. Wei et al., Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv. Funct. Mater. 30(22), 2001165 (2020). https://doi.org/10.1002/adfm.202001165
- D. He, J. Meng, X. Chen, Y. Liao, Z. Cheng et al., Ultrathin conductive interlayer with high-density antisite defects for advanced lithium–sulfur batteries. Adv. Funct. Mater. 31(2), 2001201 (2020). https://doi.org/10.1002/adfm.202001201
- H. Ma, C. Song, N. Liu, Y. Zhao, Z. Bakenov, Nitrogen-deficient graphitic carbon nitride/carbon nanotube as polysulfide barrier of high-performance lithium–sulfur batteries. ChemElectroChem 7(24), 4906–4912 (2020). https://doi.org/10.1002/celc.202001259
- D. Li, J. Liu, W. Wang, S. Li, G. Yang et al., Synthesis of porous n deficient graphitic carbon nitride and utilization in lithium–sulfur battery. Appl. Surf. Sci. 569, 151058 (2021). https://doi.org/10.1016/j.apsusc.2021.151058
- J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). https://doi.org/10.1021/acs.nanolett.5b01919
- R. Jiang, M. Jiang, Z. Huang, J. Wang, Y. Kuang et al., Constructing light-weight polar boron-doped carbon nitride nanosheets with increased active sites and conductivity for high performance lithium–sulfur batteries. Int. J. Hydrog. Energy 45(29), 14940–14952 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.232
- N. Yamsang, J. Sittiwong, P. Srifa, B. Boekfa, M. Sawangphruk et al., First-principle study of lithium polysulfide adsorption on heteroatom doped graphitic carbon nitride for lithium–sulfur batteries. Appl. Surf. Sci. 565, 150378 (2021). https://doi.org/10.1016/j.apsusc.2021.150378
- X. Zhang, S. Yang, Y. Chen, S. Li, S. Tang et al., Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium–sulfur battery. Ionics 26(11), 5491–5501 (2020). https://doi.org/10.1007/s11581-020-03728-w
- F. He, K. Li, C. Yin, Y. Ding, H. Tang et al., A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium–sulfur batteries. J. Power Sources 373, 31–39 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.095
- Y. Qiu, L. Fan, M. Wang, X. Yin, X. Wu et al., Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium–sulfur batteries. ACS Nano 14(11), 16105–16113 (2020). https://doi.org/10.1021/acsnano.0c08056
- M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu et al., Kinetically elevated redox conversion of polysulfides of lithium–sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 385, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123905
- J. Wu, J. Chen, Y. Huang, K. Feng, J. Deng et al., Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci. Bull. 64(24), 1875–1880 (2019). https://doi.org/10.1016/j.scib.2019.08.016
- P. Song, Z. Chen, Y. Chen, Q. Ma, X. Xia et al., Light-weight g-C3N4/carbon hybrid cages as conductive and polar hosts to construct core-shell structured S@g-C3N4/carbon spheres with enhanced Li ion-storage performance. Electrochim. Acta 363, 137217 (2020). https://doi.org/10.1016/j.electacta.2020.137217
- X. Wang, G. Li, M. Li, R. Liu, H. Li et al., Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium–sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036
- Z. Wu, S. Yao, R. Guo, Y. Li, C. Zhang et al., Freestanding graphitic carbon nitride-based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries. Int. J. Energy Res. 44(4), 3110–3121 (2020). https://doi.org/10.1002/er.5150
- L. Qu, P. Liu, Y. Yi, T. Wang, P. Yang et al., Enhanced cycling performance for lithium–sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem 12(1), 213–223 (2019). https://doi.org/10.1002/cssc.201802449
- H. Zhang, Q. Liu, S. Ruan, C. Ma, X. Jia et al., In-situ construction of g-C3N4/carbon heterostructure on graphene nanosheet: an efficient polysulfide barrier for advanced lithium–sulfur batteries. Appl. Surf. Sci. 578, 152022 (2022). https://doi.org/10.1016/j.apsusc.2021.152022
- H. Zhang, Z. Zhao, Y.N. Hou, Y. Tang, Y. Dong et al., Nanopore-confined g-C3N4 nanodots in N, S co-doped hollow porous carbon with boosted capacity for lithium–sulfur batteries. J. Mater. Chem. A 6(16), 7133–7141 (2018). https://doi.org/10.1039/c8ta00529j
- J. Ma, M. Yu, H. Ye, H. Song, D. Wang et al., A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium–sulfur batteries. Mater. Chem. Front. 3(9), 1807–1815 (2019). https://doi.org/10.1039/c9qm00228f
- H. Zhang, X. Lin, J. Li, T. Han, M. Zhu et al., A binder-free lithium–sulfur battery cathode using three-dimensional porous g-C3N4 nanoflakes as sulfur host displaying high binding energies with lithium polysulfides. J. Alloys Compd. 881, 160629 (2021). https://doi.org/10.1016/j.jallcom.2021.160629
- K. Zhang, W. Cai, Y. Liu, G. Hu, W. Hu et al., Nitrogen-doped carbon embedded with Ag nanops for bidirectionally-promoted polysulfide redox electrochemistry. Chem. Eng. J. 427, 130897 (2022). https://doi.org/10.1016/j.cej.2021.130897
- X. Zhou, T. Liu, G. Zhao, X. Yang, H. Guo, Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li–S batteries. Energy Storage Mater. 40, 139–149 (2021). https://doi.org/10.1016/j.ensm.2021.05.009
- M. Wang, X. Zhou, X. Cai, H. Wang, Y. Fang et al., Hierarchically porous, ultrathin N–doped carbon nanosheets embedded with highly dispersed cobalt nanops as efficient sulfur host for stable lithium–sulfur batteries. J. Energy Chem. 50, 106–114 (2020). https://doi.org/10.1016/j.jechem.2020.03.014
- Y. Feng, G. Wang, L. Wang, J. Ju, W. Kang et al., Taming polysulfides and facilitating redox: novel interlayer based on chestnut-like and multi-level structural materials for ultra-stable lithium–sulfur batteries. J. Alloys Compd. 851, 156859 (2021). https://doi.org/10.1016/j.jallcom.2020.156859
- Y. Li, M. Chen, P. Zeng, H. Liu, H. Yu et al., Fe, Co-bimetallic doped C3N4 with in-situ derived carbon tube as sulfur host for anchoring and catalyzing polysulfides in lithium–sulfur battery. J. Alloys Compd. 873, 159883 (2021). https://doi.org/10.1016/j.jallcom.2021.159883
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- H. Pan, X. Huang, C. Wang, D. Liu, D. Wang et al., Sandwich structural TixOy-Ti3C2/C3N4 material for long life and fast kinetics lithium–sulfur battery: bidirectional adsorption promoting lithium polysulfide conversion. Chem. Eng. J. 410, 128424 (2021). https://doi.org/10.1016/j.cej.2021.128424
- X. Liu, S. Wang, H. Duan, Y. Deng, G. Chen, A thin and multifunctional CoS@g-C3N4/ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium–sulfur batteries. J. Colloid Interface Sci. 608(1), 470–481 (2022). https://doi.org/10.1016/j.jcis.2021.09.122
- S. Yao, Y. Wang, Y. He, A. Majeed, Y. Liang et al., Synergistic effect of titanium-oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithium–sulfur batteries. Int. J. Energy Res. 44(13), 10937–10945 (2020). https://doi.org/10.1002/er.5671
- S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12, 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
- Y. Wang, L. Yang, Y. Chen, Q. Li, C. Chen et al., Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(52), 57859–57869 (2020). https://doi.org/10.1021/acsami.0c16631
- J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
- Z. Bian, T. Yuan, Y. Xu, Y. Pang, H. Yao et al., Boosting Li–S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150, 216–223 (2019). https://doi.org/10.1016/j.carbon.2019.05.022
- X. Hong, Y. Liu, J. Fu, X. Wang, T. Zhang et al., A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 170, 119–126 (2020). https://doi.org/10.1016/j.carbon.2020.08.032
- J. Wutthiprom, N. Phattharasupakun, J. Khuntilo, T. Maihom, J. Limtrakul et al., Collaborative design of Li–S batteries using 3D N-doped graphene aerogel as a sulfur host and graphitic carbon nitride paper as an interlayer. Sustain. Energy Fuels 1(8), 1759–1765 (2017). https://doi.org/10.1039/c7se00291b
- J. Wutthiprom, N. Phattharasupakun, M. Sawangphruk, Designing an interlayer of reduced graphene oxide aerogel and nitrogen-rich graphitic carbon nitride by a layer-by-layer coating for high-performance lithium sulfur batteries. Carbon 139, 945–953 (2018). https://doi.org/10.1016/j.carbon.2018.08.008
- C. Shu, L. Fang, M. Yang, L. Zhong, X. Chen et al., Cutting COF-like C4N into colloidal quantum dots toward optical encryption and bidirectional sulfur chemistry via functional group and edge effects. Angew. Chem. Int. Ed. 134(8), 202114182 (2021). https://doi.org/10.1002/anie.202114182
- J. Wu, L.W. Wang, 2D framework C2N as a potential cathode for lithium–sulfur batteries: an ab initio density functional study. J. Mater. Chem. A 6(7), 2984–2994 (2018). https://doi.org/10.1039/c7ta10549e
- Y. Zheng, H. Li, H. Yuan, H. Fan, W. Li et al., Understanding the anchoring effect of graphene, BN, C2N and C3N4 monolayers for lithium−polysulfides in Li−S batteries. Appl. Surf. Sci. 434, 596–603 (2018). https://doi.org/10.1016/j.apsusc.2017.10.230
- D. Wang, H. Li, L. Zhang, Z. Sun, D. Han et al., 2D nitrogen-containing carbon material C5N as potential host material for lithium polysulfides: a first-principles study. Adv. Theory Simul. 2(2), 1800165 (2018). https://doi.org/10.1002/adts.201800165
- Y. Dong, B. Xu, H. Hu, J. Yang, F. Li et al., C9N4 and C2N6S3 monolayers as promising anchoring materials for lithium–sulfur batteries: weakening the shuttle effect via optimizing lithium bonds. Phys. Chem. Chem. Phys. 23(23), 12958–12967 (2021). https://doi.org/10.1039/d1cp01022k
References
W. Tushar, T.K. Saha, C. Yuen, D. Smith, H.V. Poor, Peer-to-peer trading in electricity networks: an overview. IEEE Trans. Smart Grid 11(4), 3185–3200 (2020). https://doi.org/10.1109/tsg.2020.2969657
T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020). https://doi.org/10.1016/j.egyr.2020.07.020
S. Carley, D.M. Konisky, The justice and equity implications of the clean energy transition. Nat. Energy 5(8), 569–577 (2020). https://doi.org/10.1038/s41560-020-0641-6
Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
S. Zhao, Y. Kang, M. Liu, B. Wen, Q. Fang et al., Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium–sulfur batteries. J. Mater. Chem. A 9(35), 18927–18946 (2021). https://doi.org/10.1039/d1ta02741g
J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium–sulfur batteries. Energy Storage Mater. 20, 55–70 (2019). https://doi.org/10.1016/j.ensm.2019.04.038
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li-S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
Y. Li, S. Guo, Material design and structure optimization for rechargeable lithium–sulfur batteries. Matter 4(4), 1142–1188 (2021). https://doi.org/10.1016/j.matt.2021.01.012
W. Deng, J. Phung, G. Li, X. Wang, Realizing high-performance lithium–sulfur batteries via rational design and engineering strategies. Nano Energy 82, 105761 (2021). https://doi.org/10.1016/j.nanoen.2021.105761
C. Deng, Z. Wang, S. Wang, J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. J. Mater. Chem. A 7(20), 12381–12413 (2019). https://doi.org/10.1039/c9ta00535h
L. Hou, X. Zhang, B. Li, Q. Zhang, Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 45, 62–76 (2021). https://doi.org/10.1016/j.mattod.2020.10.021
Y. Yin, S. Xin, Y. Guo, L. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151(151), A1969–A1976 (2004). https://doi.org/10.1149/1.1806394
C. Zu, S.H. Chung, A. Manthiram, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
P.P.R.M.L. Harks, C.B. Robledo, T.W. Verhallen, P.H.L. Notten, F.M. Mulder, The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries. Adv. Energy Mater. 7(3), 1601635 (2017). Doi: https://doi.org/10.1002/aenm.201601635
X.B. Cheng, J.Q. Huang, Q. Zhang, Review—Li metal anode in working lithium–sulfur batteries. J. Electrochem. Soc. 165(1), A6058–A6072 (2017). https://doi.org/10.1149/2.0111801jes
W. Zhou, Y. Yu, H. Chen, F.J. DiSalvo, H.D. Abruna, Yolk-shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 135(44), 16736–16743 (2013). https://doi.org/10.1021/ja409508q
Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4(4), 1331 (2013). https://doi.org/10.1038/ncomms2327
J. Kim, S.J. Kim, E. Jung, D.H. Mok, V.K. Paidi et al., Atomic structure modification of Fe-N-C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2110857 (2022). https://doi.org/10.1002/adfm.202110857
Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott–Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
S. Li, Z. Fan, Encapsulation methods of sulfur ps for lithium–sulfur batteries: a review. Energy Storage Mater. 34, 107–127 (2021). https://doi.org/10.1016/j.ensm.2020.09.005
X. Zhang, Y. Wei, B. Wang, M. Wang, Y. Zhang et al., Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium–sulfur batteries. Nano-Micro Lett. 11, 78 (2019). https://doi.org/10.1007/s40820-019-0313-x
J.L. Yang, D.Q. Cai, Q. Lin, X.Y. Wang, Z.Q. Fang et al., Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium–sulfur batteries. Nano Energy 91, 106669 (2022). https://doi.org/10.1016/j.nanoen.2021.106669
C. Zhou, J. Wang, X. Zhu, K. Chen, Y. Ouyang et al., A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li–S batteries. Nano Res. 14(5), 1541–1550 (2021). https://doi.org/10.1007/s12274-020-3213-y
S. Wang, X. Liu, H. Duan, Y. Deng, G. Chen, Fe3C/Fe nanops embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li–S batteries. Chem. Eng. J. 415, 129001 (2021). https://doi.org/10.1016/j.cej.2021.129001
J. Wang, W. Cai, X. Mu, L. Han, N. Wu et al., Designing of multifunctional and flame retardant separator towards safer high-performance lithium–sulfur batteries. Nano Res. 14(12), 4865–4877 (2021). https://doi.org/10.1007/s12274-021-3446-4
N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium–sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
Y. Zhan, A. Buffa, L. Yu, Z.J. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 12, 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano-Micro Lett. 14, 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
J. Zhang, J.Y. Li, W.P. Wang, X.H. Zhang, X.H. Tan et al., Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
W. He, X. He, M. Du, S. Bie, J. Liu et al., Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as the sulfur host for high-performance lithium–sulfur batteries. J. Phys. Chem. C 123(26), 15924–15934 (2019). https://doi.org/10.1021/acs.jpcc.9b02356
J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo et al., Facile synthesis of rGO/g-C3N4/CNT microspheres via an ethanol-assisted spray-drying method for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11(1), 819–827 (2019). https://doi.org/10.1021/acsami.8b17590
Q. Pang, L.F. Nazar, Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4), 4111–4118 (2016). https://doi.org/10.1021/acsnano.5b07347
K. Liao, P. Mao, N. Li, M. Han, J. Yi et al., Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/c6ta00054a
Z. Wang, B. Jin, J. Peng, W. Su, K. Zhang et al., Engineered polymeric carbon nitride additive for energy storage materials: a review. Adv. Funct. Mater. 31(43), 2102300 (2021). https://doi.org/10.1002/adfm.202102300
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
C. Xiong, Y. Ren, H. Jiang, M. Wu, T. Zhao, Artificial bifunctional protective layer composed of carbon nitride nanosheets for high performance lithium–sulfur batteries. J. Energy Storage 26, 101006 (2019). https://doi.org/10.1016/j.est.2019.101006
M. Bai, B. Hong, K. Zhang, K. Yuan, K. Xie et al., Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chem. Eng. J. 407, 127123 (2021). https://doi.org/10.1016/j.cej.2020.127123
H. Li, H. Chen, Y. Xue, Y. Zhang, M. Zhang et al., Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li–S batteries. Adv. Energy Mater. 10(35), 2001683 (2020). https://doi.org/10.1002/aenm.202001683
Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7(6), 1601630 (2016). https://doi.org/10.1002/aenm.201601630
S. Yao, S. Xue, S. Peng, R. Guo, Z. Wu et al., Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Appl. Phys. A 124(11), 758 (2018). https://doi.org/10.1007/s00339-018-2189-x
D. Versaci, M. Cozzarin, J. Amici, C. Francia, E.P.M. Leiva et all., Influence of synthesis parameters on g-C3N4 polysulfides trapping: a systematic study. Appl. Mater. Today 25, 101169 (2021). Doi: https://doi.org/10.1016/j.apmt.2021.101169
Z. Meng, S. Li, H. Ying, X. Xu, X. Zhu et al., From silica sphere to hollow carbon nitride-based sphere: rational design of sulfur host with both chemisorption and physical confinement. Adv. Mater. Interfaces 4(11), 1601195 (2017). https://doi.org/10.1002/admi.201601195
M. Du, X. Tian, R. Ran, W. Zhou, K. Liao et al., Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 34(9), 11557–11564 (2020). https://doi.org/10.1021/acs.energyfuels.0c02278
X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2(8), 1596–1606 (2012). https://doi.org/10.1021/cs300240x
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Util. 21, 89–99 (2017). Doi: https://doi.org/10.1016/j.jcou.2017.06.022
Z. Wang, X. Hu, Z. Liu, G. Zou, G. Wang et al., Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal. 9(11), 10260–10278 (2019). https://doi.org/10.1021/acscatal.9b03015
F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2(6), 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
D. Deng, C. Bai, F. Xue, J. Lei, P. Xu et al., Multifunctional ion-sieve constructed by 2D materials as an interlayer for Li–S batteries. ACS Appl. Mater. Interfaces 11(12), 11474–11480 (2019). https://doi.org/10.1021/acsami.8b22660
Z. Wang, B. Jin, G. Zou, K. Zhang, X. Hu et al., Rationally designed copper-modified polymeric carbon nitride as a photocathode for solar water splitting. Chemsuschem 12(4), 866–872 (2019). https://doi.org/10.1002/cssc.201802495
C. Merschjann, S. Tschierlei, T. Tyborski, K. Kailasam, S. Orthmann et al., Complementing graphenes: 1D interplanar charge transport in polymeric graphitic carbon nitrides. Adv. Mater. 27(48), 7993–7999 (2015). https://doi.org/10.1002/adma.201503448
Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51(1), 68–89 (2012). https://doi.org/10.1002/anie.201101182
X. Li, C. Xu, K. Zhao, Y. Wang, L. Pan, Carbon nitride based mesoporous materials as cathode matrix for high performance lithium–sulfur batteries. RSC Adv. 6(16), 13572–13580 (2016). https://doi.org/10.1039/c5ra26877j
Z. Tong, L. Huang, H. Liu, W. Lei, H. Zhang et al., Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 31(11), 2010455 (2021). https://doi.org/10.1002/adfm.202010455
S. Majumder, M. Shao, Y. Deng, G. Chen, Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045
Z. Jia, H. Zhang, Y. Yu, Y. Chen, J. Yan et al., Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li–S batteries application. J. Energy Chem. 43, 71–77 (2020). https://doi.org/10.1016/j.jechem.2019.06.005
S. Yao, S. Xue, S. Peng, M. Jing, X. Qian et al., Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. J. Mater. Sci. Mater. Electron. 29(20), 17921–17930 (2018). https://doi.org/10.1007/s10854-018-9906-2
X. Yang, Core-shell S@C3N4 nano-spheres as advanced adsorbent material for excellent lithium storage. Mater. Res. Express 6(9), 96562 (2019). https://doi.org/10.1088/2053-1591/ab2f9c
F. Zhao, M. Nani, Z. Kun, X. Keyu, S. Chao et al., Handheld spraying of g-C3N4 nanosheets on cathode for high-performance lithium–sulfur batteries. Ionics 25(7), 3099–3106 (2019). https://doi.org/10.1007/s11581-018-2821-y
Y. Huangfu, T. Zheng, K. Zhang, X. She, H. Xu et al., Facile fabrication of permselective g-C3N4 separator for improved lithium–sulfur batteries. Electrochim. Acta 272, 60–67 (2018). https://doi.org/10.1016/j.electacta.2018.03.149
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
D. Zhao, C.L. Dong, B. Wang, C. Chen, Y.C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31(43), 1903545 (2019). https://doi.org/10.1002/adma.201903545
Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan et al., Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 32(28), 2001300 (2020). https://doi.org/10.1002/adma.202001300
J. Wang, W.Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32(2), 2107166 (2021). https://doi.org/10.1002/adfm.202107166
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano-Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li–S batteries. Nano-Micro Lett. 12, 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
Z. Zhuang, Q. Kang, D. Wang, Y. Li, Single-atom catalysis enables long-life, high-energy lithium–sulfur batteries. Nano Res. 13(7), 1856–1866 (2020). https://doi.org/10.1007/s12274-020-2827-4
L. Fang, Z. Feng, L. Cheng, R.E. Winans, T. Li, Design principles of single atoms on carbons for lithium–sulfur batteries. Small Methods 4(10), 2000315 (2020). https://doi.org/10.1002/smtd.202000315
Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni et al., Atomic iron catalysis of polysulfide conversion in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(23), 19311–19317 (2018). https://doi.org/10.1021/acsami.8b03830
T. Yang, K. Liu, T. Wu, J. Zhang, X. Zheng et al., Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. J. Mater. Chem. A 8(35), 18032–18042 (2020). https://doi.org/10.1039/d0ta05927g
Z. Shi, M. Li, J. Sun, Z. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
Y. Zhang, G. Li, J. Wang, G. Cui, X. Wei et al., Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv. Funct. Mater. 30(22), 2001165 (2020). https://doi.org/10.1002/adfm.202001165
D. He, J. Meng, X. Chen, Y. Liao, Z. Cheng et al., Ultrathin conductive interlayer with high-density antisite defects for advanced lithium–sulfur batteries. Adv. Funct. Mater. 31(2), 2001201 (2020). https://doi.org/10.1002/adfm.202001201
H. Ma, C. Song, N. Liu, Y. Zhao, Z. Bakenov, Nitrogen-deficient graphitic carbon nitride/carbon nanotube as polysulfide barrier of high-performance lithium–sulfur batteries. ChemElectroChem 7(24), 4906–4912 (2020). https://doi.org/10.1002/celc.202001259
D. Li, J. Liu, W. Wang, S. Li, G. Yang et al., Synthesis of porous n deficient graphitic carbon nitride and utilization in lithium–sulfur battery. Appl. Surf. Sci. 569, 151058 (2021). https://doi.org/10.1016/j.apsusc.2021.151058
J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). https://doi.org/10.1021/acs.nanolett.5b01919
R. Jiang, M. Jiang, Z. Huang, J. Wang, Y. Kuang et al., Constructing light-weight polar boron-doped carbon nitride nanosheets with increased active sites and conductivity for high performance lithium–sulfur batteries. Int. J. Hydrog. Energy 45(29), 14940–14952 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.232
N. Yamsang, J. Sittiwong, P. Srifa, B. Boekfa, M. Sawangphruk et al., First-principle study of lithium polysulfide adsorption on heteroatom doped graphitic carbon nitride for lithium–sulfur batteries. Appl. Surf. Sci. 565, 150378 (2021). https://doi.org/10.1016/j.apsusc.2021.150378
X. Zhang, S. Yang, Y. Chen, S. Li, S. Tang et al., Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium–sulfur battery. Ionics 26(11), 5491–5501 (2020). https://doi.org/10.1007/s11581-020-03728-w
F. He, K. Li, C. Yin, Y. Ding, H. Tang et al., A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium–sulfur batteries. J. Power Sources 373, 31–39 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.095
Y. Qiu, L. Fan, M. Wang, X. Yin, X. Wu et al., Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium–sulfur batteries. ACS Nano 14(11), 16105–16113 (2020). https://doi.org/10.1021/acsnano.0c08056
M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu et al., Kinetically elevated redox conversion of polysulfides of lithium–sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 385, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123905
J. Wu, J. Chen, Y. Huang, K. Feng, J. Deng et al., Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci. Bull. 64(24), 1875–1880 (2019). https://doi.org/10.1016/j.scib.2019.08.016
P. Song, Z. Chen, Y. Chen, Q. Ma, X. Xia et al., Light-weight g-C3N4/carbon hybrid cages as conductive and polar hosts to construct core-shell structured S@g-C3N4/carbon spheres with enhanced Li ion-storage performance. Electrochim. Acta 363, 137217 (2020). https://doi.org/10.1016/j.electacta.2020.137217
X. Wang, G. Li, M. Li, R. Liu, H. Li et al., Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium–sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036
Z. Wu, S. Yao, R. Guo, Y. Li, C. Zhang et al., Freestanding graphitic carbon nitride-based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries. Int. J. Energy Res. 44(4), 3110–3121 (2020). https://doi.org/10.1002/er.5150
L. Qu, P. Liu, Y. Yi, T. Wang, P. Yang et al., Enhanced cycling performance for lithium–sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem 12(1), 213–223 (2019). https://doi.org/10.1002/cssc.201802449
H. Zhang, Q. Liu, S. Ruan, C. Ma, X. Jia et al., In-situ construction of g-C3N4/carbon heterostructure on graphene nanosheet: an efficient polysulfide barrier for advanced lithium–sulfur batteries. Appl. Surf. Sci. 578, 152022 (2022). https://doi.org/10.1016/j.apsusc.2021.152022
H. Zhang, Z. Zhao, Y.N. Hou, Y. Tang, Y. Dong et al., Nanopore-confined g-C3N4 nanodots in N, S co-doped hollow porous carbon with boosted capacity for lithium–sulfur batteries. J. Mater. Chem. A 6(16), 7133–7141 (2018). https://doi.org/10.1039/c8ta00529j
J. Ma, M. Yu, H. Ye, H. Song, D. Wang et al., A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium–sulfur batteries. Mater. Chem. Front. 3(9), 1807–1815 (2019). https://doi.org/10.1039/c9qm00228f
H. Zhang, X. Lin, J. Li, T. Han, M. Zhu et al., A binder-free lithium–sulfur battery cathode using three-dimensional porous g-C3N4 nanoflakes as sulfur host displaying high binding energies with lithium polysulfides. J. Alloys Compd. 881, 160629 (2021). https://doi.org/10.1016/j.jallcom.2021.160629
K. Zhang, W. Cai, Y. Liu, G. Hu, W. Hu et al., Nitrogen-doped carbon embedded with Ag nanops for bidirectionally-promoted polysulfide redox electrochemistry. Chem. Eng. J. 427, 130897 (2022). https://doi.org/10.1016/j.cej.2021.130897
X. Zhou, T. Liu, G. Zhao, X. Yang, H. Guo, Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li–S batteries. Energy Storage Mater. 40, 139–149 (2021). https://doi.org/10.1016/j.ensm.2021.05.009
M. Wang, X. Zhou, X. Cai, H. Wang, Y. Fang et al., Hierarchically porous, ultrathin N–doped carbon nanosheets embedded with highly dispersed cobalt nanops as efficient sulfur host for stable lithium–sulfur batteries. J. Energy Chem. 50, 106–114 (2020). https://doi.org/10.1016/j.jechem.2020.03.014
Y. Feng, G. Wang, L. Wang, J. Ju, W. Kang et al., Taming polysulfides and facilitating redox: novel interlayer based on chestnut-like and multi-level structural materials for ultra-stable lithium–sulfur batteries. J. Alloys Compd. 851, 156859 (2021). https://doi.org/10.1016/j.jallcom.2020.156859
Y. Li, M. Chen, P. Zeng, H. Liu, H. Yu et al., Fe, Co-bimetallic doped C3N4 with in-situ derived carbon tube as sulfur host for anchoring and catalyzing polysulfides in lithium–sulfur battery. J. Alloys Compd. 873, 159883 (2021). https://doi.org/10.1016/j.jallcom.2021.159883
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
H. Pan, X. Huang, C. Wang, D. Liu, D. Wang et al., Sandwich structural TixOy-Ti3C2/C3N4 material for long life and fast kinetics lithium–sulfur battery: bidirectional adsorption promoting lithium polysulfide conversion. Chem. Eng. J. 410, 128424 (2021). https://doi.org/10.1016/j.cej.2021.128424
X. Liu, S. Wang, H. Duan, Y. Deng, G. Chen, A thin and multifunctional CoS@g-C3N4/ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium–sulfur batteries. J. Colloid Interface Sci. 608(1), 470–481 (2022). https://doi.org/10.1016/j.jcis.2021.09.122
S. Yao, Y. Wang, Y. He, A. Majeed, Y. Liang et al., Synergistic effect of titanium-oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithium–sulfur batteries. Int. J. Energy Res. 44(13), 10937–10945 (2020). https://doi.org/10.1002/er.5671
S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12, 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
Y. Wang, L. Yang, Y. Chen, Q. Li, C. Chen et al., Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(52), 57859–57869 (2020). https://doi.org/10.1021/acsami.0c16631
J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
Z. Bian, T. Yuan, Y. Xu, Y. Pang, H. Yao et al., Boosting Li–S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150, 216–223 (2019). https://doi.org/10.1016/j.carbon.2019.05.022
X. Hong, Y. Liu, J. Fu, X. Wang, T. Zhang et al., A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 170, 119–126 (2020). https://doi.org/10.1016/j.carbon.2020.08.032
J. Wutthiprom, N. Phattharasupakun, J. Khuntilo, T. Maihom, J. Limtrakul et al., Collaborative design of Li–S batteries using 3D N-doped graphene aerogel as a sulfur host and graphitic carbon nitride paper as an interlayer. Sustain. Energy Fuels 1(8), 1759–1765 (2017). https://doi.org/10.1039/c7se00291b
J. Wutthiprom, N. Phattharasupakun, M. Sawangphruk, Designing an interlayer of reduced graphene oxide aerogel and nitrogen-rich graphitic carbon nitride by a layer-by-layer coating for high-performance lithium sulfur batteries. Carbon 139, 945–953 (2018). https://doi.org/10.1016/j.carbon.2018.08.008
C. Shu, L. Fang, M. Yang, L. Zhong, X. Chen et al., Cutting COF-like C4N into colloidal quantum dots toward optical encryption and bidirectional sulfur chemistry via functional group and edge effects. Angew. Chem. Int. Ed. 134(8), 202114182 (2021). https://doi.org/10.1002/anie.202114182
J. Wu, L.W. Wang, 2D framework C2N as a potential cathode for lithium–sulfur batteries: an ab initio density functional study. J. Mater. Chem. A 6(7), 2984–2994 (2018). https://doi.org/10.1039/c7ta10549e
Y. Zheng, H. Li, H. Yuan, H. Fan, W. Li et al., Understanding the anchoring effect of graphene, BN, C2N and C3N4 monolayers for lithium−polysulfides in Li−S batteries. Appl. Surf. Sci. 434, 596–603 (2018). https://doi.org/10.1016/j.apsusc.2017.10.230
D. Wang, H. Li, L. Zhang, Z. Sun, D. Han et al., 2D nitrogen-containing carbon material C5N as potential host material for lithium polysulfides: a first-principles study. Adv. Theory Simul. 2(2), 1800165 (2018). https://doi.org/10.1002/adts.201800165
Y. Dong, B. Xu, H. Hu, J. Yang, F. Li et al., C9N4 and C2N6S3 monolayers as promising anchoring materials for lithium–sulfur batteries: weakening the shuttle effect via optimizing lithium bonds. Phys. Chem. Chem. Phys. 23(23), 12958–12967 (2021). https://doi.org/10.1039/d1cp01022k