Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells
Corresponding Author: Yuehe Lin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 146
Abstract
Fe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.
Highlights:
1 A facile ion-imprinting method (IIM) is used to synthesize the isolated Fe-N-C single-atomic site catalyst (IIM-Fe-SASC), which mimics the natural enzyme-like active site and shows excellent peroxidase-like activity.
2 The ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites.
3 The IIM-Fe-SASC has been successfully used as the nanoprobe for in situ H2O2 detection generated from MDA-MB-231 cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Ohshima, M. Tatemichi, T. Sawa, Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417(1), 3–11 (2003). https://doi.org/10.1016/S0003-9861(03)00283-2
- J. Bai, X. Jiang, A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal. Chem. 85(17), 8095–8101 (2013). https://doi.org/10.1021/ac400659u
- Q. Chen, C. Liang, X. Sun, J. Chen, Z. Yang et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 114(21), 5343–5348 (2017). https://doi.org/10.1073/pnas.1701976114
- T. Finkel, M. Serrano, M.A. Blasco, The common biology of cancer and ageing. Nature 448(7155), 767–774 (2007). https://doi.org/10.1038/nature05985
- T. Zhang, Y. Xing, Y. Song, Y. Gu, X. Yan et al., Aupt/mof–graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 91(16), 10589–10595 (2019). https://doi.org/10.1021/acs.analchem.9b01715
- J. Liu, J. Liang, C. Wu, Y. Zhao, A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal. Chem. 91(10), 6902–6909 (2019). https://doi.org/10.1021/acs.analchem.9b01294
- Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu et al., Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J. Am. Chem. Soc. 138(33), 10452–10466 (2016). https://doi.org/10.1021/jacs.6b04115
- Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Active nonmetallic au and pt species on ceria-based water-gas shift catalysts. Science 301(5635), 935–938 (2003). https://doi.org/10.1126/science.1085721
- C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
- X. Wei, X. Luo, N. Wu, W. Gu, Y. Lin et al., Recent a dvances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 84, 105817 (2021). https://doi.org/10.1016/j.nanoen.2021.105817
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of co oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
- S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120(21), 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
- F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13(1), 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
- H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11(8), 1980–1984 (2018). https://doi.org/10.1039/C8EE00901E
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), 5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 132(7), 2585–2596 (2020). https://doi.org/10.1002/ange.201905645
- L. Jiao, W. Xu, Y. Wu, H. Yan, W. Gu et al., Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 50(2), 750–765 (2021). https://doi.org/10.1039/D0CS00367K
- W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11(36), 9741–9756 (2020). https://doi.org/10.1039/D0SC03522J
- X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by mof derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
- Y. Chen, L. Jiao, H. Yan, W. Xu, Y. Wu et al., Hierarchically porous s/n codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 92(19), 13518–13524 (2020). https://doi.org/10.1021/acs.analchem.0c02982
- L. Jiao, W. Xu, Y. Zhang, Y. Wu, W. Gu et al., Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 35, 100971 (2020). https://doi.org/10.1016/j.nantod.2020.100971
- N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15(48), 1901485 (2019). https://doi.org/10.1002/smll.201901485
- Z. Lyu, S. Ding, N. Zhang, Y. Zhou, N. Cheng et al., Single-atom nanozymes linked immunosorbent assay for sensitive detection of Aβ1–40: A biomarker of alzheimer’s disease. Research 2020, 4724505 (2020). https://doi.org/10.34133/2020/4724505
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 131(42), 15013–15018 (2019). https://doi.org/10.1002/ange.201906079
- J. Han, J. Bian, C. Sun, Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research (2020). https://doi.org/10.34133/2020/9512763
- Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
- J.-C. Li, Z.-Q. Yang, D.-M. Tang, L. Zhang, P.-X. Hou et al., N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater. 10(1), e461 (2018). https://doi.org/10.1038/am.2017.212
- J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun et al., 3d N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B Environ. 280, 119411 (2021). https://doi.org/10.1016/j.apcatb.2020.119411
- X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- J. Fu, L. Chen, J. Li, Z. Zhang, Current status and challenges of ion imprinting. J. Mater. Chem. A 3(26), 13598–13627 (2015). https://doi.org/10.1039/C5TA02421H
- N. Zhang, N. Zhang, Y. Xu, Z. Li, C. Yan et al., Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 40(17), 1900096 (2019). https://doi.org/10.1002/marc.201900096
- S. Ding, Z. Lyu, X. Niu, Y. Zhou, D. Liu et al., Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens. Bioelectron. 149, 111830 (2020). https://doi.org/10.1016/j.bios.2019.111830
- Y. Berro, S. Gueddida, Y. Bouizi, C. Bellouard, E.-E. Bendeif et al., Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants. J. Colloid Interface Sci. 573, 193–203 (2020). https://doi.org/10.1016/j.jcis.2020.03.095
- S. Ding, Z. Lyu, H. Zhong, D. Liu, E. Sarnello et al., An ion-imprinting derived strategy to synthesize single-atom iron electrocatalysts for oxygen reduction. Small (2020). https://doi.org/10.1002/smll.202004454
- H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
- J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen et al., Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 131(52), 19147–19156 (2019). https://doi.org/10.1002/ange.201909312
- R. Li, Z. Wei, X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 5(7), 4133–4142 (2015). https://doi.org/10.1021/acscatal.5b00601
- S. Yi, X. Qin, C. Liang, J. Li, R. Rajagopalan et al., Insights into kmno4 etched n-rich carbon nanotubes as advanced electrocatalysts for zn-air batteries. Appl. Catal. B Environ. 264, 118537 (2020). https://doi.org/10.1016/j.apcatb.2019.118537
- J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/C5CC09173J
- P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
- J. Wang, F. Ciucci, Boosting bifunctional oxygen electrolysis for N-doped carbon via bimetal addition. Small 13(16), 1604103 (2017). https://doi.org/10.1002/smll.201604103
- H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
- N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo et al., The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 9(22), 5064–5073 (2018). https://doi.org/10.1039/C8SC00491A
- Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
- Y. Zhan, Y. Zeng, L. Li, L. Guo, F. Luo et al., Cu2+-modified boron nitride nanosheets-supported subnanometer gold nanoparticles: an oxidase-mimicking nanoenzyme with unexpected oxidation properties. Anal. Chem. 92(1), 1236–1244 (2020). https://doi.org/10.1021/acs.analchem.9b04384
- H. Wang, S. Jiang, W. Shao, X. Zhang, S. Chen et al., Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 140(9), 3474–3480 (2018). https://doi.org/10.1021/jacs.8b00719
- L. Jiao, J. Wu, H. Zhong, Y. Zhang, W. Xu et al., Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 10(11), 6422–6429 (2020). https://doi.org/10.1021/acscatal.0c01647
- H. Tamura, H. Ishikita, Quenching of singlet oxygen by carotenoids via ultrafast superexchange dynamics. J. Phy. Chem. A 124(25), 5081–5088 (2020). https://doi.org/10.1021/acs.jpca.0c02228
- Q. Shi, Y. Song, C. Zhu, H. Yang, D. Du et al., Mesoporous Pt nanotubes as a novel sensing platform for sensitive detection of intracellular hydrogen peroxide. ACS Appl. Mater. Interfaces 7(43), 24288–24295 (2015). https://doi.org/10.1021/acsami.5b08146
- L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91(18), 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
- X. Cai, S. Ding, Q. Shi, Z. Lyu, D. Liu et al., Eyeball-like yolk-shell bimetallic nanoparticles for synergistic photodynamic-photothermal therapy. ACS Appl. Bio Mater. 3(9), 5922–5929 (2020). https://doi.org/10.1021/acsabm.0c00624
References
H. Ohshima, M. Tatemichi, T. Sawa, Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417(1), 3–11 (2003). https://doi.org/10.1016/S0003-9861(03)00283-2
J. Bai, X. Jiang, A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal. Chem. 85(17), 8095–8101 (2013). https://doi.org/10.1021/ac400659u
Q. Chen, C. Liang, X. Sun, J. Chen, Z. Yang et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 114(21), 5343–5348 (2017). https://doi.org/10.1073/pnas.1701976114
T. Finkel, M. Serrano, M.A. Blasco, The common biology of cancer and ageing. Nature 448(7155), 767–774 (2007). https://doi.org/10.1038/nature05985
T. Zhang, Y. Xing, Y. Song, Y. Gu, X. Yan et al., Aupt/mof–graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 91(16), 10589–10595 (2019). https://doi.org/10.1021/acs.analchem.9b01715
J. Liu, J. Liang, C. Wu, Y. Zhao, A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal. Chem. 91(10), 6902–6909 (2019). https://doi.org/10.1021/acs.analchem.9b01294
Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu et al., Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J. Am. Chem. Soc. 138(33), 10452–10466 (2016). https://doi.org/10.1021/jacs.6b04115
Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Active nonmetallic au and pt species on ceria-based water-gas shift catalysts. Science 301(5635), 935–938 (2003). https://doi.org/10.1126/science.1085721
C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
X. Wei, X. Luo, N. Wu, W. Gu, Y. Lin et al., Recent a dvances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 84, 105817 (2021). https://doi.org/10.1016/j.nanoen.2021.105817
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of co oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120(21), 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13(1), 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11(8), 1980–1984 (2018). https://doi.org/10.1039/C8EE00901E
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), 5490 (2019). https://doi.org/10.1126/sciadv.aav5490
L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 132(7), 2585–2596 (2020). https://doi.org/10.1002/ange.201905645
L. Jiao, W. Xu, Y. Wu, H. Yan, W. Gu et al., Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 50(2), 750–765 (2021). https://doi.org/10.1039/D0CS00367K
W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11(36), 9741–9756 (2020). https://doi.org/10.1039/D0SC03522J
X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by mof derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
Y. Chen, L. Jiao, H. Yan, W. Xu, Y. Wu et al., Hierarchically porous s/n codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 92(19), 13518–13524 (2020). https://doi.org/10.1021/acs.analchem.0c02982
L. Jiao, W. Xu, Y. Zhang, Y. Wu, W. Gu et al., Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 35, 100971 (2020). https://doi.org/10.1016/j.nantod.2020.100971
N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15(48), 1901485 (2019). https://doi.org/10.1002/smll.201901485
Z. Lyu, S. Ding, N. Zhang, Y. Zhou, N. Cheng et al., Single-atom nanozymes linked immunosorbent assay for sensitive detection of Aβ1–40: A biomarker of alzheimer’s disease. Research 2020, 4724505 (2020). https://doi.org/10.34133/2020/4724505
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 131(42), 15013–15018 (2019). https://doi.org/10.1002/ange.201906079
J. Han, J. Bian, C. Sun, Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research (2020). https://doi.org/10.34133/2020/9512763
Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
J.-C. Li, Z.-Q. Yang, D.-M. Tang, L. Zhang, P.-X. Hou et al., N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater. 10(1), e461 (2018). https://doi.org/10.1038/am.2017.212
J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun et al., 3d N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B Environ. 280, 119411 (2021). https://doi.org/10.1016/j.apcatb.2020.119411
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
J. Fu, L. Chen, J. Li, Z. Zhang, Current status and challenges of ion imprinting. J. Mater. Chem. A 3(26), 13598–13627 (2015). https://doi.org/10.1039/C5TA02421H
N. Zhang, N. Zhang, Y. Xu, Z. Li, C. Yan et al., Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 40(17), 1900096 (2019). https://doi.org/10.1002/marc.201900096
S. Ding, Z. Lyu, X. Niu, Y. Zhou, D. Liu et al., Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens. Bioelectron. 149, 111830 (2020). https://doi.org/10.1016/j.bios.2019.111830
Y. Berro, S. Gueddida, Y. Bouizi, C. Bellouard, E.-E. Bendeif et al., Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants. J. Colloid Interface Sci. 573, 193–203 (2020). https://doi.org/10.1016/j.jcis.2020.03.095
S. Ding, Z. Lyu, H. Zhong, D. Liu, E. Sarnello et al., An ion-imprinting derived strategy to synthesize single-atom iron electrocatalysts for oxygen reduction. Small (2020). https://doi.org/10.1002/smll.202004454
H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen et al., Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 131(52), 19147–19156 (2019). https://doi.org/10.1002/ange.201909312
R. Li, Z. Wei, X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 5(7), 4133–4142 (2015). https://doi.org/10.1021/acscatal.5b00601
S. Yi, X. Qin, C. Liang, J. Li, R. Rajagopalan et al., Insights into kmno4 etched n-rich carbon nanotubes as advanced electrocatalysts for zn-air batteries. Appl. Catal. B Environ. 264, 118537 (2020). https://doi.org/10.1016/j.apcatb.2019.118537
J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/C5CC09173J
P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
J. Wang, F. Ciucci, Boosting bifunctional oxygen electrolysis for N-doped carbon via bimetal addition. Small 13(16), 1604103 (2017). https://doi.org/10.1002/smll.201604103
H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo et al., The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 9(22), 5064–5073 (2018). https://doi.org/10.1039/C8SC00491A
Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
Y. Zhan, Y. Zeng, L. Li, L. Guo, F. Luo et al., Cu2+-modified boron nitride nanosheets-supported subnanometer gold nanoparticles: an oxidase-mimicking nanoenzyme with unexpected oxidation properties. Anal. Chem. 92(1), 1236–1244 (2020). https://doi.org/10.1021/acs.analchem.9b04384
H. Wang, S. Jiang, W. Shao, X. Zhang, S. Chen et al., Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 140(9), 3474–3480 (2018). https://doi.org/10.1021/jacs.8b00719
L. Jiao, J. Wu, H. Zhong, Y. Zhang, W. Xu et al., Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 10(11), 6422–6429 (2020). https://doi.org/10.1021/acscatal.0c01647
H. Tamura, H. Ishikita, Quenching of singlet oxygen by carotenoids via ultrafast superexchange dynamics. J. Phy. Chem. A 124(25), 5081–5088 (2020). https://doi.org/10.1021/acs.jpca.0c02228
Q. Shi, Y. Song, C. Zhu, H. Yang, D. Du et al., Mesoporous Pt nanotubes as a novel sensing platform for sensitive detection of intracellular hydrogen peroxide. ACS Appl. Mater. Interfaces 7(43), 24288–24295 (2015). https://doi.org/10.1021/acsami.5b08146
L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91(18), 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
X. Cai, S. Ding, Q. Shi, Z. Lyu, D. Liu et al., Eyeball-like yolk-shell bimetallic nanoparticles for synergistic photodynamic-photothermal therapy. ACS Appl. Bio Mater. 3(9), 5922–5929 (2020). https://doi.org/10.1021/acsabm.0c00624