Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing
Corresponding Author: Weiyu Song
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 184
Abstract
Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Highlights
1 The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites.
2 Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low reaction energy barrier for the HO* formation.
3 Nitro-functionalized MIL-101(Fe)-based biosensor was successfully employed to detect acetylcholinesterase activity and organophosphorus pesticide.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140, 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- M. Pott, T. Hayashi, T. Mori, P.R.E. Mittl, A.P. Green, D. Hilvert, A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold. J. Am. Chem. Soc. 140, 1535–1543 (2018). https://doi.org/10.1021/jacs.7b12621
- G.I. Berglund, G.H. Carlsson, A.T. Smith, H. Szöke, A. Henriksen, J. Hajdu, The catalytic pathway of horseradish peroxidase at high resolution. Nature 417, 463–468 (2002). https://doi.org/10.1038/417463a
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31, 1805368 (2019). https://doi.org/10.1002/adma.201805368
- Z. Zhang, X. Zhang, B. Liu, J. Liu, Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 139, 5412–5419 (2017). https://doi.org/10.1021/jacs.7b00601
- J. Zhang, S. Wu, X. Lu, P. Wu, J. Liu, Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 19, 3214–3220 (2019). https://doi.org/10.1021/acs.nanolett.9b00725
- H. Zhang, X. Liang, L. Han, F. Li, “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small 14, 1803256 (2018). https://doi.org/10.1002/smll.201803256
- R. Zhang, N. Lu, J. Zhang, R. Yan, J. Li et al., Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens. Bioelectron. 150, 111881 (2020). https://doi.org/10.1016/j.bios.2019.111881
- N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng et al., Yolk–shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9, 4508–4515 (2017). https://doi.org/10.1039/C7NR00819H
- Z. Li, X. Yang, Y. Yang, Y. Tan, Y. He et al., Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal–support interactions. Chem. Eur. J. 24, 409–415 (2018). https://doi.org/10.1002/chem.201703833
- S. Cai, Z. Fu, W. Xiao, Y. Xiong, C. Wang, R. Yang, Zero-dimensional/two-dimensional AuxPd100−x nanocomposites with enhanced nanozyme catalysis for sensitive glucose detection. ACS Appl. Mater. Interfaces 12, 11616–11624 (2020). https://doi.org/10.1021/acsami.9b21621
- C. Zeng, N. Lu, Y. Wen, G. Liu, R. Zhang et al., Engineering nanozymes using DNA for catalytic regulation. ACS Appl. Mater. Interfaces 11, 1790–1799 (2019). https://doi.org/10.1021/acsami.8b16075
- L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91, 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
- L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 58, 2–14 (2019). https://doi.org/10.1002/anie.201905645
- Y. Wu, J. Wu, L. Jiao, W. Xu, H. Wang et al., Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 92, 3373–3379 (2020). https://doi.org/10.1021/acs.analchem.9b05437
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15, 1901485 (2019). https://doi.org/10.1002/smll.201901485
- M. Lu, C. Wang, Y. Ding, M. Peng, W. Zhang et al., Fe–N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. 55, 14534–14537 (2019). https://doi.org/10.1039/C9CC07408B
- C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55, 2285–2288 (2019). https://doi.org/10.1039/C9CC00199A
- L. Jiao, J. Wu, H. Zhong, Y. Zhang, W. Xu et al., Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 10, 6422–6429 (2020). https://doi.org/10.1021/acscatal.0c01647
- M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783–2828 (2019). https://doi.org/10.1039/C8CS00829A
- J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez et al., Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). https://doi.org/10.1038/nature15732
- L. Zhang, L. Li, E. Hu, L. Yang, K. Shao et al., Boosting ethylene/ethane separation within copper(i)-chelated metal–organic frameworks through tailor-made aperture and specific π-complexation. Adv. Sci. 7, 1901918 (2019). https://doi.org/10.1002/advs.201901918
- X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al., Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017). https://doi.org/10.1039/C7CS00058H
- W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014). https://doi.org/10.1039/C4CS00003J
- B. Li, M. Chrzanowski, Y. Zhang, S. Ma, Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 307, 106–129 (2016). https://doi.org/10.1016/j.ccr.2015.05.005
- C.-X. Chen, Z.-W. Wei, J.-J. Jiang, S.-P. Zheng, H.-P. Wang et al., Dynamic spacer installation for multirole metal–organic frameworks: a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity. J. Am. Chem. Soc. 139, 6034–6037 (2017). https://doi.org/10.1021/jacs.7b01320
- F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal–organic frameworks for sodium–iodine batteries with long-time-cycling durability. Adv. Mater. 32, 1905361 (2020). https://doi.org/10.1002/adma.201905361
- Z.W. Jiang, Y.C. Zou, T.T. Zhao, S.J. Zhen, Y.F. Li, C.Z. Huang, Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal node-dependent photocatalytic performances. Angew. Chem. Int. Ed. 59, 3300–3306 (2020). https://doi.org/10.1002/anie.201913748
- Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
- M.B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave et al., Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J. Am. Chem. Soc. 139, 8222–8228 (2017). https://doi.org/10.1021/jacs.7b02186
- H.L. Nguyen, T.T. Vu, D. Le, T.L.H. Doan, V.Q. Nguyen, N.T.S. Phan, A titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 7, 338–342 (2017). https://doi.org/10.1021/acscatal.6b02642
- M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo et al., Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016). https://doi.org/10.1038/nature19763
- L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018). https://doi.org/10.1002/adma.201703663
- S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal. Chem. 105, 391–403 (2018). https://doi.org/10.1016/j.trac.2018.06.001
- I. Nath, J. Chakraborty, F. Verpoort, Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016). https://doi.org/10.1039/C6CS00047A
- W.-H. Chen, M. Vázquez-González, A. Kozell, A. Cecconello, I. Willner, Cu2+-modified metal–organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 14, 1703149 (2018). https://doi.org/10.1002/smll.201703149
- W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen et al., Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 11, 22096–22101 (2019). https://doi.org/10.1021/acsami.9b03004
- G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11, 5558–556641 (2017). https://doi.org/10.1021/acsnano.7b00905
- D. Mateo, A. Santiago-Portillo, J. Albero, S. Navalón, M. Alvaro, H. García, Long-term photostability in terephthalate metal–organic frameworks. Angew. Chem. Int. Ed. 131, 18007–18012 (2019). https://doi.org/10.1002/ange.201911600
- Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J.A. Perman, S. Ma, A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 5, 8385–8393 (2017). https://doi.org/10.1039/C7TA01066D
- S. Dery, S. Kim, G. Tomaschun, D. Haddad, A. Cossaro et al., Flexible NO2-functionalized N-heterocyclic carbene monolayers on Au (111) surface. Chem. Eur. J. 25, 15067–15072 (2019). https://doi.org/10.1002/chem.201903434
- B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
- Z. Wei, F.A. Villamena, L.K. Weavers, Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ. Sci. Technol. 51, 3410–3417 (2017). https://doi.org/10.1021/acs.est.6b05392
- Y. Liu, W. Jin, Y. Zhao, G. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B Environ. 206, 642–652 (2017). https://doi.org/10.1016/j.apcatb.2017.01.075
- S. Jorfi, B. Kakavandi, H.R. Motlagh, M. Ahmadi, N. Jaafarzadeh, A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeiiFeiii2 O4@C as an efficient activator of peroxymonosulfate. Appl. Catal. B Environ. 219, 216–230 (2017). https://doi.org/10.1016/j.apcatb.2017.07.035
- V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011). https://doi.org/10.1021/jp202489s
- J. Zhang, W. Zheng, X. Jiang, Ag+-gated surface chemistry of gold nanoparticles and colorimetric detection of acetylcholinesterase. Small 14, 1801680 (2018). https://doi.org/10.1002/smll.201801680
- Y. Wu, L. Jiao, X. Luo, W. Xu, X. Wei et al., Oxidase-like Fe–N–C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 15, 1903108 (2019). https://doi.org/10.1002/smll.201903108
- X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
- Y. Wu, L. Jiao, W. Xu, W. Gu, C. Zhu, D. Du, Y. Lin, Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection. Small 15, 1900632 (2019). https://doi.org/10.1002/smll.201900632
- R. Jin, D. Kong, X. Zhao, H. Li, X. Yan et al., Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens. Bioelectron. 141, 111473 (2019). https://doi.org/10.1016/j.bios.2019.111473
References
M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140, 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
M. Pott, T. Hayashi, T. Mori, P.R.E. Mittl, A.P. Green, D. Hilvert, A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold. J. Am. Chem. Soc. 140, 1535–1543 (2018). https://doi.org/10.1021/jacs.7b12621
G.I. Berglund, G.H. Carlsson, A.T. Smith, H. Szöke, A. Henriksen, J. Hajdu, The catalytic pathway of horseradish peroxidase at high resolution. Nature 417, 463–468 (2002). https://doi.org/10.1038/417463a
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31, 1805368 (2019). https://doi.org/10.1002/adma.201805368
Z. Zhang, X. Zhang, B. Liu, J. Liu, Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 139, 5412–5419 (2017). https://doi.org/10.1021/jacs.7b00601
J. Zhang, S. Wu, X. Lu, P. Wu, J. Liu, Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 19, 3214–3220 (2019). https://doi.org/10.1021/acs.nanolett.9b00725
H. Zhang, X. Liang, L. Han, F. Li, “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small 14, 1803256 (2018). https://doi.org/10.1002/smll.201803256
R. Zhang, N. Lu, J. Zhang, R. Yan, J. Li et al., Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens. Bioelectron. 150, 111881 (2020). https://doi.org/10.1016/j.bios.2019.111881
N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng et al., Yolk–shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9, 4508–4515 (2017). https://doi.org/10.1039/C7NR00819H
Z. Li, X. Yang, Y. Yang, Y. Tan, Y. He et al., Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal–support interactions. Chem. Eur. J. 24, 409–415 (2018). https://doi.org/10.1002/chem.201703833
S. Cai, Z. Fu, W. Xiao, Y. Xiong, C. Wang, R. Yang, Zero-dimensional/two-dimensional AuxPd100−x nanocomposites with enhanced nanozyme catalysis for sensitive glucose detection. ACS Appl. Mater. Interfaces 12, 11616–11624 (2020). https://doi.org/10.1021/acsami.9b21621
C. Zeng, N. Lu, Y. Wen, G. Liu, R. Zhang et al., Engineering nanozymes using DNA for catalytic regulation. ACS Appl. Mater. Interfaces 11, 1790–1799 (2019). https://doi.org/10.1021/acsami.8b16075
L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91, 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 58, 2–14 (2019). https://doi.org/10.1002/anie.201905645
Y. Wu, J. Wu, L. Jiao, W. Xu, H. Wang et al., Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 92, 3373–3379 (2020). https://doi.org/10.1021/acs.analchem.9b05437
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15, 1901485 (2019). https://doi.org/10.1002/smll.201901485
M. Lu, C. Wang, Y. Ding, M. Peng, W. Zhang et al., Fe–N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. 55, 14534–14537 (2019). https://doi.org/10.1039/C9CC07408B
C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55, 2285–2288 (2019). https://doi.org/10.1039/C9CC00199A
L. Jiao, J. Wu, H. Zhong, Y. Zhang, W. Xu et al., Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 10, 6422–6429 (2020). https://doi.org/10.1021/acscatal.0c01647
M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783–2828 (2019). https://doi.org/10.1039/C8CS00829A
J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez et al., Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). https://doi.org/10.1038/nature15732
L. Zhang, L. Li, E. Hu, L. Yang, K. Shao et al., Boosting ethylene/ethane separation within copper(i)-chelated metal–organic frameworks through tailor-made aperture and specific π-complexation. Adv. Sci. 7, 1901918 (2019). https://doi.org/10.1002/advs.201901918
X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al., Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017). https://doi.org/10.1039/C7CS00058H
W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014). https://doi.org/10.1039/C4CS00003J
B. Li, M. Chrzanowski, Y. Zhang, S. Ma, Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 307, 106–129 (2016). https://doi.org/10.1016/j.ccr.2015.05.005
C.-X. Chen, Z.-W. Wei, J.-J. Jiang, S.-P. Zheng, H.-P. Wang et al., Dynamic spacer installation for multirole metal–organic frameworks: a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity. J. Am. Chem. Soc. 139, 6034–6037 (2017). https://doi.org/10.1021/jacs.7b01320
F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal–organic frameworks for sodium–iodine batteries with long-time-cycling durability. Adv. Mater. 32, 1905361 (2020). https://doi.org/10.1002/adma.201905361
Z.W. Jiang, Y.C. Zou, T.T. Zhao, S.J. Zhen, Y.F. Li, C.Z. Huang, Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal node-dependent photocatalytic performances. Angew. Chem. Int. Ed. 59, 3300–3306 (2020). https://doi.org/10.1002/anie.201913748
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
M.B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave et al., Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J. Am. Chem. Soc. 139, 8222–8228 (2017). https://doi.org/10.1021/jacs.7b02186
H.L. Nguyen, T.T. Vu, D. Le, T.L.H. Doan, V.Q. Nguyen, N.T.S. Phan, A titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 7, 338–342 (2017). https://doi.org/10.1021/acscatal.6b02642
M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo et al., Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016). https://doi.org/10.1038/nature19763
L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018). https://doi.org/10.1002/adma.201703663
S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal. Chem. 105, 391–403 (2018). https://doi.org/10.1016/j.trac.2018.06.001
I. Nath, J. Chakraborty, F. Verpoort, Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016). https://doi.org/10.1039/C6CS00047A
W.-H. Chen, M. Vázquez-González, A. Kozell, A. Cecconello, I. Willner, Cu2+-modified metal–organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 14, 1703149 (2018). https://doi.org/10.1002/smll.201703149
W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen et al., Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 11, 22096–22101 (2019). https://doi.org/10.1021/acsami.9b03004
G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11, 5558–556641 (2017). https://doi.org/10.1021/acsnano.7b00905
D. Mateo, A. Santiago-Portillo, J. Albero, S. Navalón, M. Alvaro, H. García, Long-term photostability in terephthalate metal–organic frameworks. Angew. Chem. Int. Ed. 131, 18007–18012 (2019). https://doi.org/10.1002/ange.201911600
Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J.A. Perman, S. Ma, A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 5, 8385–8393 (2017). https://doi.org/10.1039/C7TA01066D
S. Dery, S. Kim, G. Tomaschun, D. Haddad, A. Cossaro et al., Flexible NO2-functionalized N-heterocyclic carbene monolayers on Au (111) surface. Chem. Eur. J. 25, 15067–15072 (2019). https://doi.org/10.1002/chem.201903434
B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
Z. Wei, F.A. Villamena, L.K. Weavers, Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ. Sci. Technol. 51, 3410–3417 (2017). https://doi.org/10.1021/acs.est.6b05392
Y. Liu, W. Jin, Y. Zhao, G. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B Environ. 206, 642–652 (2017). https://doi.org/10.1016/j.apcatb.2017.01.075
S. Jorfi, B. Kakavandi, H.R. Motlagh, M. Ahmadi, N. Jaafarzadeh, A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeiiFeiii2 O4@C as an efficient activator of peroxymonosulfate. Appl. Catal. B Environ. 219, 216–230 (2017). https://doi.org/10.1016/j.apcatb.2017.07.035
V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011). https://doi.org/10.1021/jp202489s
J. Zhang, W. Zheng, X. Jiang, Ag+-gated surface chemistry of gold nanoparticles and colorimetric detection of acetylcholinesterase. Small 14, 1801680 (2018). https://doi.org/10.1002/smll.201801680
Y. Wu, L. Jiao, X. Luo, W. Xu, X. Wei et al., Oxidase-like Fe–N–C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 15, 1903108 (2019). https://doi.org/10.1002/smll.201903108
X. Niu, Q. Shi, W. Zhu, D. Liu, H. Tian et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 142, 111495 (2019). https://doi.org/10.1016/j.bios.2019.111495
Y. Wu, L. Jiao, W. Xu, W. Gu, C. Zhu, D. Du, Y. Lin, Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection. Small 15, 1900632 (2019). https://doi.org/10.1002/smll.201900632
R. Jin, D. Kong, X. Zhao, H. Li, X. Yan et al., Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens. Bioelectron. 141, 111473 (2019). https://doi.org/10.1016/j.bios.2019.111473