Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
Corresponding Author: Chengzhou Zhu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 163
Abstract
Single-atom catalysts (SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis. However, a large room for improving their activity and durability remains. Herein, we construct atomically dispersed Fe sites in N-doped carbon supports by secondary-atom-doped strategy. Upon the secondary doping, the density and coordination environment of active sites can be efficiently tuned, enabling the simultaneous improvement in the number and reactivity of the active site. Besides, structure optimizations in terms of the enlarged surface area and improved hydrophilicity can be achieved simultaneously. Due to the beneficial microstructure and abundant highly active FeN5 moieties resulting from the secondary doping, the resultant catalyst exhibits an admirable half-wave potential of 0.81 V versus 0.83 V for Pt/C and much better stability than Pt/C in acidic media. This work would offer a general strategy for the design and preparation of highly active SACs for electrochemical energy devices.
Highlights:
1 Secondary-atom-doped strategy was proposed to synthesize single-atom electrocatalyst.
2 The increase in both the density of active sites and their intrinsic activity was achieved simultaneously.
3 The resultant single-atom catalyst shows outstanding ORR activity in acidic media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow et al., Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3(1), 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
- J. Liu, D. Zhu, Y. Zheng, A. Vasileff, S.-Z. Qiao, Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018). https://doi.org/10.1021/acscatal.8b01715
- W.-J. Liu, H. Jiang, H.-Q. Yu, Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12(6), 1751–1779 (2019). https://doi.org/10.1039/C9EE00206E
- S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019). https://doi.org/10.1002/adma.201804297
- X. Luo, X. Wei, H. Zhong, H. Wang, Y. Wu et al., Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS Appl. Mater. Interfaces 12(3), 3539–3546 (2020). https://doi.org/10.1021/acsami.9b17476
- Y. Guo, T. Park, J. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
- Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem. Mater. 29(13), 5566–5573 (2017). https://doi.org/10.1021/acs.chemmater.7b00867
- Y. Guo, J. Tang, Z. Wang, Y. Kang, Y. Bando, Y. Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
- X. Luo, X. Wei, H. Wang, Y. Wu, W. Gu, C. Zhu, Hexamine-coordination-framework-derived Co-N-doped carbon nanosheets for robust oxygen reduction reaction. ACS Sustain. Chem. Eng. 8(26), 9721–9730 (2020). https://doi.org/10.1021/acssuschemeng.0c01826
- C. Xuan, J. Wang, J. Zhu, D. Wang, Recent progress of metal organic frameworks-based nanomaterials for electrocatalysis Acta Phys. Chim. Sin. 33(1), 149–164 (2017). https://doi.org/10.3866/PKU.WHXB201609143
- X. Wei, X. Luo, H. Wang, W. Gu, W. Cai, Y. Lin, C. Zhu, Highly-defective Fe-N-C catalysts towards pH-universal oxygen reduction reaction. Appl. Catal. B: Environ. 263, 118347 (2019). https://doi.org/10.1016/j.apcatb.2019.118347
- C. Chen, X. Zhang, Z. Zhou, X. Zhang, S. Sun, Experimental boosting of the oxygen reduction activity of an Fe/N/C Catalyst by sulfur doping and density functional theory calculations. Acta Phys. Chim. Sin. 33(9), 1875–1883 (2017). https://doi.org/10.3866/PKU.WHXB201705088
- S. Ahn, X. Yu, A. Manthiram, “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 29, 1606534 (2017). https://doi.org/10.1002/adma.201606534
- J. Guo, C.-Y. Lin, Z. Xia, Z. Xiang, A pyrolysis-free covalent organic polymer for oxygen reduction, a pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. 130, 12747–12752 (2018). https://doi.org/10.1002/anie.201808226
- J.-I. Jung, M. Risch, S. Park, M.G. Kim, G. Nam et al., Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 9, 176–183 (2016). https://doi.org/10.1039/C5EE03124A
- W. Xia, R. Zou, L. An, D. Xia, S. Guo, A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 8, 568–576 (2015). https://doi.org/10.1039/C4EE02281E
- J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10(5), 444–452 (2015). https://doi.org/10.1038/nnano.2015.48
- H. Hu, L. Han, M. Yu, Z. Wang, X. Lou, Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@ Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 9, 107–111 (2016). https://doi.org/10.1039/C5EE02903A
- Y. Wang, Y.J. Tang, K. Zhou, Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 141(36), 14115–14119 (2019). https://doi.org/10.1021/jacs.9b07712
- X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang et al., High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61, 245–250 (2019). https://doi.org/10.1016/j.nanoen.2019.04.076
- X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- L. Hu, X. Zeng, X. Wei, H. Wang, W. Yu et al., Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostruces. Appl. Catal. B: Environ. 273(15), 119014 (2020). https://doi.org/10.1016/j.apcatb.2020.119014
- Y. Qian, Q. Liu, E. Sarnello, C. Tang, M. Chng et al., MOF-derived carbon networks with atomically dispersed Fe-Nx sites for oxygen reduction reaction catalysis in acidic media. ACS Mater. Lett. 1(1), 37–43 (2019). https://doi.org/10.1021/acsmaterialslett.9b00052
- Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
- Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
- J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem et al., A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 15504–15509 (2018). https://doi.org/10.1039/C8TA05419C
- J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
- H. Jiang, Y. Liu, W. Li, J. Li, Co Nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable zn-air batteries. Small 14(13), 1703739 (2018). https://doi.org/10.1002/smll.201703739
- W. Jiao, C. Chen, W. You, J. Zhang, J. Liu, R. Che, Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small 15(7), 1805032 (2019). https://doi.org/10.1002/smll.201805032
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang et al., Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 3(5), 252–260 (2018). https://doi.org/10.1021/acsenergylett.8b00303
- C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
- Y. Guo, J. Tang, J. Henzie, B. Jiang, H. Qian et al., Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 4, 1171–1177 (2017). https://doi.org/10.1039/C7MH00586E
- H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu et al., Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018). https://doi.org/10.1021/acsnano.8b01502
- H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang et al., Sub-50 nm iron-nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Adv. Sci. 5(7), 1800120 (2018). https://doi.org/10.1002/advs.201800120
- W. Xia, J. Tang, J. Li, S. Zhang, K. Wu, J. He, Y. Yamauchi, Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(38), 13354–13359 (2019). https://doi.org/10.1002/anie.201906870
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, Edge-site engineering of atomically dispersed Fe-N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang et al., A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and zn-air batteries. Angew. Chem. Int. Ed. 57(28), 8614–8618 (2018). https://doi.org/10.1002/anie.201804349
- Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li et al., Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30(25), 1800588 (2018). https://doi.org/10.1002/adma.201800588
- E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong et al., Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem. Int. Ed. 58(36), 12469–12475 (2019). https://doi.org/10.1002/anie.201906289
- D. Zhao, J.-L. Shui, C. Chen, X. Chen, B.M. Reprogle, D. Wang, D.-J. Liu, Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 3, 3200–3205 (2012). https://doi.org/10.1039/C2SC20657A
- Y. Zhao, X. Li, X. Jia, S. Gao, Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58, 384–391 (2019). https://doi.org/10.1016/j.nanoen.2019.01.057
- C. Zhu, Q. Shi, B.Z. Xu, S. Fu, G. Wan et al., Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8(29), 1801956 (2018). https://doi.org/10.1002/aenm.201801956
- X. Liu, J. Kang, Y. Dai, C. Dong, X. Guo, X. Jia, Graphene-like nitrogen-doped carbon nanosheet prepared from direct calcination of dopamine confined by g-C3N4 for oxygen reduction. Adv. Mater. Interfaces 5(14), 1800303 (2018). https://doi.org/10.1002/admi.201800303
- B.-Q. Li, C.-X. Zhao, S. Chen, J.-N. Liu, X. Chen, L. Song, Q. Zhang, Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31(19), 1900592 (2019). https://doi.org/10.1002/adma.201900592
- H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014). https://doi.org/10.1038/ncomms5973
- J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- J. Wang, G. Yin, Y. Shao, Z. Wang, Y. Gao, Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J. Phys. Chem. C 112(15), 5784–5789 (2008). https://doi.org/10.1021/jp800186p
- Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7(3), 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
- X. Ao, W. Zhang, Z. Li, J.-G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
- Y. Zheng, D.-S. Yang, J.M. Kweun, C. Li, K. Tan et al., Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 30, 443–449 (2016). https://doi.org/10.1016/j.nanoen.2016.10.037
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12), 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984
References
J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow et al., Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3(1), 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
J. Liu, D. Zhu, Y. Zheng, A. Vasileff, S.-Z. Qiao, Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018). https://doi.org/10.1021/acscatal.8b01715
W.-J. Liu, H. Jiang, H.-Q. Yu, Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12(6), 1751–1779 (2019). https://doi.org/10.1039/C9EE00206E
S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019). https://doi.org/10.1002/adma.201804297
X. Luo, X. Wei, H. Zhong, H. Wang, Y. Wu et al., Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS Appl. Mater. Interfaces 12(3), 3539–3546 (2020). https://doi.org/10.1021/acsami.9b17476
Y. Guo, T. Park, J. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem. Mater. 29(13), 5566–5573 (2017). https://doi.org/10.1021/acs.chemmater.7b00867
Y. Guo, J. Tang, Z. Wang, Y. Kang, Y. Bando, Y. Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
X. Luo, X. Wei, H. Wang, Y. Wu, W. Gu, C. Zhu, Hexamine-coordination-framework-derived Co-N-doped carbon nanosheets for robust oxygen reduction reaction. ACS Sustain. Chem. Eng. 8(26), 9721–9730 (2020). https://doi.org/10.1021/acssuschemeng.0c01826
C. Xuan, J. Wang, J. Zhu, D. Wang, Recent progress of metal organic frameworks-based nanomaterials for electrocatalysis Acta Phys. Chim. Sin. 33(1), 149–164 (2017). https://doi.org/10.3866/PKU.WHXB201609143
X. Wei, X. Luo, H. Wang, W. Gu, W. Cai, Y. Lin, C. Zhu, Highly-defective Fe-N-C catalysts towards pH-universal oxygen reduction reaction. Appl. Catal. B: Environ. 263, 118347 (2019). https://doi.org/10.1016/j.apcatb.2019.118347
C. Chen, X. Zhang, Z. Zhou, X. Zhang, S. Sun, Experimental boosting of the oxygen reduction activity of an Fe/N/C Catalyst by sulfur doping and density functional theory calculations. Acta Phys. Chim. Sin. 33(9), 1875–1883 (2017). https://doi.org/10.3866/PKU.WHXB201705088
S. Ahn, X. Yu, A. Manthiram, “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 29, 1606534 (2017). https://doi.org/10.1002/adma.201606534
J. Guo, C.-Y. Lin, Z. Xia, Z. Xiang, A pyrolysis-free covalent organic polymer for oxygen reduction, a pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. 130, 12747–12752 (2018). https://doi.org/10.1002/anie.201808226
J.-I. Jung, M. Risch, S. Park, M.G. Kim, G. Nam et al., Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 9, 176–183 (2016). https://doi.org/10.1039/C5EE03124A
W. Xia, R. Zou, L. An, D. Xia, S. Guo, A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 8, 568–576 (2015). https://doi.org/10.1039/C4EE02281E
J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10(5), 444–452 (2015). https://doi.org/10.1038/nnano.2015.48
H. Hu, L. Han, M. Yu, Z. Wang, X. Lou, Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@ Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 9, 107–111 (2016). https://doi.org/10.1039/C5EE02903A
Y. Wang, Y.J. Tang, K. Zhou, Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 141(36), 14115–14119 (2019). https://doi.org/10.1021/jacs.9b07712
X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang et al., High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61, 245–250 (2019). https://doi.org/10.1016/j.nanoen.2019.04.076
X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
L. Hu, X. Zeng, X. Wei, H. Wang, W. Yu et al., Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostruces. Appl. Catal. B: Environ. 273(15), 119014 (2020). https://doi.org/10.1016/j.apcatb.2020.119014
Y. Qian, Q. Liu, E. Sarnello, C. Tang, M. Chng et al., MOF-derived carbon networks with atomically dispersed Fe-Nx sites for oxygen reduction reaction catalysis in acidic media. ACS Mater. Lett. 1(1), 37–43 (2019). https://doi.org/10.1021/acsmaterialslett.9b00052
Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem et al., A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 15504–15509 (2018). https://doi.org/10.1039/C8TA05419C
J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
H. Jiang, Y. Liu, W. Li, J. Li, Co Nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable zn-air batteries. Small 14(13), 1703739 (2018). https://doi.org/10.1002/smll.201703739
W. Jiao, C. Chen, W. You, J. Zhang, J. Liu, R. Che, Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small 15(7), 1805032 (2019). https://doi.org/10.1002/smll.201805032
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang et al., Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 3(5), 252–260 (2018). https://doi.org/10.1021/acsenergylett.8b00303
C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
Y. Guo, J. Tang, J. Henzie, B. Jiang, H. Qian et al., Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 4, 1171–1177 (2017). https://doi.org/10.1039/C7MH00586E
H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu et al., Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018). https://doi.org/10.1021/acsnano.8b01502
H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang et al., Sub-50 nm iron-nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Adv. Sci. 5(7), 1800120 (2018). https://doi.org/10.1002/advs.201800120
W. Xia, J. Tang, J. Li, S. Zhang, K. Wu, J. He, Y. Yamauchi, Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(38), 13354–13359 (2019). https://doi.org/10.1002/anie.201906870
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, Edge-site engineering of atomically dispersed Fe-N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang et al., A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and zn-air batteries. Angew. Chem. Int. Ed. 57(28), 8614–8618 (2018). https://doi.org/10.1002/anie.201804349
Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li et al., Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30(25), 1800588 (2018). https://doi.org/10.1002/adma.201800588
E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong et al., Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem. Int. Ed. 58(36), 12469–12475 (2019). https://doi.org/10.1002/anie.201906289
D. Zhao, J.-L. Shui, C. Chen, X. Chen, B.M. Reprogle, D. Wang, D.-J. Liu, Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 3, 3200–3205 (2012). https://doi.org/10.1039/C2SC20657A
Y. Zhao, X. Li, X. Jia, S. Gao, Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58, 384–391 (2019). https://doi.org/10.1016/j.nanoen.2019.01.057
C. Zhu, Q. Shi, B.Z. Xu, S. Fu, G. Wan et al., Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8(29), 1801956 (2018). https://doi.org/10.1002/aenm.201801956
X. Liu, J. Kang, Y. Dai, C. Dong, X. Guo, X. Jia, Graphene-like nitrogen-doped carbon nanosheet prepared from direct calcination of dopamine confined by g-C3N4 for oxygen reduction. Adv. Mater. Interfaces 5(14), 1800303 (2018). https://doi.org/10.1002/admi.201800303
B.-Q. Li, C.-X. Zhao, S. Chen, J.-N. Liu, X. Chen, L. Song, Q. Zhang, Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31(19), 1900592 (2019). https://doi.org/10.1002/adma.201900592
H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014). https://doi.org/10.1038/ncomms5973
J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
J. Wang, G. Yin, Y. Shao, Z. Wang, Y. Gao, Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J. Phys. Chem. C 112(15), 5784–5789 (2008). https://doi.org/10.1021/jp800186p
Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7(3), 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
X. Ao, W. Zhang, Z. Li, J.-G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
Y. Zheng, D.-S. Yang, J.M. Kweun, C. Li, K. Tan et al., Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 30, 443–449 (2016). https://doi.org/10.1016/j.nanoen.2016.10.037
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12), 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984