A Self-Powered, Highly Embedded and Sensitive Tribo-Label-Sensor for the Fast and Stable Label Printer
Corresponding Author: Zhiyi Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 27
Abstract
Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things (IoT). However, some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing. Herein, we propose a self-powered and highly sensitive tribo-label-sensor (TLS) for accurate label identification, positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer. The sensing mechanism, device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment. As the results, TLS delivers 6 times higher signal magnitude than traditional one. Moreover, TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness. This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.
Highlights:
1 A self-powered and highly sensitive tribo-label-sensor is proposed as the substitution of infrared sensor for addressing current issues in label printer.
2 Tribo-label-sensor shows higher integrability, sensitivity, reliability and universality than traditional infrared sensor for label identification, positioning and counting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Yang, Y. Liu, X. Jiang, Barcoded point-of-care bioassays. Chem. Soc. Rev. 48(3), 850–884 (2019). https://doi.org/10.1039/C8CS00303C
- J. Ramalho, S.F.H. Correia, L. Fu, L.L.F. Antonio, C.D.S. Brites et al., Luminescence Thermometry on the route of the mobile-based internet of things (IoT): how smart QR codes make it real. Adv. Sci. 6(19), 1900950 (2019). https://doi.org/10.1002/advs.201900950
- S. Han, H.J. Bae, J. Kim, S. Shin, S.E. Choi et al., Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 24(44), 5924–5929 (2012). https://doi.org/10.1002/adma.201201486
- Y. Wang, C. Yan, S.Y. Cheng, Z.Q. Xu, X. Sun et al., Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29(29), 1902579 (2019). https://doi.org/10.1002/adfm.201902579
- H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo et al., A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors 20(9), 2495 (2020). https://doi.org/10.3390/s20092495
- S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn et al., Intrinsic detectivity limits of organic near-infrared photodetectors. Adv. Mater. 32(47), 2003818 (2020). https://doi.org/10.1002/adma.202003818
- J. Huang, J. Lee, J. Vollbrecht, V.V. Brus, A.L. Dixon et al., A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32(1), 1906027 (2020). https://doi.org/10.1002/adma.201906027
- Y.S. Suh, Laser sensors for displacement, distance and position. Sensors 19(8), 1924 (2019). https://doi.org/10.3390/s19081924
- R.Y. Tay, H. Li, J. Lin, H. Wang, J.S.K. Lim et al., Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv. Funct. Mater. 30(10), 1909604 (2020). https://doi.org/10.1002/adfm.201909604
- C. Yang, X. Xu, W. Ali, Y. Wang, Y. Wang et al., Piezoelectricity in excess of 800 pC/N over 400 ℃ in BiScO3-PbTiO3-CaTiO3 ceramics. ACS Appl. Mater. Interfaces 13(28), 33253–33261 (2021). https://doi.org/10.1021/acsami.1c07492
- Y. Wang, B. Siegmund, Z. Tang, Z. Ma, J. Kublitski et al., Stacked dual-wavelength near-infrared organic photodetectors. Adv. Opt. Mater. 9(6), 2001784 (2020). https://doi.org/10.1002/adom.202001784
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- X. Cao, M. Zhang, J. Huang, T. Jiang, J. Zou et al., Inductor-free wirel-ess energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator. Adv. Mater. 30(6), 1704077 (2018). https://doi.org/10.1002/adma.201704077
- Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6(34), eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
- F. Shen, D. Zhang, Q. Zhang, Z. Li, H. Guo et al., Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 99, 107431 (2022). https://doi.org/10.1016/j.nanoen.2022.107431
- C. Xin, Z. Li, Q. Zhang, Y. Peng, H. Guo et al., Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy 100, 107448 (2022). https://doi.org/10.1016/j.nanoen.2022.107448
- F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12(1), 1–13 (2021). https://doi.org/10.1038/s41467-021-25637-w
- M. Zhu, Z. Sun, C. Lee, Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 16(9), 14097–14110 (2022). https://doi.org/10.1021/acsnano.2c04043
- S.S. Kwak, H.-J. Yoon, S.-W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29(2), 1804533 (2019). https://doi.org/10.1002/adfm.201804533
- X. Guo, T. He, Z. Zhang, A. Luo, F. Wang et al., Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
- Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
- X. Wang, J. Yang, K. Meng, Q. He, G. Zhang et al., Enabling the unconstrained epidermal pulse wave monitoring via finger-touching. Adv. Funct. Mater. 31(32), 2102378 (2021). https://doi.org/10.1002/adfm.202102378
- X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3, e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
- G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
- S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
- X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
- Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
- M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang et al., Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12(6), 6156–6162 (2018). https://doi.org/10.1021/acsnano.8b02562
- Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 1–13 (2022). https://doi.org/10.1038/s41467-022-32745-8
- J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467018-06759-0
- H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu et al., Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 14(3), 3328–3336 (2020). https://doi.org/10.1021/acsnano.9b08998
- C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467020-17842-w
- J. Sun, L. Zhang, Z. Li, Q. Tang, J. Chen et al., A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 33, 2102765 (2021). https://doi.org/10.1002/adma.202102765
- Y.S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai et al., Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014). https://doi.org/10.1002/adma.201304619
- S. Nie, Q. Fu, X. Lin, C. Zhang, Y. Lu et al., Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 404, 126512 (2021). https://doi.org/10.1016/j.cej.2020.126512
- M. Salauddin, S.M.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2021). https://doi.org/10.1002/adfm.202107143
- J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
- S.-N. Lai, C.-K. Chang, C.-S. Yang, C.-W. Su, C.-M. Leu et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 60, 715–723 (2019). https://doi.org/10.1016/j.nanoen.2019.03.067
- S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:m-ethodology and theoretical understanding. Adv. Mater. 26(39), 6720–6728 (2014). https://doi.org/10.1002/adma.201402491
- Y. Zi, C. Wu, W. Ding, Z.L. Wang, Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 27(24), 1700049 (2017). https://doi.org/10.1002/adfm.201700049
- H. Wu, S. Fu, W. He, C. Shan, J. Wang et al., Improving and quantifying surface charge density via charge injection enabled by air breakdown. Adv. Funct. Mater. 32(35), 2203884 (2022). https://doi.org/10.1002/adfm.202203884
References
M. Yang, Y. Liu, X. Jiang, Barcoded point-of-care bioassays. Chem. Soc. Rev. 48(3), 850–884 (2019). https://doi.org/10.1039/C8CS00303C
J. Ramalho, S.F.H. Correia, L. Fu, L.L.F. Antonio, C.D.S. Brites et al., Luminescence Thermometry on the route of the mobile-based internet of things (IoT): how smart QR codes make it real. Adv. Sci. 6(19), 1900950 (2019). https://doi.org/10.1002/advs.201900950
S. Han, H.J. Bae, J. Kim, S. Shin, S.E. Choi et al., Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 24(44), 5924–5929 (2012). https://doi.org/10.1002/adma.201201486
Y. Wang, C. Yan, S.Y. Cheng, Z.Q. Xu, X. Sun et al., Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29(29), 1902579 (2019). https://doi.org/10.1002/adfm.201902579
H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo et al., A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors 20(9), 2495 (2020). https://doi.org/10.3390/s20092495
S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn et al., Intrinsic detectivity limits of organic near-infrared photodetectors. Adv. Mater. 32(47), 2003818 (2020). https://doi.org/10.1002/adma.202003818
J. Huang, J. Lee, J. Vollbrecht, V.V. Brus, A.L. Dixon et al., A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32(1), 1906027 (2020). https://doi.org/10.1002/adma.201906027
Y.S. Suh, Laser sensors for displacement, distance and position. Sensors 19(8), 1924 (2019). https://doi.org/10.3390/s19081924
R.Y. Tay, H. Li, J. Lin, H. Wang, J.S.K. Lim et al., Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv. Funct. Mater. 30(10), 1909604 (2020). https://doi.org/10.1002/adfm.201909604
C. Yang, X. Xu, W. Ali, Y. Wang, Y. Wang et al., Piezoelectricity in excess of 800 pC/N over 400 ℃ in BiScO3-PbTiO3-CaTiO3 ceramics. ACS Appl. Mater. Interfaces 13(28), 33253–33261 (2021). https://doi.org/10.1021/acsami.1c07492
Y. Wang, B. Siegmund, Z. Tang, Z. Ma, J. Kublitski et al., Stacked dual-wavelength near-infrared organic photodetectors. Adv. Opt. Mater. 9(6), 2001784 (2020). https://doi.org/10.1002/adom.202001784
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
X. Cao, M. Zhang, J. Huang, T. Jiang, J. Zou et al., Inductor-free wirel-ess energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator. Adv. Mater. 30(6), 1704077 (2018). https://doi.org/10.1002/adma.201704077
Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6(34), eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
F. Shen, D. Zhang, Q. Zhang, Z. Li, H. Guo et al., Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 99, 107431 (2022). https://doi.org/10.1016/j.nanoen.2022.107431
C. Xin, Z. Li, Q. Zhang, Y. Peng, H. Guo et al., Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy 100, 107448 (2022). https://doi.org/10.1016/j.nanoen.2022.107448
F. Wen, Z. Zhang, T. He, C. Lee, AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12(1), 1–13 (2021). https://doi.org/10.1038/s41467-021-25637-w
M. Zhu, Z. Sun, C. Lee, Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 16(9), 14097–14110 (2022). https://doi.org/10.1021/acsnano.2c04043
S.S. Kwak, H.-J. Yoon, S.-W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29(2), 1804533 (2019). https://doi.org/10.1002/adfm.201804533
X. Guo, T. He, Z. Zhang, A. Luo, F. Wang et al., Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
X. Wang, J. Yang, K. Meng, Q. He, G. Zhang et al., Enabling the unconstrained epidermal pulse wave monitoring via finger-touching. Adv. Funct. Mater. 31(32), 2102378 (2021). https://doi.org/10.1002/adfm.202102378
X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3, e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang et al., Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12(6), 6156–6162 (2018). https://doi.org/10.1021/acsnano.8b02562
Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 1–13 (2022). https://doi.org/10.1038/s41467-022-32745-8
J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467018-06759-0
H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu et al., Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 14(3), 3328–3336 (2020). https://doi.org/10.1021/acsnano.9b08998
C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467020-17842-w
J. Sun, L. Zhang, Z. Li, Q. Tang, J. Chen et al., A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 33, 2102765 (2021). https://doi.org/10.1002/adma.202102765
Y.S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai et al., Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014). https://doi.org/10.1002/adma.201304619
S. Nie, Q. Fu, X. Lin, C. Zhang, Y. Lu et al., Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 404, 126512 (2021). https://doi.org/10.1016/j.cej.2020.126512
M. Salauddin, S.M.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2021). https://doi.org/10.1002/adfm.202107143
J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
S.-N. Lai, C.-K. Chang, C.-S. Yang, C.-W. Su, C.-M. Leu et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 60, 715–723 (2019). https://doi.org/10.1016/j.nanoen.2019.03.067
S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:m-ethodology and theoretical understanding. Adv. Mater. 26(39), 6720–6728 (2014). https://doi.org/10.1002/adma.201402491
Y. Zi, C. Wu, W. Ding, Z.L. Wang, Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 27(24), 1700049 (2017). https://doi.org/10.1002/adfm.201700049
H. Wu, S. Fu, W. He, C. Shan, J. Wang et al., Improving and quantifying surface charge density via charge injection enabled by air breakdown. Adv. Funct. Mater. 32(35), 2203884 (2022). https://doi.org/10.1002/adfm.202203884