High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites
Corresponding Author: Xingyi Huang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 151
Abstract
Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications. Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability. Normally, inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current. However, how these nanofillers effect the leakage current is still unclear. Meanwhile, high dopant (> 5 vol%) is prerequisite for distinctly improved energy storage performance, which severely deteriorates the processing and mechanical property of polymer nanocomposites, hence brings high technical complication and cost. Herein, boron nitride nanosheet (BNNS) layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride (PVDF) nanocomposite. Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers, preventing the electron in PVDF from passing through inorganic layers, leading to suppressed leakage current and superior breakdown strength. Accompanied by improved Young’s modulus (from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite), significantly boosted discharged energy density (14.3 J cm−3) and charge–discharge efficiency (75%) are realized in multilayered nanocomposites, which are 340 and 300% of PVDF (4.2 J cm−3, 25%). More importantly, thus remarkably boosted energy storage performance is accomplished by marginal BNNS. This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance.
Highlights:
1 High conduction band inorganic layers are manufactured via simple but efficient methodology.
2 The multilayered nanocomposite possesses an outstanding breakdown strength of 611 MV m−1 and an excellent discharged energy density of 14.3 J cm−3, which are 119% and 177% of the randomly dispersed nanocomposite (515 MV m−1, and 8.1 J cm−3).
3 The current work offers a new paradigm for design and production of high energy density flexible dielectric films.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9(32), 1901085 (2019). https://doi.org/10.1002/aenm.201901085
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- P. Wang, L. Yao, Z. Pan, S. Shi, J. Yu et al., Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33(42), 2103338 (2021). https://doi.org/10.1002/adma.202103338
- D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30(18), 1808567 (2020). https://doi.org/10.1002/adfm.201808567
- X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.003
- H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu et al., Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50(11), 6369–6400 (2021). https://doi.org/10.1039/D0CS00765J
- X. Wu, X. Chen, Q.M. Zhang, D.Q. Tan, Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2021). https://doi.org/10.1016/j.ensm.2021.10.010
- B. Zhang, J. Liu, M. Ren, C. Wu, T.J. Moran et al., Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33(34), 2101374 (2021). https://doi.org/10.1002/adma.202101374
- S. Wang, J. Chen, Y. Zhu, P. Jiang, X. Huang, High field dielectric properties of silk fibroin films. Acta Polym. Sinica 52(9), 1148–1155 (2021). https://doi.org/10.11777/j.issn1000-3304.2021.21037
- H. Li, L. Wang, Y. Zhu, P. Jiang, X. Huang, Tailoring the polarity of polymer shell on BaTiO3 nanop surface for improved energy storage performance of dielectric polymer nanocomposites. Chin. Chem. Lett. 32(7), 2229–2232 (2021). https://doi.org/10.1016/j.cclet.2020.12.032
- X. Yuan, Y. Matsuyama, T.C.M. Chung, Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 43(9), 4011–4015 (2010). https://doi.org/10.1021/ma100209d
- H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen et al., Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48(16), 4424–4465 (2019). https://doi.org/10.1039/C9CS00043G
- H. Li, T. Yang, Y. Zhou, D. Ai, B. Yao et al., Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 31(1), 2006739 (2020). https://doi.org/10.1002/adfm.202006739
- Y. Jiang, J. Wang, S. Yan, Z. Shen, L. Dong et al., Ultrahigh energy density in continuously gradient-structured all-organic dielectric polymer films. Adv. Funct. Mater. 32(26), 2200848 (2022). https://doi.org/10.1002/adfm.202200848
- Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen et al., Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019). https://doi.org/10.1016/j.nanoen.2019.104195
- J. Jiang, Z. Shen, X. Cai, J. Qian, Z. Dan et al., Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9(15), 1803411 (2019). https://doi.org/10.1002/aenm.201803411
- H. Li, D. Ai, L. Ren, B. Yao, Z. Han et al., Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31(23), 1900875 (2019). https://doi.org/10.1002/adma.201900875
- L. Wu, K. Wu, C. Lei, D. Liu, R. Du et al., Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitor: artful virtue of edge-hydroxylation. J. Mater. Chem. A 7(13), 7664–7674 (2019). https://doi.org/10.1039/C9TA00616H
- H. Li, Z. Xie, L. Liu, Z. Peng, Q. Ding et al., High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability. IEEE Trans. Dielectr. Electr. Insul. 26(3), 722–729 (2019). https://doi.org/10.1109/TDEI.2019.8726017
- L. Wu, K. Wu, D. Liu, R. Huang, J. Huo et al., Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A 6(17), 7573–7584 (2018). https://doi.org/10.1039/c8ta01294f
- F. Liu, Q. Li, Z. Li, Y. Liu, L. Dong et al., Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos. Sci. Technol. 142, 139–144 (2017). https://doi.org/10.1016/j.compscitech.2017.02.006
- Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski et al., Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8(3), 922–931 (2015). https://doi.org/10.1039/c4ee02962c
- J. Chen, Z. Shen, Q. Kang, X. Qian, S. Li et al., Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67(6), 609–618 (2021). https://doi.org/10.1016/j.scib.2021.10.011
- Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 147, 30–38 (2017). https://doi.org/10.1016/j.compscitech.2017.05.004
- Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu et al., Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C 122(32), 18282–18293 (2018). https://doi.org/10.1021/acs.jpcc.8b04918
- L. Wang, X. Huang, Y. Zhu, P. Jiang, Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature coulomb blockade effect of ultra-small platinum nanops. Phys. Chem. Chem. Phys. 20(7), 5001–5011 (2018). https://doi.org/10.1039/C7CP07990G
- D. Kang, G. Wang, Y. Huang, P. Jiang, X. Huang, Decorating TiO2 nanowires with BaTiO3 nanops: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl. Mater. Interfaces 10(4), 4077–4085 (2018). https://doi.org/10.1021/acsami.7b16409
- G. Wang, Y. Huang, Y. Wang, P. Jiang, X. Huang, Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness. Phys. Chem. Chem. Phys. 19(31), 21058–21068 (2017). https://doi.org/10.1039/c7cp04096b
- G. Wang, X. Huang, P. Jiang, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl. Mater. Interfaces 9(8), 7547–7555 (2017). https://doi.org/10.1021/acsami.6b14454
- Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9(36), 1901826 (2019). https://doi.org/10.1002/aenm.201901826
- A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29(35), 1701864 (2017). https://doi.org/10.1002/adma.201701864
- Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015). https://doi.org/10.1038/nature14647
- Z.H. Shen, J.J. Wang, J.Y. Jiang, Y.H. Lin, C.W. Nan et al., Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy Mater. 20(8), 1800509 (2018). https://doi.org/10.1002/aenm.201800509
- Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen et al., High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30(2), 1704380 (2018). https://doi.org/10.1002/adma.201704380
- Z.H. Shen, J.J. Wang, J.Y. Jiang, S.X. Huang, Y.H. Lin et al., Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1843 (2019). https://doi.org/10.1038/s41467-019-09874-8
- T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15(1), 152–160 (2008). https://doi.org/10.1109/T-DEI.2008.4446746
- Y. Gao, X. Huang, D. Min, S. Li, P. Jiang, Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: toward new generation of high voltage direct current cable insulation. ACS Sustain. Chem. Eng. 7(1), 513–525 (2019). https://doi.org/10.1021/acssuschemeng.8b04070
- Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng et al., Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 28, 255–263 (2020). https://doi.org/10.1016/j.ensm.2020.03.017
- J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
- J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2016). https://doi.org/10.1002/adfm.201604754
- Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.007
- W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia et al., Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96(19), 192905 (2010). https://doi.org/10.1063/1.3428656
- G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov et al., Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem. Mater. 28(13), 4646–4660 (2016). https://doi.org/10.1021/acs.chemmater.6b01383
- L. Zhu, Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5(21), 3677–3687 (2014). https://doi.org/10.1021/jz501831q
- H. Huang, X. Chen, K. Yin, I. Treufeld, D. Schuele et al., Reduction of ionic conduction loss in multilayer dielectric films by immobilizing impurity ions in high glass transition temperature polymer layers. ACS Appl. Energy Mater. 1(2), 775–785 (2018). https://doi.org/10.1021/acsaem.7b00211
- X. Chen, J.K. Tseng, I. Treufeld, M. Mackey, D.E. Schuele et al., Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J. Mater. Chem. C 5(39), 10417–10426 (2017). https://doi.org/10.1039/C7TC03653A
- G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. Mater. Electron. 33(8), 2027–2037 (1998). https://doi.org/10.1023/A:1004398514901
- Y. Li, T. Soulestin, V. Ladmiral, B. Ameduri, T. Lannuzel et al., Stretching-induced relaxor ferroelectric behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-hexafluoropropylene) random terpolymer. Macromolecules 50(19), 7646–7656 (2017). https://doi.org/10.1021/acs.macromol.7b01205
- G. Wang, X. Huang, P. Jiang, Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage. J. Mater. Chem. C 2(12), 3112–3120 (2017). https://doi.org/10.1039/C7TC00387K
- Y. Zhu, P. Jiang, X. Huang, Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 179, 115–124 (2019). https://doi.org/10.1016/j.compscitech.2019.04.035
- F. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21(3), 929–931 (2014). https://doi.org/10.1109/TDEI.2014.6832233
- X. Huang, X. Zhang, G.K. Ren, J. Jiang, Z. Dan et al., Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. J. Mater. Chem. A 7(25), 15198–15206 (2019). https://doi.org/10.1039/c9ta02257k
- M. Ieda, Dielectric breakdown process of polymers. IEEE Trans. Dielectr. Electr. Insul. 15(3), 206–224 (1980). https://doi.org/10.1109/TEI.1980.298314
- K.H. Stark, C.G. Garton, Electric strength of irradiated polythene. Nature 176, 1225 (1955). https://doi.org/10.1038/1761225a0
- Y. Zhang, X. Liu, J. Yu, M. Fan, X. Ji et al., Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos. Sci. Technol. 184, 107838 (2019). https://doi.org/10.1016/j.compscitech.2019.107838
- P. Hu, Z. Jia, Z. Shen, P. Wang, X. Liu, High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanops. Appl. Surf. Sci. 441, 824–831 (2018). https://doi.org/10.1016/j.apsusc.2018.02.112
- Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941
- S. Chen, X. Lv, X. Han, H. Luo, C. Bowen et al., Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer. Polym. Chem. 9(5), 548–557 (2018). https://doi.org/10.1039/c7py01914a
- D. Zhang, C. Ma, X. Zhou, S. Chen, H. Luo et al., High performance capacitors using BaTiO3 nanowires engineered by rigid liquid-crystalline polymers. J. Phys. Chem. C 121(37), 20075–20083 (2017). https://doi.org/10.1021/acs.jpcc.7b03391
- Q.G. Chi, T. Ma, Y. Zhang, Y. Cui, C.H. Zhang et al., Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5(32), 16757–16766 (2017). https://doi.org/10.1039/c7ta03897f
- Z. Pan, L. Yao, J. Zhai, H. Wang, B. Shen, Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Appl. Mater. Interfaces 9(16), 14337–14346 (2017). https://doi.org/10.1021/acsami.7b01381
- H. Luo, J. Roscow, X. Zhou, S. Chen, X. Han et al., Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J. Mater. Chem. A 5(15), 7091–7102 (2017). https://doi.org/10.1039/C7TA00136C
- H. Li, L. Ren, Y. Zhou, B. Yao, Q. Wang, Recent progress in polymer dielectrics containing boron nitride nanosheets for high-energy capacitors. High Voltage 5(4), 365–376 (2020). https://doi.org/10.1049/hve.2020.0076
- Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044
- Q. Chi, T. Ma, Y. Zhang, Q. Chen, C. Zhang et al., Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduced the hybrid CoFe2O4@BZT-BCT nanofibers. ACS Sustain. Chem. Eng. 6(1), 403–412 (2018). https://doi.org/10.1021/acssuschemeng.7b02659
- S. Luo, J. Yu, S. Yu, R. Sun, L. Cao et al., Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 9(5), 1803204 (2018). https://doi.org/10.1002/aenm.201803204
- Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen et al., High-energy-density polymer nanocomposites composed of newly-structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017). https://doi.org/10.1021/acsami.6b13663
- Z. Pan, L. Yao, G. Ge, B. Shen, J. Zhai, High-perfrmance capacitors based on the NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J. Mater. Chem. A 6(30), 14614–14622 (2018). https://doi.org/10.1039/C8TA03084G
- Y. Xie, W. Jiang, T. Fu, J. Liu, Z. Zhang et al., Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity. ACS Appl. Mater. Interfaces 10(34), 29038–29047 (2018). https://doi.org/10.1021/acsami.8b10354
- K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018). https://doi.org/10.1016/j.nanoen.2018.07.006
- P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4, 2845 (2013). https://doi.org/10.1038/ncomms3845
- H. Pan, S. Lan, Y. Zheng, J. Ma, Y. Shen et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019). https://doi.org/10.1126/science.aaw8109
- K. Yang, W. Chen, Y. Zhao, L. Ding, B. Du et al., Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond. Compos. Sci. Technol. 221, 109178 (2022). https://doi.org/10.1016/j.compscitech.2021.109178
References
H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9(32), 1901085 (2019). https://doi.org/10.1002/aenm.201901085
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
P. Wang, L. Yao, Z. Pan, S. Shi, J. Yu et al., Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33(42), 2103338 (2021). https://doi.org/10.1002/adma.202103338
D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30(18), 1808567 (2020). https://doi.org/10.1002/adfm.201808567
X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.003
H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu et al., Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50(11), 6369–6400 (2021). https://doi.org/10.1039/D0CS00765J
X. Wu, X. Chen, Q.M. Zhang, D.Q. Tan, Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2021). https://doi.org/10.1016/j.ensm.2021.10.010
B. Zhang, J. Liu, M. Ren, C. Wu, T.J. Moran et al., Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33(34), 2101374 (2021). https://doi.org/10.1002/adma.202101374
S. Wang, J. Chen, Y. Zhu, P. Jiang, X. Huang, High field dielectric properties of silk fibroin films. Acta Polym. Sinica 52(9), 1148–1155 (2021). https://doi.org/10.11777/j.issn1000-3304.2021.21037
H. Li, L. Wang, Y. Zhu, P. Jiang, X. Huang, Tailoring the polarity of polymer shell on BaTiO3 nanop surface for improved energy storage performance of dielectric polymer nanocomposites. Chin. Chem. Lett. 32(7), 2229–2232 (2021). https://doi.org/10.1016/j.cclet.2020.12.032
X. Yuan, Y. Matsuyama, T.C.M. Chung, Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 43(9), 4011–4015 (2010). https://doi.org/10.1021/ma100209d
H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen et al., Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48(16), 4424–4465 (2019). https://doi.org/10.1039/C9CS00043G
H. Li, T. Yang, Y. Zhou, D. Ai, B. Yao et al., Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 31(1), 2006739 (2020). https://doi.org/10.1002/adfm.202006739
Y. Jiang, J. Wang, S. Yan, Z. Shen, L. Dong et al., Ultrahigh energy density in continuously gradient-structured all-organic dielectric polymer films. Adv. Funct. Mater. 32(26), 2200848 (2022). https://doi.org/10.1002/adfm.202200848
Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen et al., Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019). https://doi.org/10.1016/j.nanoen.2019.104195
J. Jiang, Z. Shen, X. Cai, J. Qian, Z. Dan et al., Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9(15), 1803411 (2019). https://doi.org/10.1002/aenm.201803411
H. Li, D. Ai, L. Ren, B. Yao, Z. Han et al., Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31(23), 1900875 (2019). https://doi.org/10.1002/adma.201900875
L. Wu, K. Wu, C. Lei, D. Liu, R. Du et al., Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitor: artful virtue of edge-hydroxylation. J. Mater. Chem. A 7(13), 7664–7674 (2019). https://doi.org/10.1039/C9TA00616H
H. Li, Z. Xie, L. Liu, Z. Peng, Q. Ding et al., High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability. IEEE Trans. Dielectr. Electr. Insul. 26(3), 722–729 (2019). https://doi.org/10.1109/TDEI.2019.8726017
L. Wu, K. Wu, D. Liu, R. Huang, J. Huo et al., Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A 6(17), 7573–7584 (2018). https://doi.org/10.1039/c8ta01294f
F. Liu, Q. Li, Z. Li, Y. Liu, L. Dong et al., Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos. Sci. Technol. 142, 139–144 (2017). https://doi.org/10.1016/j.compscitech.2017.02.006
Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski et al., Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8(3), 922–931 (2015). https://doi.org/10.1039/c4ee02962c
J. Chen, Z. Shen, Q. Kang, X. Qian, S. Li et al., Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67(6), 609–618 (2021). https://doi.org/10.1016/j.scib.2021.10.011
Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 147, 30–38 (2017). https://doi.org/10.1016/j.compscitech.2017.05.004
Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu et al., Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C 122(32), 18282–18293 (2018). https://doi.org/10.1021/acs.jpcc.8b04918
L. Wang, X. Huang, Y. Zhu, P. Jiang, Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature coulomb blockade effect of ultra-small platinum nanops. Phys. Chem. Chem. Phys. 20(7), 5001–5011 (2018). https://doi.org/10.1039/C7CP07990G
D. Kang, G. Wang, Y. Huang, P. Jiang, X. Huang, Decorating TiO2 nanowires with BaTiO3 nanops: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl. Mater. Interfaces 10(4), 4077–4085 (2018). https://doi.org/10.1021/acsami.7b16409
G. Wang, Y. Huang, Y. Wang, P. Jiang, X. Huang, Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness. Phys. Chem. Chem. Phys. 19(31), 21058–21068 (2017). https://doi.org/10.1039/c7cp04096b
G. Wang, X. Huang, P. Jiang, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl. Mater. Interfaces 9(8), 7547–7555 (2017). https://doi.org/10.1021/acsami.6b14454
Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9(36), 1901826 (2019). https://doi.org/10.1002/aenm.201901826
A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29(35), 1701864 (2017). https://doi.org/10.1002/adma.201701864
Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015). https://doi.org/10.1038/nature14647
Z.H. Shen, J.J. Wang, J.Y. Jiang, Y.H. Lin, C.W. Nan et al., Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy Mater. 20(8), 1800509 (2018). https://doi.org/10.1002/aenm.201800509
Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen et al., High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30(2), 1704380 (2018). https://doi.org/10.1002/adma.201704380
Z.H. Shen, J.J. Wang, J.Y. Jiang, S.X. Huang, Y.H. Lin et al., Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1843 (2019). https://doi.org/10.1038/s41467-019-09874-8
T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15(1), 152–160 (2008). https://doi.org/10.1109/T-DEI.2008.4446746
Y. Gao, X. Huang, D. Min, S. Li, P. Jiang, Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: toward new generation of high voltage direct current cable insulation. ACS Sustain. Chem. Eng. 7(1), 513–525 (2019). https://doi.org/10.1021/acssuschemeng.8b04070
Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng et al., Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 28, 255–263 (2020). https://doi.org/10.1016/j.ensm.2020.03.017
J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2016). https://doi.org/10.1002/adfm.201604754
Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.007
W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia et al., Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96(19), 192905 (2010). https://doi.org/10.1063/1.3428656
G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov et al., Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem. Mater. 28(13), 4646–4660 (2016). https://doi.org/10.1021/acs.chemmater.6b01383
L. Zhu, Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5(21), 3677–3687 (2014). https://doi.org/10.1021/jz501831q
H. Huang, X. Chen, K. Yin, I. Treufeld, D. Schuele et al., Reduction of ionic conduction loss in multilayer dielectric films by immobilizing impurity ions in high glass transition temperature polymer layers. ACS Appl. Energy Mater. 1(2), 775–785 (2018). https://doi.org/10.1021/acsaem.7b00211
X. Chen, J.K. Tseng, I. Treufeld, M. Mackey, D.E. Schuele et al., Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J. Mater. Chem. C 5(39), 10417–10426 (2017). https://doi.org/10.1039/C7TC03653A
G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. Mater. Electron. 33(8), 2027–2037 (1998). https://doi.org/10.1023/A:1004398514901
Y. Li, T. Soulestin, V. Ladmiral, B. Ameduri, T. Lannuzel et al., Stretching-induced relaxor ferroelectric behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-hexafluoropropylene) random terpolymer. Macromolecules 50(19), 7646–7656 (2017). https://doi.org/10.1021/acs.macromol.7b01205
G. Wang, X. Huang, P. Jiang, Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage. J. Mater. Chem. C 2(12), 3112–3120 (2017). https://doi.org/10.1039/C7TC00387K
Y. Zhu, P. Jiang, X. Huang, Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 179, 115–124 (2019). https://doi.org/10.1016/j.compscitech.2019.04.035
F. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21(3), 929–931 (2014). https://doi.org/10.1109/TDEI.2014.6832233
X. Huang, X. Zhang, G.K. Ren, J. Jiang, Z. Dan et al., Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. J. Mater. Chem. A 7(25), 15198–15206 (2019). https://doi.org/10.1039/c9ta02257k
M. Ieda, Dielectric breakdown process of polymers. IEEE Trans. Dielectr. Electr. Insul. 15(3), 206–224 (1980). https://doi.org/10.1109/TEI.1980.298314
K.H. Stark, C.G. Garton, Electric strength of irradiated polythene. Nature 176, 1225 (1955). https://doi.org/10.1038/1761225a0
Y. Zhang, X. Liu, J. Yu, M. Fan, X. Ji et al., Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos. Sci. Technol. 184, 107838 (2019). https://doi.org/10.1016/j.compscitech.2019.107838
P. Hu, Z. Jia, Z. Shen, P. Wang, X. Liu, High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanops. Appl. Surf. Sci. 441, 824–831 (2018). https://doi.org/10.1016/j.apsusc.2018.02.112
Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941
S. Chen, X. Lv, X. Han, H. Luo, C. Bowen et al., Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer. Polym. Chem. 9(5), 548–557 (2018). https://doi.org/10.1039/c7py01914a
D. Zhang, C. Ma, X. Zhou, S. Chen, H. Luo et al., High performance capacitors using BaTiO3 nanowires engineered by rigid liquid-crystalline polymers. J. Phys. Chem. C 121(37), 20075–20083 (2017). https://doi.org/10.1021/acs.jpcc.7b03391
Q.G. Chi, T. Ma, Y. Zhang, Y. Cui, C.H. Zhang et al., Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5(32), 16757–16766 (2017). https://doi.org/10.1039/c7ta03897f
Z. Pan, L. Yao, J. Zhai, H. Wang, B. Shen, Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Appl. Mater. Interfaces 9(16), 14337–14346 (2017). https://doi.org/10.1021/acsami.7b01381
H. Luo, J. Roscow, X. Zhou, S. Chen, X. Han et al., Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J. Mater. Chem. A 5(15), 7091–7102 (2017). https://doi.org/10.1039/C7TA00136C
H. Li, L. Ren, Y. Zhou, B. Yao, Q. Wang, Recent progress in polymer dielectrics containing boron nitride nanosheets for high-energy capacitors. High Voltage 5(4), 365–376 (2020). https://doi.org/10.1049/hve.2020.0076
Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044
Q. Chi, T. Ma, Y. Zhang, Q. Chen, C. Zhang et al., Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduced the hybrid CoFe2O4@BZT-BCT nanofibers. ACS Sustain. Chem. Eng. 6(1), 403–412 (2018). https://doi.org/10.1021/acssuschemeng.7b02659
S. Luo, J. Yu, S. Yu, R. Sun, L. Cao et al., Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 9(5), 1803204 (2018). https://doi.org/10.1002/aenm.201803204
Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen et al., High-energy-density polymer nanocomposites composed of newly-structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017). https://doi.org/10.1021/acsami.6b13663
Z. Pan, L. Yao, G. Ge, B. Shen, J. Zhai, High-perfrmance capacitors based on the NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J. Mater. Chem. A 6(30), 14614–14622 (2018). https://doi.org/10.1039/C8TA03084G
Y. Xie, W. Jiang, T. Fu, J. Liu, Z. Zhang et al., Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity. ACS Appl. Mater. Interfaces 10(34), 29038–29047 (2018). https://doi.org/10.1021/acsami.8b10354
K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018). https://doi.org/10.1016/j.nanoen.2018.07.006
P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4, 2845 (2013). https://doi.org/10.1038/ncomms3845
H. Pan, S. Lan, Y. Zheng, J. Ma, Y. Shen et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019). https://doi.org/10.1126/science.aaw8109
K. Yang, W. Chen, Y. Zhao, L. Ding, B. Du et al., Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond. Compos. Sci. Technol. 221, 109178 (2022). https://doi.org/10.1016/j.compscitech.2021.109178