Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators
Corresponding Author: Xingyi Huang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 31
Abstract
Thermal management has become a crucial problem for high-power-density equipment and devices. Phase change materials (PCMs) have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition. However, low intrinsic thermal conductivity, ease of leakage, and lack of flexibility severely limit their applications. Solving one of these problems often comes at the expense of other performance of the PCMs. In this work, we report core–sheath structured phase change nanocomposites (PCNs) with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning, electrostatic spraying, and hot-pressing. The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m−1 K−1 at a low BNNS loading (i.e., 32 wt%), which thereby endows the PCNs with high enthalpy (> 101 J g−1), outstanding ductility (> 40%) and improved fire retardancy. Therefore, our core–sheath strategies successfully balance the trade-off between thermal conductivity, flexibility, and phase change enthalpy of PCMs. Further, the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators, displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.
Highlights:
1 A core–sheath structured phase change nanocomposite (PCN) with aligned and overlapping interconnected BNNS networks were successfully fabricated.
2 The PCN has an ultrahigh in-plane thermal conductivity (28.3 W m−1 K−1), excellent flexibility and high phase change enthalpy (101 J g−1).
3 The PCN exhibits intensively potential applications in the thermal management of 5G base stations and thermoelectric generators.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Sun, X. Huang, Seeking advanced thermal management for stretchable electronics. npj Flex. Electron. 5, 1–5 (2021). https://doi.org/10.1038/s41528-021-00109-9
- Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funt. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
- J. Gong, X. Tan, Q. Yuan, Z. Liu, J. Ying et al., A spiral graphene framework containing highly ordered graphene microtubes for polymer composites with superior through-plane thermal conductivity. Chin. J. Chem. 40, 329–336 (2021). https://doi.org/10.1002/cjoc.202100656
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang et al., Review on thermal management systems using phase change materials for electronic components, li-ion batteries and photovoltaic modules. Renew. Sustain. Energy Rev. 31, 427–438 (2014). https://doi.org/10.1016/j.rser.2013.12.017
- S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31, 1905099 (2019). https://doi.org/10.1002/adma.201905099
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15, 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219–227 (2021). https://doi.org/10.1016/j.jmst.2020.12.051
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funt. Mater. 28, 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 (2022). https://doi.org/10.1016/j.compscitech.2022.109406
- B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14, 16590–16599 (2020). https://doi.org/10.1021/acsnano.0c05931
- Y. Li, Y. Li, X. Huang, H. Zheng, G. Lu et al., Graphene-coo/peg composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos. Sci. Technol. 195, 108197 (2020). https://doi.org/10.1016/j.compscitech.2020.108197
- Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano Micro Lett. 14, 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
- L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano Micro Lett. 14, 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
- H. Yu, Y. Feng, C. Chen, H. Zhang, L. Peng et al., Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. (2022). https://doi.org/10.1002/advs.202201331
- J. Chen, Z. Shen, Q. Kang, X. Qian, S. Li et al., Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67, 609–618 (2022). https://doi.org/10.1016/j.scib.2021.10.011
- K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman et al., Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funt. Mater. 30, 1904228 (2019). https://doi.org/10.1002/adfm.201904228
- B.E. Jebasingh, A.V. Arasu, A comprehensive review on latent heat and thermal conductivity of nanop dispersed phase change material for low-temperature applications. Energy Storage Mater. 24, 52–74 (2020). https://doi.org/10.1016/j.ensm.2019.07.031
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- J. Yang, Y.C. Zhou, L.Y. Yang, C.P. Feng, L. Bai et al., Exploring next-generation functional organic phase change composites. Adv. Funt. Mater. 32, 2200792 (2022). https://doi.org/10.1002/adfm.202200792
- X. Zhang, H. Liu, Z. Huang, Z. Yin, R. Wen et al., Preparation and characterization of the properties of polyethylene glycol@ Si3N4 nanowires as phase-change materials. Chem. Eng. J. 301, 229–237 (2016). https://doi.org/10.1016/j.cej.2016.05.024
- Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34, 508–514 (2021). https://doi.org/10.1016/j.ensm.2020.10.014
- Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
- J. Wang, X. Huang, H. Gao, A. Li, C. Wang, Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem. Eng. J. 350, 164–172 (2018). https://doi.org/10.1016/j.cej.2018.05.190
- P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang et al., Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy 85, 105948 (2021). https://doi.org/10.1016/j.nanoen.2021.105948
- W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood et al., Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11, 1392–1424 (2018). https://doi.org/10.1039/c7ee03587j
- D.-C. Gao, Y. Sun, A.M.L. Fong, X. Gu, Mineral-based form-stable phase change materials for thermal energy storage: a state-of-the art review. Energy Storage Mater. 46, 100–128 (2022). https://doi.org/10.1016/j.ensm.2022.01.003
- D.-H. Yu, Z.-Z. He, Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management. Appl. Energy 247, 503–516 (2019). https://doi.org/10.1016/j.apenergy.2019.04.072
- D.G. Atinafu, B.Y. Yun, S. Yang, H. Yuk, S. Wi et al., Structurally advanced hybrid support composite phase change materials: architectural synergy. Energy Storage Mater. 42, 164–184 (2021). https://doi.org/10.1016/j.ensm.2021.07.022
- X. Zhao, D. Zou, S. Wang, Flexible phase change materials: Preparation, properties and application. Chem. Eng. J. 431, 134231 (2022). https://doi.org/10.1016/j.cej.2021.134231
- Y. Qian, N. Han, Z. Zhang, R. Cao, L. Tan et al., Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl. Mater. Interfaces 11, 45832–45843 (2019). https://doi.org/10.1021/acsami.9b18543
- Y. He, H. Li, F. Luo, Y. Jin, B. Huang et al., Bio-based flexible phase change composite film with high thermal conductivity for thermal energy storage. Compos. Part A Appl. Sci. Manuf. 151, 106638 (2021). https://doi.org/10.1016/j.compositesa.2021.106638
- W.-W. Li, W.-L. Cheng, B. Xie, N. Liu, L.-S. Zhang, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers. Manage. 149, 1–12 (2017). https://doi.org/10.1016/j.enconman.2017.07.019
- S. Gong, X. Li, M. Sheng, S. Liu, Y. Zheng et al., High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl. Mater. Interfaces 13, 47174–47184 (2021). https://doi.org/10.1021/acsami.1c15670
- Y. Lu, X. Xiao, Y. Zhan, C. Huan, S. Qi et al., Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl. Mater. Interfaces 10, 12759–12767 (2018). https://doi.org/10.1021/acsami.8b02057
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
- Y. Chen, H. Zhang, J. Chen, Y. Guo, P. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16, 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
- T. Wang, Y. Lin, P. Li, P. Jiang, C. Zhang et al., Unidirectional thermal conduction in electrically insulating phase change composites for superior power output of thermoelectric generators. Compos. Sci. Technol. 225, 109500 (2022). https://doi.org/10.1016/j.compscitech.2022.109500
- C. Chang, X. Nie, X. Li, P. Tao, B. Fu et al., Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 8, 20970–20978 (2020). https://doi.org/10.1039/d0ta07289c
- Q. Huang, J. Deng, X. Li, G. Zhang, F. Xu, Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management. J. Energy Storage 32, 101755 (2020). https://doi.org/10.1016/j.est.2020.101755
- Z. Cai, J. Liu, Y. Zhou, L. Dai, H. Wang et al., Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance. Sol. Energy Mater. Sol. Cells 219, 110728 (2021). https://doi.org/10.1016/j.solmat.2020.110728
- W. Zhang, X. Zhang, Y. Xu, Y. Xu, J. Qiao et al., Flexible polyethylene glycol/polyvinylpyrrolidone composite phase change fibres: preparation, characterization, and thermal conductivity enhancement. Polymer 214, 123258 (2021). https://doi.org/10.1016/j.polymer.2020.123258
- W. Wu, W. Wu, S. Wang, Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy 236, 10–21 (2019). https://doi.org/10.1016/j.apenergy.2018.11.071
- D. Luo, F. Wei, H. Shao, L. Xiang, J. Yang et al., Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/mwcnts/pp hollow fiber membrane composite phase change materials. J. Mater. Sci. 53, 15500–15513 (2018). https://doi.org/10.1007/s10853-018-2722-5
- Y.-H. Huang, W.-L. Cheng, R. Zhao, Thermal management of li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Convers. Manage. 182, 9–20 (2019). https://doi.org/10.1016/j.enconman.2018.12.064
- Q. Huang, X. Li, G. Zhang, J. Deng, C. Wang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Appl. Therm. Eng. 183, 116151 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116151
- J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool et al., Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J. Mater. Chem. A 8, 20133–20140 (2020). https://doi.org/10.1039/c9ta13925g
- S. Nohut, Three-parameter (3P) Weibull distribution for characterization of strength of ceramics showing R-curve behavior. Ceram. Int. 47, 2270–2279 (2021). https://doi.org/10.1016/j.ceramint.2020.09.067
- X. Li, M. Sheng, S. Gong, H. Wu, X. Chen et al., Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 430, 132928 (2022). https://doi.org/10.1016/j.cej.2021.132928
- P. Cheng, H. Gao, X. Chen, Y. Chen, M. Han et al., Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem. Eng. J. 397, 125330 (2020). https://doi.org/10.1016/j.cej.2020.125330
- A. Israr, Q. Yang, A. Israr, Power consumption analysis of access network in 5G mobile communication infrastructures—an analytical quantification model. Pervasive Mob. Comput. 80, 101544 (2022). https://doi.org/10.1016/j.pmcj.2022.101544
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- Y. Tian, A. Liu, J. Wang, Y. Zhou, C. Bao et al., Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources. Energy 233, 121113 (2021). https://doi.org/10.1016/j.energy.2021.121113
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13, 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
References
B. Sun, X. Huang, Seeking advanced thermal management for stretchable electronics. npj Flex. Electron. 5, 1–5 (2021). https://doi.org/10.1038/s41528-021-00109-9
Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funt. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
J. Gong, X. Tan, Q. Yuan, Z. Liu, J. Ying et al., A spiral graphene framework containing highly ordered graphene microtubes for polymer composites with superior through-plane thermal conductivity. Chin. J. Chem. 40, 329–336 (2021). https://doi.org/10.1002/cjoc.202100656
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang et al., Review on thermal management systems using phase change materials for electronic components, li-ion batteries and photovoltaic modules. Renew. Sustain. Energy Rev. 31, 427–438 (2014). https://doi.org/10.1016/j.rser.2013.12.017
S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31, 1905099 (2019). https://doi.org/10.1002/adma.201905099
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15, 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219–227 (2021). https://doi.org/10.1016/j.jmst.2020.12.051
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funt. Mater. 28, 1805365 (2018). https://doi.org/10.1002/adfm.201805365
H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 (2022). https://doi.org/10.1016/j.compscitech.2022.109406
B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14, 16590–16599 (2020). https://doi.org/10.1021/acsnano.0c05931
Y. Li, Y. Li, X. Huang, H. Zheng, G. Lu et al., Graphene-coo/peg composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos. Sci. Technol. 195, 108197 (2020). https://doi.org/10.1016/j.compscitech.2020.108197
Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano Micro Lett. 14, 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano Micro Lett. 14, 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
H. Yu, Y. Feng, C. Chen, H. Zhang, L. Peng et al., Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. (2022). https://doi.org/10.1002/advs.202201331
J. Chen, Z. Shen, Q. Kang, X. Qian, S. Li et al., Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67, 609–618 (2022). https://doi.org/10.1016/j.scib.2021.10.011
K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman et al., Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funt. Mater. 30, 1904228 (2019). https://doi.org/10.1002/adfm.201904228
B.E. Jebasingh, A.V. Arasu, A comprehensive review on latent heat and thermal conductivity of nanop dispersed phase change material for low-temperature applications. Energy Storage Mater. 24, 52–74 (2020). https://doi.org/10.1016/j.ensm.2019.07.031
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
J. Yang, Y.C. Zhou, L.Y. Yang, C.P. Feng, L. Bai et al., Exploring next-generation functional organic phase change composites. Adv. Funt. Mater. 32, 2200792 (2022). https://doi.org/10.1002/adfm.202200792
X. Zhang, H. Liu, Z. Huang, Z. Yin, R. Wen et al., Preparation and characterization of the properties of polyethylene glycol@ Si3N4 nanowires as phase-change materials. Chem. Eng. J. 301, 229–237 (2016). https://doi.org/10.1016/j.cej.2016.05.024
Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34, 508–514 (2021). https://doi.org/10.1016/j.ensm.2020.10.014
Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
J. Wang, X. Huang, H. Gao, A. Li, C. Wang, Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem. Eng. J. 350, 164–172 (2018). https://doi.org/10.1016/j.cej.2018.05.190
P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang et al., Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy 85, 105948 (2021). https://doi.org/10.1016/j.nanoen.2021.105948
W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood et al., Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11, 1392–1424 (2018). https://doi.org/10.1039/c7ee03587j
D.-C. Gao, Y. Sun, A.M.L. Fong, X. Gu, Mineral-based form-stable phase change materials for thermal energy storage: a state-of-the art review. Energy Storage Mater. 46, 100–128 (2022). https://doi.org/10.1016/j.ensm.2022.01.003
D.-H. Yu, Z.-Z. He, Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management. Appl. Energy 247, 503–516 (2019). https://doi.org/10.1016/j.apenergy.2019.04.072
D.G. Atinafu, B.Y. Yun, S. Yang, H. Yuk, S. Wi et al., Structurally advanced hybrid support composite phase change materials: architectural synergy. Energy Storage Mater. 42, 164–184 (2021). https://doi.org/10.1016/j.ensm.2021.07.022
X. Zhao, D. Zou, S. Wang, Flexible phase change materials: Preparation, properties and application. Chem. Eng. J. 431, 134231 (2022). https://doi.org/10.1016/j.cej.2021.134231
Y. Qian, N. Han, Z. Zhang, R. Cao, L. Tan et al., Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl. Mater. Interfaces 11, 45832–45843 (2019). https://doi.org/10.1021/acsami.9b18543
Y. He, H. Li, F. Luo, Y. Jin, B. Huang et al., Bio-based flexible phase change composite film with high thermal conductivity for thermal energy storage. Compos. Part A Appl. Sci. Manuf. 151, 106638 (2021). https://doi.org/10.1016/j.compositesa.2021.106638
W.-W. Li, W.-L. Cheng, B. Xie, N. Liu, L.-S. Zhang, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers. Manage. 149, 1–12 (2017). https://doi.org/10.1016/j.enconman.2017.07.019
S. Gong, X. Li, M. Sheng, S. Liu, Y. Zheng et al., High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl. Mater. Interfaces 13, 47174–47184 (2021). https://doi.org/10.1021/acsami.1c15670
Y. Lu, X. Xiao, Y. Zhan, C. Huan, S. Qi et al., Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl. Mater. Interfaces 10, 12759–12767 (2018). https://doi.org/10.1021/acsami.8b02057
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
Y. Chen, H. Zhang, J. Chen, Y. Guo, P. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16, 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
T. Wang, Y. Lin, P. Li, P. Jiang, C. Zhang et al., Unidirectional thermal conduction in electrically insulating phase change composites for superior power output of thermoelectric generators. Compos. Sci. Technol. 225, 109500 (2022). https://doi.org/10.1016/j.compscitech.2022.109500
C. Chang, X. Nie, X. Li, P. Tao, B. Fu et al., Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 8, 20970–20978 (2020). https://doi.org/10.1039/d0ta07289c
Q. Huang, J. Deng, X. Li, G. Zhang, F. Xu, Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management. J. Energy Storage 32, 101755 (2020). https://doi.org/10.1016/j.est.2020.101755
Z. Cai, J. Liu, Y. Zhou, L. Dai, H. Wang et al., Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance. Sol. Energy Mater. Sol. Cells 219, 110728 (2021). https://doi.org/10.1016/j.solmat.2020.110728
W. Zhang, X. Zhang, Y. Xu, Y. Xu, J. Qiao et al., Flexible polyethylene glycol/polyvinylpyrrolidone composite phase change fibres: preparation, characterization, and thermal conductivity enhancement. Polymer 214, 123258 (2021). https://doi.org/10.1016/j.polymer.2020.123258
W. Wu, W. Wu, S. Wang, Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy 236, 10–21 (2019). https://doi.org/10.1016/j.apenergy.2018.11.071
D. Luo, F. Wei, H. Shao, L. Xiang, J. Yang et al., Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/mwcnts/pp hollow fiber membrane composite phase change materials. J. Mater. Sci. 53, 15500–15513 (2018). https://doi.org/10.1007/s10853-018-2722-5
Y.-H. Huang, W.-L. Cheng, R. Zhao, Thermal management of li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Convers. Manage. 182, 9–20 (2019). https://doi.org/10.1016/j.enconman.2018.12.064
Q. Huang, X. Li, G. Zhang, J. Deng, C. Wang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Appl. Therm. Eng. 183, 116151 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116151
J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool et al., Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J. Mater. Chem. A 8, 20133–20140 (2020). https://doi.org/10.1039/c9ta13925g
S. Nohut, Three-parameter (3P) Weibull distribution for characterization of strength of ceramics showing R-curve behavior. Ceram. Int. 47, 2270–2279 (2021). https://doi.org/10.1016/j.ceramint.2020.09.067
X. Li, M. Sheng, S. Gong, H. Wu, X. Chen et al., Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 430, 132928 (2022). https://doi.org/10.1016/j.cej.2021.132928
P. Cheng, H. Gao, X. Chen, Y. Chen, M. Han et al., Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem. Eng. J. 397, 125330 (2020). https://doi.org/10.1016/j.cej.2020.125330
A. Israr, Q. Yang, A. Israr, Power consumption analysis of access network in 5G mobile communication infrastructures—an analytical quantification model. Pervasive Mob. Comput. 80, 101544 (2022). https://doi.org/10.1016/j.pmcj.2022.101544
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
Y. Tian, A. Liu, J. Wang, Y. Zhou, C. Bao et al., Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources. Energy 233, 121113 (2021). https://doi.org/10.1016/j.energy.2021.121113
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13, 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182