Spider Web-Inspired Graphene Skeleton-Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management
Corresponding Author: Xingyi Huang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 180
Abstract
Phase change materials (PCMs) can be used for efficient thermal energy harvesting, which has great potential for cost-effective thermal management and energy storage. However, the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting. Simultaneously, it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading. Although constructing a three-dimensional (3D) thermally conductive network within PCMs can address these problems, the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers. Inspired by the interlaced structure of spider webs in nature, this study reports a new strategy for fabricating highly thermally conductive phase change composites (sw-GS/PW) with a 3D spider web (sw)-like structured graphene skeleton (GS) by hydrothermal reaction, radial freeze-casting and vacuum impregnation in paraffin wax (PW). The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading. Especially, sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of ~ 1260% and ~ 840%, respectively, at an ultra-low filler loading of 2.25 vol.%. The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management.
Highlights:
1 A three-dimensional spider web-inspired structured graphene skeleton is constructed.
2 The spider web-like skeleton endows paraffin wax with a significantly high longitudinal and transverse thermal conductivity enhancement of ~1260% and ~840%, respectively, at 2.25 vol% skeleton.
3 The resultant composites exhibit outstanding performance on the thermal management of Li-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
- Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3d interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
- P. Lv, X. Tan, K. Yu, R. Zheng, J. Zheng et al., Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon 99, 222–228 (2016). https://doi.org/10.1016/j.carbon.2015.12.026
- G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 25, 251–295 (2020). https://doi.org/10.1016/j.ensm.2019.10.010
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- L. Ianniciello, P.H. Biwolé, P. Achard, Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 378, 383–403 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.071
- Z. Liu, C. Zang, Z. Ju, D. Hu, Y. Zhang et al., Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials. J. Clean. Prod. 247, 119565 (2020). https://doi.org/10.1016/j.jclepro.2019.119565
- S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin et al., A review of phase change heat transfer in shape-stabilized phase change materials (ss-pcms) based on porous supports for thermal energy storage. Renew. Sust. Energ. Rev. 135, 110127 (2021). https://doi.org/10.1016/j.rser.2020.110127
- Y. Zhang, S. Zheng, S. Zhu, J. Ma, Z. Sun et al., Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers. Manag. 171, 361–370 (2018). https://doi.org/10.1016/j.enconman.2018.06.002
- N. Sheng, R. Zhu, K. Dong, T. Nomura, C. Zhu et al., Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. J. Mater. Chem. A 7(9), 4934–4940 (2019). https://doi.org/10.1039/c8ta11329g
- J. Yang, P. Yu, L.S. Tang, R.Y. Bao, Z.Y. Liu et al., Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45), 17704–17709 (2017). https://doi.org/10.1039/c7nr05449a
- Z. Yang, L. Zhou, W. Luo, J. Wan, J. Dai et al., Thermally conductive, dielectric pcm-boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale 8(46), 19326–19333 (2016). https://doi.org/10.1039/c6nr07357c
- Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered bn-sic skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280
- J. Qiu, X. Fan, Y. Shi, S. Zhang, X. Jin et al., PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J. Mater. Chem. A 7(37), 21371–21377 (2019). https://doi.org/10.1039/c9ta07629h
- S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
- J. Yang, X. Li, S. Han, Y. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
- W. Feng, M. Qin, Y. Feng, Toward highly thermally conductive all-carbon composites: structure control. Carbon 109, 575–597 (2016). https://doi.org/10.1016/j.carbon.2016.08.059
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- D.L. Nika, A.A. Balandin, Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 80(3), 036502 (2017). https://doi.org/10.1088/1361-6633/80/3/036502
- A.A. Balandin, Phononics of graphene and related materials. ACS Nano 14(5), 5170–5178 (2020). https://doi.org/10.1021/acsnano.0c02718
- J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
- C. Zhang, R. Huang, Y. Wang, Z. Wu, H. Zhang et al., Self-assembled boron nitride nanotube reinforced graphene oxide aerogels for dielectric nanocomposites with high thermal management capability. ACS Appl. Mater. Interfaces 12(1), 1436–1443 (2020). https://doi.org/10.1021/acsami.9b15993
- A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston et al., Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl. Therm. Eng. 113, 1118–1127 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.041
- J. Renteria, D. Nika, A. Balandin, Graphene thermal properties: Applications in thermal management and energy storage. Appl. Sci. 4(4), 525–547 (2014). https://doi.org/10.3390/app4040525
- M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
- F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
- L.M. Guiney, N.D. Mansukhani, A.E. Jakus, S.G. Wallace, R.N. Shah et al., Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites. Nano Lett. 18(6), 3488–3493 (2018). https://doi.org/10.1021/acs.nanolett.8b00555
- H. Wang, A.S. Tazebay, G. Yang, H.T. Lin, W. Choi et al., Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon 106, 152–157 (2016). https://doi.org/10.1016/j.carbon.2016.05.017
- H. Liao, W. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Comp. Sci. Technol. 189, 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
- Y. Lin, J. Chen, P. Jiang, X. Huang, Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem. Eng. J. 389, 123467 (2020). https://doi.org/10.1016/j.cej.2019.123467
- B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
- K.M. Cho, Y. So, S.E. Choi, O. Kwon, H. Park et al., Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold. Carbon 169, 155–162 (2020). https://doi.org/10.1016/j.carbon.2020.07.051
- J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
- J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved hummers method with a simple purification process. Carbon 81, 826–834 (2015). https://doi.org/10.1016/j.carbon.2014.10.033
- M.J. Abedin, T.D. Gamot, S.T. Martin, M. Ali, K.I. Hassan et al., Graphene oxide liquid crystal domains: quantification and role in tailoring viscoelastic behavior. ACS Nano 13(8), 8957–8969 (2019). https://doi.org/10.1021/acsnano.9b02830
- R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S.E. Moulton et al., Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3d architectures. ACS Nano 7(5), 3981–3990 (2013). https://doi.org/10.1021/nn305906z
- R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28(16), 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
- S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: A frontier 2d soft material for graphene-based functional materials. Chem. Soc. Rev. 47(16), 6013–6045 (2018). https://doi.org/10.1039/c8cs00299a
- J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
- Z. Qian, H. Shen, X. Fang, L. Fan, N. Zhao et al., Phase change materials of paraffin in h-bn porous scaffolds with enhanced thermal conductivity and form stability. Energy Build. 158, 1184–1188 (2018). https://doi.org/10.1016/j.enbuild.2017.11.033
- C. Lei, K. Wu, L. Wu, W. Liu, R. Du et al., Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/bnnss skeleton. J. Mater. Chem. A 7(33), 19364–19373 (2019). https://doi.org/10.1039/c9ta05067a
- I. Kholmanov, J. Kim, E. Ou, R.S. Ruoff, L. Shi, Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9(12), 11699–11707 (2015). https://doi.org/10.1021/acsnano.5b02917
- Y. Huang, H. Zhang, X. Wan, D. Chen, X. Chen et al., Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage. J. Mater. Chem. A 5(16), 7482–7493 (2017). https://doi.org/10.1039/c6ta09712j
- W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, Heat conduction enhanced shape-stabilized paraffin/hdpe composite pcms by graphite addition: Preparation and thermal properties. Sol. Energy Mater. Sol. Cells 94(10), 1636–1642 (2010). https://doi.org/10.1016/j.solmat.2010.05.020
- Z. Zhang, G. Alva, M. Gu, G. Fang, Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials. Energy 157, 625–632 (2018). https://doi.org/10.1016/j.energy.2018.06.006
- W. Li, W. Cheng, B. Xie, N. Liu, L. Zhang, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers. Manag. 149, 1–12 (2017). https://doi.org/10.1016/j.enconman.2017.07.019
- X. Huang, G. Alva, L. Liu, G. Fang, Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Sol. Energy Mater. Sol. Cells 166, 157–166 (2017). https://doi.org/10.1016/j.solmat.2017.03.026
- X. Yang, Y. Yuan, N. Zhang, X. Cao, C. Liu, Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol. Energy 99, 259–266 (2014). https://doi.org/10.1016/j.solener.2013.11.021
- C. Xiao, G. Zhang, Z. Li, X. Yang, Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management. J. Mater. Chem. A 8(29), 14624–14633 (2020). https://doi.org/10.1039/d0ta05247g
- T. Wu, Y. Hu, H. Rong, C. Wang, Sebs-based composite phase change material with thermal shape memory for thermal management applications. Energy 221, 119900 (2021). https://doi.org/10.1016/j.energy.2021.119900
- Z. Mo, P. Mo, M. Yi, Z. Hu, G. Tan et al., Ti3C2Tx@polyvinyl alcohol foam-supported phase change materials with simultaneous enhanced thermal conductivity and solar-thermal conversion performance. Sol. Energy Mater. Sol. Cells 219, 110813 (2021). https://doi.org/10.1016/j.solmat.2020.110813
- X. Du, J. Qiu, S. Deng, Z. Du, X. Cheng et al., Ti3C2Tx@pda-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity. ACS Sustain. Chem. Eng. 8(14), 5799–5806 (2020). https://doi.org/10.1021/acssuschemeng.0c01582
- J. Zeng, J. Gan, F. Zhu, S. Yu, Z. Xiao et al., Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 127, 122–128 (2014). https://doi.org/10.1016/j.solmat.2014.04.015
- Y. Lv, W. Zhou, W. Jin, Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material. Energy Build. 111, 242–252 (2016). https://doi.org/10.1016/j.enbuild.2015.11.042
- M. Mehrali, S.T. Latibari, M. Mehrali, T.M. Indra Mahlia, H.S. Cornelis Metselaar et al., Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl. Therm. Eng. 61(2), 633–640 (2013). https://doi.org/10.1016/j.applthermaleng.2013.08.035
- Y. Yuan, N. Zhang, T. Li, X. Cao, W. Long, Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy 97, 488–497 (2016). https://doi.org/10.1016/j.energy.2015.12.115
- M. Silakhori, H. Fauzi, M.R. Mahmoudian, H.S.C. Metselaar, T.M.I. Mahlia et al., Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets. Energy Build. 99, 189–195 (2015). https://doi.org/10.1016/j.enbuild.2015.04.042
- H. Li, X. Xiao, Y. Wang, L. Chen, Q. Li et al., Performance investigation of a battery thermal management system with microencapsulated phase change material suspension. Appl. Therm. Eng. 180, 115795 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115795
- P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria et al., Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 248, 37–43 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.135
References
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3d interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
P. Lv, X. Tan, K. Yu, R. Zheng, J. Zheng et al., Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon 99, 222–228 (2016). https://doi.org/10.1016/j.carbon.2015.12.026
G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 25, 251–295 (2020). https://doi.org/10.1016/j.ensm.2019.10.010
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
L. Ianniciello, P.H. Biwolé, P. Achard, Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 378, 383–403 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.071
Z. Liu, C. Zang, Z. Ju, D. Hu, Y. Zhang et al., Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials. J. Clean. Prod. 247, 119565 (2020). https://doi.org/10.1016/j.jclepro.2019.119565
S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin et al., A review of phase change heat transfer in shape-stabilized phase change materials (ss-pcms) based on porous supports for thermal energy storage. Renew. Sust. Energ. Rev. 135, 110127 (2021). https://doi.org/10.1016/j.rser.2020.110127
Y. Zhang, S. Zheng, S. Zhu, J. Ma, Z. Sun et al., Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers. Manag. 171, 361–370 (2018). https://doi.org/10.1016/j.enconman.2018.06.002
N. Sheng, R. Zhu, K. Dong, T. Nomura, C. Zhu et al., Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. J. Mater. Chem. A 7(9), 4934–4940 (2019). https://doi.org/10.1039/c8ta11329g
J. Yang, P. Yu, L.S. Tang, R.Y. Bao, Z.Y. Liu et al., Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45), 17704–17709 (2017). https://doi.org/10.1039/c7nr05449a
Z. Yang, L. Zhou, W. Luo, J. Wan, J. Dai et al., Thermally conductive, dielectric pcm-boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale 8(46), 19326–19333 (2016). https://doi.org/10.1039/c6nr07357c
Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered bn-sic skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280
J. Qiu, X. Fan, Y. Shi, S. Zhang, X. Jin et al., PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J. Mater. Chem. A 7(37), 21371–21377 (2019). https://doi.org/10.1039/c9ta07629h
S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
J. Yang, X. Li, S. Han, Y. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
W. Feng, M. Qin, Y. Feng, Toward highly thermally conductive all-carbon composites: structure control. Carbon 109, 575–597 (2016). https://doi.org/10.1016/j.carbon.2016.08.059
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
D.L. Nika, A.A. Balandin, Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 80(3), 036502 (2017). https://doi.org/10.1088/1361-6633/80/3/036502
A.A. Balandin, Phononics of graphene and related materials. ACS Nano 14(5), 5170–5178 (2020). https://doi.org/10.1021/acsnano.0c02718
J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
C. Zhang, R. Huang, Y. Wang, Z. Wu, H. Zhang et al., Self-assembled boron nitride nanotube reinforced graphene oxide aerogels for dielectric nanocomposites with high thermal management capability. ACS Appl. Mater. Interfaces 12(1), 1436–1443 (2020). https://doi.org/10.1021/acsami.9b15993
A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston et al., Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl. Therm. Eng. 113, 1118–1127 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.041
J. Renteria, D. Nika, A. Balandin, Graphene thermal properties: Applications in thermal management and energy storage. Appl. Sci. 4(4), 525–547 (2014). https://doi.org/10.3390/app4040525
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
L.M. Guiney, N.D. Mansukhani, A.E. Jakus, S.G. Wallace, R.N. Shah et al., Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites. Nano Lett. 18(6), 3488–3493 (2018). https://doi.org/10.1021/acs.nanolett.8b00555
H. Wang, A.S. Tazebay, G. Yang, H.T. Lin, W. Choi et al., Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon 106, 152–157 (2016). https://doi.org/10.1016/j.carbon.2016.05.017
H. Liao, W. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Comp. Sci. Technol. 189, 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
Y. Lin, J. Chen, P. Jiang, X. Huang, Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem. Eng. J. 389, 123467 (2020). https://doi.org/10.1016/j.cej.2019.123467
B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
K.M. Cho, Y. So, S.E. Choi, O. Kwon, H. Park et al., Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold. Carbon 169, 155–162 (2020). https://doi.org/10.1016/j.carbon.2020.07.051
J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved hummers method with a simple purification process. Carbon 81, 826–834 (2015). https://doi.org/10.1016/j.carbon.2014.10.033
M.J. Abedin, T.D. Gamot, S.T. Martin, M. Ali, K.I. Hassan et al., Graphene oxide liquid crystal domains: quantification and role in tailoring viscoelastic behavior. ACS Nano 13(8), 8957–8969 (2019). https://doi.org/10.1021/acsnano.9b02830
R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S.E. Moulton et al., Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3d architectures. ACS Nano 7(5), 3981–3990 (2013). https://doi.org/10.1021/nn305906z
R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28(16), 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: A frontier 2d soft material for graphene-based functional materials. Chem. Soc. Rev. 47(16), 6013–6045 (2018). https://doi.org/10.1039/c8cs00299a
J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
Z. Qian, H. Shen, X. Fang, L. Fan, N. Zhao et al., Phase change materials of paraffin in h-bn porous scaffolds with enhanced thermal conductivity and form stability. Energy Build. 158, 1184–1188 (2018). https://doi.org/10.1016/j.enbuild.2017.11.033
C. Lei, K. Wu, L. Wu, W. Liu, R. Du et al., Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/bnnss skeleton. J. Mater. Chem. A 7(33), 19364–19373 (2019). https://doi.org/10.1039/c9ta05067a
I. Kholmanov, J. Kim, E. Ou, R.S. Ruoff, L. Shi, Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9(12), 11699–11707 (2015). https://doi.org/10.1021/acsnano.5b02917
Y. Huang, H. Zhang, X. Wan, D. Chen, X. Chen et al., Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage. J. Mater. Chem. A 5(16), 7482–7493 (2017). https://doi.org/10.1039/c6ta09712j
W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, Heat conduction enhanced shape-stabilized paraffin/hdpe composite pcms by graphite addition: Preparation and thermal properties. Sol. Energy Mater. Sol. Cells 94(10), 1636–1642 (2010). https://doi.org/10.1016/j.solmat.2010.05.020
Z. Zhang, G. Alva, M. Gu, G. Fang, Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials. Energy 157, 625–632 (2018). https://doi.org/10.1016/j.energy.2018.06.006
W. Li, W. Cheng, B. Xie, N. Liu, L. Zhang, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers. Manag. 149, 1–12 (2017). https://doi.org/10.1016/j.enconman.2017.07.019
X. Huang, G. Alva, L. Liu, G. Fang, Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Sol. Energy Mater. Sol. Cells 166, 157–166 (2017). https://doi.org/10.1016/j.solmat.2017.03.026
X. Yang, Y. Yuan, N. Zhang, X. Cao, C. Liu, Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol. Energy 99, 259–266 (2014). https://doi.org/10.1016/j.solener.2013.11.021
C. Xiao, G. Zhang, Z. Li, X. Yang, Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management. J. Mater. Chem. A 8(29), 14624–14633 (2020). https://doi.org/10.1039/d0ta05247g
T. Wu, Y. Hu, H. Rong, C. Wang, Sebs-based composite phase change material with thermal shape memory for thermal management applications. Energy 221, 119900 (2021). https://doi.org/10.1016/j.energy.2021.119900
Z. Mo, P. Mo, M. Yi, Z. Hu, G. Tan et al., Ti3C2Tx@polyvinyl alcohol foam-supported phase change materials with simultaneous enhanced thermal conductivity and solar-thermal conversion performance. Sol. Energy Mater. Sol. Cells 219, 110813 (2021). https://doi.org/10.1016/j.solmat.2020.110813
X. Du, J. Qiu, S. Deng, Z. Du, X. Cheng et al., Ti3C2Tx@pda-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity. ACS Sustain. Chem. Eng. 8(14), 5799–5806 (2020). https://doi.org/10.1021/acssuschemeng.0c01582
J. Zeng, J. Gan, F. Zhu, S. Yu, Z. Xiao et al., Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 127, 122–128 (2014). https://doi.org/10.1016/j.solmat.2014.04.015
Y. Lv, W. Zhou, W. Jin, Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material. Energy Build. 111, 242–252 (2016). https://doi.org/10.1016/j.enbuild.2015.11.042
M. Mehrali, S.T. Latibari, M. Mehrali, T.M. Indra Mahlia, H.S. Cornelis Metselaar et al., Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl. Therm. Eng. 61(2), 633–640 (2013). https://doi.org/10.1016/j.applthermaleng.2013.08.035
Y. Yuan, N. Zhang, T. Li, X. Cao, W. Long, Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy 97, 488–497 (2016). https://doi.org/10.1016/j.energy.2015.12.115
M. Silakhori, H. Fauzi, M.R. Mahmoudian, H.S.C. Metselaar, T.M.I. Mahlia et al., Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets. Energy Build. 99, 189–195 (2015). https://doi.org/10.1016/j.enbuild.2015.04.042
H. Li, X. Xiao, Y. Wang, L. Chen, Q. Li et al., Performance investigation of a battery thermal management system with microencapsulated phase change material suspension. Appl. Therm. Eng. 180, 115795 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115795
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria et al., Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 248, 37–43 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.135