Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films
Corresponding Author: Limin Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 2
Abstract
While boron nitride (BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties, a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interfacial interaction causing severe phonon scattering. Here, we report a novel surface modification strategy called the “self-modified nanointerface” using BN nanocrystals (BNNCs) to efficiently link the interface between BN and the polymer matrix. Combining with ice-press assembly method, an only 25 wt% BN-embedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m−1 K−1 but also, more importantly, achieve a through-plane thermal conductivity as high as 21.3 W m−1 K−1, which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers, the strong interaction between the self-modified fillers and polymer matrix, as well as ladder-structured BN skeleton. The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU. This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
Highlights:
1 The flexible composite film presents ultrahigh thermal conductivity and good thermal management performance in electronic devices.
2 An original “self-modified nanointerface” strategy is used to reduce the interfacial thermal resistance between boron nitride and the polymer matrix.
3 The ideal phonon spectrum matching between boron nitride nanocrystals and fillers as well as the strong interaction between self-modified fillers and the polymer matrix are the two major contributors to decrease the interfacial thermal resistance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Waldrop, The chips are down for Moore’s law. Nature 530, 145–147 (2016). https://doi.org/10.1038/530144a
- C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav0129
- X. Shen, Q. Zheng, J.K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 7, 219–225 (2021). https://doi.org/10.1016/j.jmat.2020.08.006
- J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10, 16868–16872 (2018). https://doi.org/10.1039/C8NR05167D
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/C7TC04860B
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
- K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
- X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
- A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30(8), 1903857 (2019). https://doi.org/10.1002/adfm.201903857
- M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012). https://doi.org/10.1038/nmat3303
- H. Wang, W. Xing, S. Chen, C. Song, M.D. Dickey et al., Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33(43), e2103104 (2021). https://doi.org/10.1002/adma.202103104
- F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31, 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
- Z. Liu, A. Dibaji, D. Li, S. Mateti, J. Liu et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Mater. Today 44, 194–210 (2021). https://doi.org/10.1016/j.mattod.2020.11.020
- F. Sun, T. Zhang, M.M. Jobbins, Z. Guo, X. Zhang et al., Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces. Adv. Mater. 26(35), 6093–6099 (2014). https://doi.org/10.1002/adma.201400954
- P.J. O’Brien, S. Shenogin, J. Liu, P.K. Chow, D. Laurencin et al., Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 12, 118–122 (2013). https://doi.org/10.1038/nmat3465
- Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), e1704044 (2018). https://doi.org/10.1002/smll.201704044
- S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
- H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab-initio CFF93 all-atom force-field for polycarbonates. J. Am. Chem. Soc. 116(7), 2978–2987 (1994). https://doi.org/10.1021/ja00086a030
- A. Kinaci, J.B. Haskins, C. Sevik, T. Cagin, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012). https://doi.org/10.1103/PhysRevB.86.115410
- A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
- S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING - a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990). https://doi.org/10.1021/j100389a010
- R.L. Davidson, Handbook of Water-Soluble Gums and Resins (McGraw Hill, New York, 1980)
- Z. Lin, A. McNamara, Y. Liu, K.S. Moon, C.P. Wong, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol. 90, 123–128 (2014). https://doi.org/10.1016/j.compscitech.2013.10.018
- Z. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman det al., Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013).
- T. Huang, F. Yang, T. Wang, J. Wang, Y. Li et al., Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 26, 101299 (2022). https://doi.org/10.1016/j.apmt.2021.101299
- C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu et al., Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. Compos. Sci. Technol. 214, 108995 (2021). https://doi.org/10.1016/j.compscitech.2021.108995
- L. An, X. Gu, B. Zhong, J. Wang, J. Zhang et al., Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small 17(46), 2101409 (2021). https://doi.org/10.1002/smll.202101409
- C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos. Part B Eng. 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
- M.A. Kashfipour, R.S. Dent, N. Mehra, X. Yang, J. Gu et al., Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. Compos. Sci. Technol. 182, 107715 (2019). https://doi.org/10.1016/j.compscitech.2019.107715
- X. Xu, R. Hu, M. Chen, J. Dong, B. Xiao et al., 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020). https://doi.org/10.1016/j.cej.2020.125447
- Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280
- H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
- X. Wang, P. Wu, 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 11(32), 28943–28952 (2019). https://doi.org/10.1021/acsami.9b09398
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13(7), 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
- Y. Xue, X. Zhou, T. Zhan, B. Jiang, Q. Guo et al., Densely interconnected porous bn frameworks for multifunctional and isotropically thermoconductive polymer composites. Adv. Funct. Mater. 28(29), 1801205 (2018). https://doi.org/10.1002/adfm.201801205
- X. Li, C. Li, X. Zhang, Y. Jiang, L. Xia et al., Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem. Eng. J. 390, 124563 (2020). https://doi.org/10.1016/j.cej.2020.124563
- Q. Hu, X. Bai, C. Zhang, X. Zeng, Z. Huang et al., Oriented BN/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Compos. Part A Appl. Sci. Manuf. 152, 106681 (2022). https://doi.org/10.1016/j.compositesa.2021.106681
- Z.G. Wang, J.C. Lv, Z.L. Zheng, J.G. Du, K. Dai et al., Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 13(21), 25325–25333 (2021). https://doi.org/10.1021/acsami.1c01223
- Z.G. Wang, W. Liu, Y.H. Liu, Y. Ren, Y.P. Li et al., Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B Eng. 180, 107569 (2020). https://doi.org/10.1016/j.compositesb.2019.107569
- Z.G. Wang, Y.F. Jin, R. Hong, J. Du, K. Dai et al., Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Compos. Part B Eng. 242, 110084 (2022). https://doi.org/10.1016/j.compositesb.2022.110084
References
M.M. Waldrop, The chips are down for Moore’s law. Nature 530, 145–147 (2016). https://doi.org/10.1038/530144a
C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav0129
X. Shen, Q. Zheng, J.K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 7, 219–225 (2021). https://doi.org/10.1016/j.jmat.2020.08.006
J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10, 16868–16872 (2018). https://doi.org/10.1039/C8NR05167D
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/C7TC04860B
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30(8), 1903857 (2019). https://doi.org/10.1002/adfm.201903857
M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012). https://doi.org/10.1038/nmat3303
H. Wang, W. Xing, S. Chen, C. Song, M.D. Dickey et al., Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33(43), e2103104 (2021). https://doi.org/10.1002/adma.202103104
F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31, 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
Z. Liu, A. Dibaji, D. Li, S. Mateti, J. Liu et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Mater. Today 44, 194–210 (2021). https://doi.org/10.1016/j.mattod.2020.11.020
F. Sun, T. Zhang, M.M. Jobbins, Z. Guo, X. Zhang et al., Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces. Adv. Mater. 26(35), 6093–6099 (2014). https://doi.org/10.1002/adma.201400954
P.J. O’Brien, S. Shenogin, J. Liu, P.K. Chow, D. Laurencin et al., Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 12, 118–122 (2013). https://doi.org/10.1038/nmat3465
Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), e1704044 (2018). https://doi.org/10.1002/smll.201704044
S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab-initio CFF93 all-atom force-field for polycarbonates. J. Am. Chem. Soc. 116(7), 2978–2987 (1994). https://doi.org/10.1021/ja00086a030
A. Kinaci, J.B. Haskins, C. Sevik, T. Cagin, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012). https://doi.org/10.1103/PhysRevB.86.115410
A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING - a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990). https://doi.org/10.1021/j100389a010
R.L. Davidson, Handbook of Water-Soluble Gums and Resins (McGraw Hill, New York, 1980)
Z. Lin, A. McNamara, Y. Liu, K.S. Moon, C.P. Wong, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol. 90, 123–128 (2014). https://doi.org/10.1016/j.compscitech.2013.10.018
Z. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman det al., Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013).
T. Huang, F. Yang, T. Wang, J. Wang, Y. Li et al., Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 26, 101299 (2022). https://doi.org/10.1016/j.apmt.2021.101299
C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu et al., Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. Compos. Sci. Technol. 214, 108995 (2021). https://doi.org/10.1016/j.compscitech.2021.108995
L. An, X. Gu, B. Zhong, J. Wang, J. Zhang et al., Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small 17(46), 2101409 (2021). https://doi.org/10.1002/smll.202101409
C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos. Part B Eng. 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
M.A. Kashfipour, R.S. Dent, N. Mehra, X. Yang, J. Gu et al., Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. Compos. Sci. Technol. 182, 107715 (2019). https://doi.org/10.1016/j.compscitech.2019.107715
X. Xu, R. Hu, M. Chen, J. Dong, B. Xiao et al., 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020). https://doi.org/10.1016/j.cej.2020.125447
Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280
H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
X. Wang, P. Wu, 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 11(32), 28943–28952 (2019). https://doi.org/10.1021/acsami.9b09398
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13(7), 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
Y. Xue, X. Zhou, T. Zhan, B. Jiang, Q. Guo et al., Densely interconnected porous bn frameworks for multifunctional and isotropically thermoconductive polymer composites. Adv. Funct. Mater. 28(29), 1801205 (2018). https://doi.org/10.1002/adfm.201801205
X. Li, C. Li, X. Zhang, Y. Jiang, L. Xia et al., Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem. Eng. J. 390, 124563 (2020). https://doi.org/10.1016/j.cej.2020.124563
Q. Hu, X. Bai, C. Zhang, X. Zeng, Z. Huang et al., Oriented BN/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Compos. Part A Appl. Sci. Manuf. 152, 106681 (2022). https://doi.org/10.1016/j.compositesa.2021.106681
Z.G. Wang, J.C. Lv, Z.L. Zheng, J.G. Du, K. Dai et al., Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 13(21), 25325–25333 (2021). https://doi.org/10.1021/acsami.1c01223
Z.G. Wang, W. Liu, Y.H. Liu, Y. Ren, Y.P. Li et al., Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B Eng. 180, 107569 (2020). https://doi.org/10.1016/j.compositesb.2019.107569
Z.G. Wang, Y.F. Jin, R. Hong, J. Du, K. Dai et al., Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Compos. Part B Eng. 242, 110084 (2022). https://doi.org/10.1016/j.compositesb.2022.110084