Molecular Engineering Design for High-Performance Aqueous Zinc-Organic Battery
Corresponding Author: Zhanliang Tao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 36
Abstract
Novel small sulfur heterocyclic quinones (6a,16a-dihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone (4S6Q) and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone (4S4Q)) are developed by molecule structural design method and as cathode for aqueous zinc-organic batteries. The conjugated thioether (–S–) bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extended π-conjugated plane and constructed flexible molecular skeleton. Hence, the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L−1 (M) Zn(ClO4)2 electrolyte. For instance, the Zn//4S6Q battery obtains 240 and 208.6 mAh g−1 of discharge capacity at 150 mA g−1 and 30 A g−1, respectively. The excellent rate capability is ascribed to the fast reaction kinetics. This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g−1. Additionally, the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations. Impressively, the battery can normally work at − 60 °C benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g−1, which is 86.2% of discharge capacity at 25 °C. The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries.
Highlights:
1 The conjugated thioether (–S–) bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extended π-conjugated plane and constructed flexible molecular skeleton.
2 The Zn//4S6Q battery based on 3.5 M Zn(ClO4)2 electrolyte shows excellent rate capacity (208.6 mAh g−1 at 30 A g−1), superlong cycling life (> 20,000 cycles with no capacity fading), and impressive low-temperature performance (201.7 mAh g−1 at − 60 °C).
3 The H+-storage mechanism of 4S6Q compound is demonstrated by comprehensive characterizations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, Y. Liu, Z. Wei, J. Hong, H. Liang et al., MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206812
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Mater. 12, 1938 (2019). https://doi.org/10.1039/c9ee00596j
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience. (2022). https://doi.org/10.1016/j.esci.2022.04.003
- J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao et al., Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201840
- K. Yang, Y. Hu, T. Zhang, B. Wang, J. Qin et al., Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc–ion battery. Adv. Energy Mater. 12, 2202671 (2022). https://doi.org/10.1002/aenm.202202671
- L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9, 1902446 (2019). https://doi.org/10.1002/aenm.201902446
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
- Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 33, e2106469 (2021). https://doi.org/10.1002/adma.202106469
- L. Yan, Y.-e Qi, X. Dong, Y. Wang, Y. Xia, Ammonium-ion batteries with a wide operating temperature window from −40 to 80 °C. eScience. (2021). https://doi.org/10.1016/j.esci.2021.12.002
- Y. Ma, T. Sun, Q. Nian, S. Zheng, T. Ma et al., Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 15, 2047 (2021). https://doi.org/10.1007/s12274-021-3777-1
- S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, e202117511 (2022). https://doi.org/10.1002/anie.202117511
- S. Xu, M. Sun, Q. Wang, C. Wang, Recent progress in organic electrodes for zinc-ion batteries. J. Semicond. (2020). https://doi.org/10.1088/1674-4926/41/9/091704
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, 1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
- Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737 (2018). https://doi.org/10.1002/anie.201807121
- B. Häupler, C. Rössel, A.M. Schwenke, J. Winsberg, D. Schmidt et al., Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 8, 283 (2016). https://doi.org/10.1038/am.2016.82
- N. Patil, C. Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TfSi)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021). https://doi.org/10.1002/aenm.202100939
- H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
- X. Wang, J. Xiao, W. Tang, Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2108225 (2021). https://doi.org/10.1002/adfm.202108225
- C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang et al., Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J. Am. Chem. Soc. 137, 3124 (2015). https://doi.org/10.1021/jacs.5b00336
- J. Xie, F. Yu, J. Zhao, W. Guo, H.-L. Zhang et al., An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Mater. 33, 283 (2020). https://doi.org/10.1016/j.ensm.2020.08.027
- S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated n-heteroaromatic material for aqueous zinc–organic batteries with ultrahigh rate and extremely long life. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207115
- Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301 (2022). https://doi.org/10.1021/jacs.2c01485
- H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655 (2021). https://doi.org/10.1021/acsaem.0c02526
- Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 59, 4920 (2020). https://doi.org/10.1002/anie.201916529
- Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202116289
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. A. Robb et al., Gaussian 16 Rev. C.01, (Wallingford, CT, 2016)
- T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
- T. Sun, Q. Nian, S. Zheng, X. Yuan, Z. Tao, Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. J. Power Sources 478, 228758 (2020). https://doi.org/10.1016/j.jpowsour.2020.228758
- T. Ma, Q. Zhao, J. Wang, Z. Pan, J. Chen, A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 55, 6428 (2016). https://doi.org/10.1002/anie.201601119
- C. Wang, Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 3, 441 (2020). https://doi.org/10.1002/eem2.12076
- Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, e2000338 (2020). https://doi.org/10.1002/adma.202000338
- Y. Hu, Y. Gao, L. Fan, Y. Zhang, B. Wang et al., Electrochemical study of poly(2,6-anthraquinonyl sulfide) as cathode for alkali-metal-ion batteries. Adv. Energy Mater. 10, 2002780 (2020). https://doi.org/10.1002/aenm.202002780
- T. Shi, G. Li, Y. Han, Y. Gao, F. Wang et al., Oxidized indanthrone as a cost-effective and high-performance organic cathode material for rechargeable lithium batteries. Energy Storage Mater. 50, 265 (2022). https://doi.org/10.1016/j.ensm.2022.05.013
- S. Zheng, L. Miao, T. Sun, L. Li, T. Ma et al., An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. J. Mater. Chem. A 9, 2700 (2021). https://doi.org/10.1039/d0ta11648c
- J. Hong, M. Lee, B. Lee, D.H. Seo, C.B. Park et al., Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014). https://doi.org/10.1038/ncomms6335
- T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
- Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu, J. Chen, A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61, e202115180 (2022). https://doi.org/10.1002/anie.202115180
- L.S.W. Alexander, I. Boldyrev, All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716 (2005). https://doi.org/10.1021/cr030091t
- E. Hückel, Quantentheoretische beiträge zum benzolproblem. Z. Phys. 70, 204 (1931). https://doi.org/10.1007/BF01339530
- S. Fujii, S. Marques-Gonzalez, J.Y. Shin, H. Shinokubo, T. Masuda et al., Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 8, 15984 (2017). https://doi.org/10.1038/ncomms15984
- J. Kruszewski, M.T. Krygowski, Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 36, 3839 (1972). https://doi.org/10.1016/S0040-4039(01)94175-9
- T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5, e2100367 (2021). https://doi.org/10.1002/smtd.202100367
- Y. Chen, Y.-H. Zhang, L.-J. Zhao, ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 6, 5378 (2004). https://doi.org/10.1039/b311768e
- M. Na, Y. Oh, H.R. Byon, Effects of Zn2+ and H+ association with naphthalene diimide electrodes for aqueous Zn-ion batteries. Chem. Mater. 32, 6990 (2020). https://doi.org/10.1021/acs.chemmater.0c02357
- T. Sun, Q. Nian, S. Zheng, J. Shi, Z. Tao, Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 16, e2000597 (2020). https://doi.org/10.1002/smll.202000597
References
X. Wang, Y. Liu, Z. Wei, J. Hong, H. Liang et al., MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206812
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Mater. 12, 1938 (2019). https://doi.org/10.1039/c9ee00596j
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience. (2022). https://doi.org/10.1016/j.esci.2022.04.003
J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao et al., Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201840
K. Yang, Y. Hu, T. Zhang, B. Wang, J. Qin et al., Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc–ion battery. Adv. Energy Mater. 12, 2202671 (2022). https://doi.org/10.1002/aenm.202202671
L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9, 1902446 (2019). https://doi.org/10.1002/aenm.201902446
T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 33, e2106469 (2021). https://doi.org/10.1002/adma.202106469
L. Yan, Y.-e Qi, X. Dong, Y. Wang, Y. Xia, Ammonium-ion batteries with a wide operating temperature window from −40 to 80 °C. eScience. (2021). https://doi.org/10.1016/j.esci.2021.12.002
Y. Ma, T. Sun, Q. Nian, S. Zheng, T. Ma et al., Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 15, 2047 (2021). https://doi.org/10.1007/s12274-021-3777-1
S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, e202117511 (2022). https://doi.org/10.1002/anie.202117511
S. Xu, M. Sun, Q. Wang, C. Wang, Recent progress in organic electrodes for zinc-ion batteries. J. Semicond. (2020). https://doi.org/10.1088/1674-4926/41/9/091704
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, 1761 (2018). https://doi.org/10.1126/sciadv.aao1761
L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737 (2018). https://doi.org/10.1002/anie.201807121
B. Häupler, C. Rössel, A.M. Schwenke, J. Winsberg, D. Schmidt et al., Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 8, 283 (2016). https://doi.org/10.1038/am.2016.82
N. Patil, C. Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TfSi)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021). https://doi.org/10.1002/aenm.202100939
H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
X. Wang, J. Xiao, W. Tang, Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2108225 (2021). https://doi.org/10.1002/adfm.202108225
C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang et al., Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J. Am. Chem. Soc. 137, 3124 (2015). https://doi.org/10.1021/jacs.5b00336
J. Xie, F. Yu, J. Zhao, W. Guo, H.-L. Zhang et al., An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Mater. 33, 283 (2020). https://doi.org/10.1016/j.ensm.2020.08.027
S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated n-heteroaromatic material for aqueous zinc–organic batteries with ultrahigh rate and extremely long life. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207115
Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301 (2022). https://doi.org/10.1021/jacs.2c01485
H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655 (2021). https://doi.org/10.1021/acsaem.0c02526
Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 59, 4920 (2020). https://doi.org/10.1002/anie.201916529
Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202116289
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. A. Robb et al., Gaussian 16 Rev. C.01, (Wallingford, CT, 2016)
T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
T. Sun, Q. Nian, S. Zheng, X. Yuan, Z. Tao, Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. J. Power Sources 478, 228758 (2020). https://doi.org/10.1016/j.jpowsour.2020.228758
T. Ma, Q. Zhao, J. Wang, Z. Pan, J. Chen, A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 55, 6428 (2016). https://doi.org/10.1002/anie.201601119
C. Wang, Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 3, 441 (2020). https://doi.org/10.1002/eem2.12076
Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, e2000338 (2020). https://doi.org/10.1002/adma.202000338
Y. Hu, Y. Gao, L. Fan, Y. Zhang, B. Wang et al., Electrochemical study of poly(2,6-anthraquinonyl sulfide) as cathode for alkali-metal-ion batteries. Adv. Energy Mater. 10, 2002780 (2020). https://doi.org/10.1002/aenm.202002780
T. Shi, G. Li, Y. Han, Y. Gao, F. Wang et al., Oxidized indanthrone as a cost-effective and high-performance organic cathode material for rechargeable lithium batteries. Energy Storage Mater. 50, 265 (2022). https://doi.org/10.1016/j.ensm.2022.05.013
S. Zheng, L. Miao, T. Sun, L. Li, T. Ma et al., An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. J. Mater. Chem. A 9, 2700 (2021). https://doi.org/10.1039/d0ta11648c
J. Hong, M. Lee, B. Lee, D.H. Seo, C.B. Park et al., Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014). https://doi.org/10.1038/ncomms6335
T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu, J. Chen, A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61, e202115180 (2022). https://doi.org/10.1002/anie.202115180
L.S.W. Alexander, I. Boldyrev, All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716 (2005). https://doi.org/10.1021/cr030091t
E. Hückel, Quantentheoretische beiträge zum benzolproblem. Z. Phys. 70, 204 (1931). https://doi.org/10.1007/BF01339530
S. Fujii, S. Marques-Gonzalez, J.Y. Shin, H. Shinokubo, T. Masuda et al., Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 8, 15984 (2017). https://doi.org/10.1038/ncomms15984
J. Kruszewski, M.T. Krygowski, Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 36, 3839 (1972). https://doi.org/10.1016/S0040-4039(01)94175-9
T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5, e2100367 (2021). https://doi.org/10.1002/smtd.202100367
Y. Chen, Y.-H. Zhang, L.-J. Zhao, ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 6, 5378 (2004). https://doi.org/10.1039/b311768e
M. Na, Y. Oh, H.R. Byon, Effects of Zn2+ and H+ association with naphthalene diimide electrodes for aqueous Zn-ion batteries. Chem. Mater. 32, 6990 (2020). https://doi.org/10.1021/acs.chemmater.0c02357
T. Sun, Q. Nian, S. Zheng, J. Shi, Z. Tao, Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 16, e2000597 (2020). https://doi.org/10.1002/smll.202000597