Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding
Corresponding Author: Xin Feng
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 88
Abstract
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference (EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane (TPU) foams reinforced by aramid nanofibers (ANF) with adjustable pore-size distribution were successfully obtained via a non-solvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles (Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti3C2Tx MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti3C2Tx MXene (PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa (50% strain) with good sensitivity at 0.46 kPa−1. Meanwhile, the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.
Highlights:
1 Kevlar polyanionic chains induced the formation of highly ordered porous thermoplastic polyurethane foams with adjustable pore sizes.
2 A tiny amount of Ti3C2Tx MXene was performed as reducing agent for the electroless deposition of copper nanoparticles.
3 The conductive foam reinforced by aramid nanofibers exhibited excellent piezoresistive sensing and electromagnetic interference shielding performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, 2104163 (2022). https://doi.org/10.1002/advs.202104163
- Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, 2202047 (2022). https://doi.org/10.1002/smll.202202047
- J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
- L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
- T. Kuang, J. Ju, F. Chen, X. Liu, S. Zhang et al., Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly (lactic acid) composite foams. Compos. Sci. Technol. 230, 109736 (2022). https://doi.org/10.1016/j.compscitech.2022.109736
- T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- J. Gao, Q. Ding, P. Yan, Y. Liu, J. Huang, Highly improved microwave absorbing and mechanical properties in cold sintered ZnO by incorporating graphene oxide. J. Eur. Ceram. Soc. 42, 993–1000 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.053
- K.S. Kang, A. Phan, C. Olikagu, T. Lee, D.A. Loy, Segmented polyurethanes and thermoplastic elastomers from elemental sulfur with enhanced thermomechanical properties and flame retardancy. Angew. Chem. Int. Ed. 60, 22900–22907 (2021). https://doi.org/10.1002/anie.202109115
- M. Xiao, Y. Yao, C. Fan, Z. Xu, Y. Liu, Multiple H-bonding chain extender-based polyurethane: Ultrastiffness, hot-melt adhesion, and 3D printing finger orthosis. Chem. Eng. J. 433, 133260 (2021). https://doi.org/10.1016/j.cej.2021.133260
- N.J. Hossieny, M.R. Barzegari, M. Nofar, S.H. Mahmood, C.B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 55, 651–662 (2014). https://doi.org/10.1016/j.polymer.2013.12.028
- A.K. Nema, A.V. Deshmukh, K. Palanivelu, S.K. Sharma, T. Malik, Effect of exo- and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams. J. Cell. Plast. 44, 277–292 (2008). https://doi.org/10.1177/0021955x07088326
- G.-L. Ni, X. Zhu, H.-Y. Mi, P.-Y. Feng, J. Li et al., Skinless porous films generated by supercritical CO2 foaming for high-performance complementary shaped triboelectric nanogenerators and self-powered sensors. Nano Energy 87, 106148 (2021). https://doi.org/10.1016/j.nanoen.2021.106148
- Y.-S. Jun, B.G. Hyun, M. Hamidinejad, S. Habibpour, A. Yu et al., Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation. Composites Part B 223, 109113 (2021). https://doi.org/10.1016/j.compositesb.2021.109113
- Y. Fei, F. Chen, W. Fang, L. Xu, S. Ruan et al., High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Composites Part B 199, 108279 (2020). https://doi.org/10.1016/j.compositesb.2020.108279
- Z. Lei, D. Tian, X. Liu, J. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
- G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5, 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k
- B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527
- J. Zhao, G. Luo, J. Wu, H. Xia, Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Appl. Mater. Interfaces 5, 2040–2046 (2013). https://doi.org/10.1021/am302929c
- D.R. Tree, T. Iwama, K.T. Delaney, J. Lee, G.H. Fredrickson, Marangoni flows during nonsolvent induced phase separation. ACS Macro Lett. 7, 582–586 (2018). https://doi.org/10.1021/acsmacrolett.8b00012
- H.L. Qian, W.P. Huang, Y. Fang, L.Y. Zou, W.J. Yu et al., Fabrication of “spongy skin” on diversified materials based on surface swelling non-solvent-induced phase separation. ACS Appl. Mater. Interfaces 13, 57000–57008 (2021). https://doi.org/10.1021/acsami.1c18333
- J.U. Garcia, T. Iwama, E.Y. Chan, D.R. Tree, K.T. Delaney et al., Mechanisms of asymmetric membrane formation in nonsolvent-induced phase separation. ACS Macro Lett. 9, 1617–1624 (2020). https://doi.org/10.1021/acsmacrolett.0c00609
- M. Muller, V. Abetz, Nonequilibrium processes in polymer membrane formation: Theory and experiment. Chem. Rev. 121, 14189–14231 (2021). https://doi.org/10.1021/acs.chemrev.1c00029
- C. Zhang, Q. Lv, Y. Liu, C. Wang, Q. Wang et al., Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. Polymer 224, 123742 (2021). https://doi.org/10.1016/j.polymer.2021.123742
- Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
- L. Xu, X. Zhao, C. Xu, N.A. Kotov, Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30, 1703343 (2018). https://doi.org/10.1002/adma.201703343
- Y. Guan, W. Li, Y. Zhang, Z. Shi, J. Tan et al., Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 144, 193–201 (2017). https://doi.org/10.1016/j.compscitech.2017.03.010
- Q. Kuang, D. Zhang, J.C. Yu, Y.-W. Chang, M. Yue et al., Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers. J. Phys. Chem. C 119, 27467–27477 (2015). https://doi.org/10.1021/acs.jpcc.5b08856
- H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- C. Sun, Z. Jia, S. Xu, D. Hu, C. Zhang et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 113, 128–137 (2022). https://doi.org/10.1016/j.jmst.2021.11.006
- K. Qian, S. Li, J. Fang, Y. Yang, S. Cao et al., C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 127, 71–77 (2022). https://doi.org/10.1016/j.jmst.2022.03.022
- L. Liu, R. Guo, J. Gao, Q. Ding, Y. Fan et al., Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 30, 101094 (2022). https://doi.org/10.1016/j.coco.2022.101094
- Z.-X. Wang, X.-S. Han, Z.-J. Zhou, W.-Y. Meng, X.-W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
- C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11, 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
- Y.-J. Wan, K. Rajavel, X.-M. Li, X.-Y. Wang, S.-Y. Liao et al., Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 408, 127303 (2021). https://doi.org/10.1016/j.cej.2020.127303
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W.J.N.-M.L. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 1–21 (2021). https://doi.org/10.1007/s40820-021-00673-9
- E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016). https://doi.org/10.1038/srep32049
- L. Lan, C. Jiang, Y. Yao, J. Ping, Y. Ying, A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84, 105954 (2021). https://doi.org/10.1016/j.nanoen.2021.105954
- K. Qian, Q. Zhou, H. Wu, J. Fang, M. Miao et al., Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part A 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon 122, 74–81 (2017). https://doi.org/10.1016/j.carbon.2017.06.042
- M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5, 6945–6954 (2011). https://doi.org/10.1021/nn2014003
- B. Yang, W. Li, M. Zhang, L. Wang, X. Ding, Recycling of high-value-added aramid nanofibers from waste aramid resources via a feasible and cost-effective approach. ACS Nano 15, 7195–7207 (2021). https://doi.org/10.1021/acsnano.1c00463
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211642
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17, 2101951 (2021). https://doi.org/10.1002/smll.202101951
- J.M. Koo, H. Kim, M. Lee, S.-A. Park, H. Jeon et al., Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability. Macromolecules 52, 923–934 (2019). https://doi.org/10.1021/acs.macromol.8b02391
- B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh et al., Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 418, 129282 (2021). https://doi.org/10.1016/j.cej.2021.129282
- I. Okada, S. Shiratori, High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl. Mater. Interfaces 6, 1502–1508 (2014). https://doi.org/10.1021/am404077h
- B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
- B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu et al., Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020). https://doi.org/10.1002/adfm.202000186
- T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May et al., Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019). https://doi.org/10.1021/acs.chemmater.9b00414
- Y. Yao, L. Lan, X. Liu, Y. Ying, J. Ping, Spontaneous growth and regulation of noble metal nanops on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020). https://doi.org/10.1016/j.bios.2019.111799
- R. Rarima, G. Unnikrishnan, Poly(lactic acid)/gelatin foams by non-solvent induced phase separation for biomedical applications. Polym. Degrad. Stab. 177, 109187 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109187
- R. Seymour, G. Estes, S.L.J.M. Cooper, Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromol. 3, 579–583 (1970). https://doi.org/10.1021/ma60017a021
- K.N.M. Amin, C. Chaleat, G. Edwards, D.J. Martin, P.K. Annamalai, A cleaner processing approach for cellulose reinforced thermoplastic polyurethane nanocomposites. Polym. Eng. Sci. 62, 949–961 (2022). https://doi.org/10.1002/pen.25899
- M. Dong, Q. Li, H. Liu, C. Liu, E.K. Wujcik et al., Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid p erosion resistance. Polymer 158, 381–390 (2018). https://doi.org/10.1016/j.polymer.2018.11.003
- Y. Yang, J. Lyu, J. Chen, J. Liao, X. Zhang, Flame-retardant host–guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021). https://doi.org/10.1002/adfm.202102232
- Y. Zhang, Z. Ma, K. Ruan, J. Gu, Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research. 2022, 9780290 (2022). https://doi.org/10.34133/2022/9780290
- S.M. Liff, N. Kumar, G.H. McKinley, High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 6, 76–83 (2007). https://doi.org/10.1038/nmat1798
- A. Stribeck, E. Pöselt, B. Eling, F. Jokari-Sheshdeh, A. Hoell, Thermoplastic polyurethanes with varying hard-segment components. Mechanical performance and a filler-crosslink conversion of hard domains as monitored by SAXS. Eur. Polym. J. 94, 340–353 (2017). https://doi.org/10.1016/j.eurpolymj.2017.07.020
- C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song et al., Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Composites Part A 139, 106143 (2020). https://doi.org/10.1016/j.compositesa.2020.106143
- J. Li, A. Wang, J. Qin, H. Zhang, Z. Ma et al., Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Composites Part A 140, 106144 (2021). https://doi.org/10.1016/j.compositesa.2020.106144
- L. Lu, B. Wang, D. Wu, S. Zou, B. Fang, Engineering porous Pd-Cu nanocrystals with tailored three-dimensional catalytic facets for highly efficient formic acid oxidation. Nanoscale 13, 3709–3722 (2021). https://doi.org/10.1039/d0nr09164b
- S. Zhang, H. Liu, S. Yang, X. Shi, D. Zhang et al., Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11, 10922–10932 (2019). https://doi.org/10.1021/acsami.9b00900
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, 202200705 (2022). https://doi.org/10.1002/anie.202200705
- L. Pu, Y. Liu, L. Li, C. Zhang, P. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
- J. Ju, T. Kuang, X. Ke, M. Zeng, Z. Chen et al., Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020). https://doi.org/10.1016/j.compscitech.2020.108116
- J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- C. Liang, J. He, Y. Zhang, W. Zhang, C. Liu et al., MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022). https://doi.org/10.1016/j.compscitech.2022.109445
- Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- M. Yang, Z. Yang, C. Lv, Z. Wang, Z. Lu et al., Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Compos. Sci. Technol. 221, 109313 (2022). https://doi.org/10.1016/j.compscitech.2022.109313
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- Y. Chen, Y. Liu, Y. Li, H. Qi, Highly sensitive, flexible, stable, and hydrophobic biofoam based on wheat flour for multifunctional sensor and adjustable EMI shielding applications. ACS Appl. Mater. Interfaces 13, 30020–30029 (2021). https://doi.org/10.1021/acsami.1c05803
- J.-H. Cai, J. Li, X.-D. Chen, M. Wang, Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem. Eng. J. 393, 124805 (2020). https://doi.org/10.1016/j.cej.2020.124805
- H. Gu, Y. Xu, Y. Shen, P. Zhu, T. Zhao et al., Versatile biomass carbon foams for fast oil–water separation, flexible pressure-strain sensors, and electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 20740–20748 (2020). https://doi.org/10.1021/acs.iecr.0c04316
References
W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, 2104163 (2022). https://doi.org/10.1002/advs.202104163
Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, 2202047 (2022). https://doi.org/10.1002/smll.202202047
J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
T. Kuang, J. Ju, F. Chen, X. Liu, S. Zhang et al., Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly (lactic acid) composite foams. Compos. Sci. Technol. 230, 109736 (2022). https://doi.org/10.1016/j.compscitech.2022.109736
T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
J. Gao, Q. Ding, P. Yan, Y. Liu, J. Huang, Highly improved microwave absorbing and mechanical properties in cold sintered ZnO by incorporating graphene oxide. J. Eur. Ceram. Soc. 42, 993–1000 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.053
K.S. Kang, A. Phan, C. Olikagu, T. Lee, D.A. Loy, Segmented polyurethanes and thermoplastic elastomers from elemental sulfur with enhanced thermomechanical properties and flame retardancy. Angew. Chem. Int. Ed. 60, 22900–22907 (2021). https://doi.org/10.1002/anie.202109115
M. Xiao, Y. Yao, C. Fan, Z. Xu, Y. Liu, Multiple H-bonding chain extender-based polyurethane: Ultrastiffness, hot-melt adhesion, and 3D printing finger orthosis. Chem. Eng. J. 433, 133260 (2021). https://doi.org/10.1016/j.cej.2021.133260
N.J. Hossieny, M.R. Barzegari, M. Nofar, S.H. Mahmood, C.B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 55, 651–662 (2014). https://doi.org/10.1016/j.polymer.2013.12.028
A.K. Nema, A.V. Deshmukh, K. Palanivelu, S.K. Sharma, T. Malik, Effect of exo- and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams. J. Cell. Plast. 44, 277–292 (2008). https://doi.org/10.1177/0021955x07088326
G.-L. Ni, X. Zhu, H.-Y. Mi, P.-Y. Feng, J. Li et al., Skinless porous films generated by supercritical CO2 foaming for high-performance complementary shaped triboelectric nanogenerators and self-powered sensors. Nano Energy 87, 106148 (2021). https://doi.org/10.1016/j.nanoen.2021.106148
Y.-S. Jun, B.G. Hyun, M. Hamidinejad, S. Habibpour, A. Yu et al., Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation. Composites Part B 223, 109113 (2021). https://doi.org/10.1016/j.compositesb.2021.109113
Y. Fei, F. Chen, W. Fang, L. Xu, S. Ruan et al., High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Composites Part B 199, 108279 (2020). https://doi.org/10.1016/j.compositesb.2020.108279
Z. Lei, D. Tian, X. Liu, J. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5, 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527
J. Zhao, G. Luo, J. Wu, H. Xia, Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Appl. Mater. Interfaces 5, 2040–2046 (2013). https://doi.org/10.1021/am302929c
D.R. Tree, T. Iwama, K.T. Delaney, J. Lee, G.H. Fredrickson, Marangoni flows during nonsolvent induced phase separation. ACS Macro Lett. 7, 582–586 (2018). https://doi.org/10.1021/acsmacrolett.8b00012
H.L. Qian, W.P. Huang, Y. Fang, L.Y. Zou, W.J. Yu et al., Fabrication of “spongy skin” on diversified materials based on surface swelling non-solvent-induced phase separation. ACS Appl. Mater. Interfaces 13, 57000–57008 (2021). https://doi.org/10.1021/acsami.1c18333
J.U. Garcia, T. Iwama, E.Y. Chan, D.R. Tree, K.T. Delaney et al., Mechanisms of asymmetric membrane formation in nonsolvent-induced phase separation. ACS Macro Lett. 9, 1617–1624 (2020). https://doi.org/10.1021/acsmacrolett.0c00609
M. Muller, V. Abetz, Nonequilibrium processes in polymer membrane formation: Theory and experiment. Chem. Rev. 121, 14189–14231 (2021). https://doi.org/10.1021/acs.chemrev.1c00029
C. Zhang, Q. Lv, Y. Liu, C. Wang, Q. Wang et al., Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. Polymer 224, 123742 (2021). https://doi.org/10.1016/j.polymer.2021.123742
Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
L. Xu, X. Zhao, C. Xu, N.A. Kotov, Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30, 1703343 (2018). https://doi.org/10.1002/adma.201703343
Y. Guan, W. Li, Y. Zhang, Z. Shi, J. Tan et al., Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 144, 193–201 (2017). https://doi.org/10.1016/j.compscitech.2017.03.010
Q. Kuang, D. Zhang, J.C. Yu, Y.-W. Chang, M. Yue et al., Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers. J. Phys. Chem. C 119, 27467–27477 (2015). https://doi.org/10.1021/acs.jpcc.5b08856
H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
C. Sun, Z. Jia, S. Xu, D. Hu, C. Zhang et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 113, 128–137 (2022). https://doi.org/10.1016/j.jmst.2021.11.006
K. Qian, S. Li, J. Fang, Y. Yang, S. Cao et al., C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 127, 71–77 (2022). https://doi.org/10.1016/j.jmst.2022.03.022
L. Liu, R. Guo, J. Gao, Q. Ding, Y. Fan et al., Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 30, 101094 (2022). https://doi.org/10.1016/j.coco.2022.101094
Z.-X. Wang, X.-S. Han, Z.-J. Zhou, W.-Y. Meng, X.-W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11, 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
Y.-J. Wan, K. Rajavel, X.-M. Li, X.-Y. Wang, S.-Y. Liao et al., Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 408, 127303 (2021). https://doi.org/10.1016/j.cej.2020.127303
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W.J.N.-M.L. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 1–21 (2021). https://doi.org/10.1007/s40820-021-00673-9
E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016). https://doi.org/10.1038/srep32049
L. Lan, C. Jiang, Y. Yao, J. Ping, Y. Ying, A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84, 105954 (2021). https://doi.org/10.1016/j.nanoen.2021.105954
K. Qian, Q. Zhou, H. Wu, J. Fang, M. Miao et al., Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part A 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon 122, 74–81 (2017). https://doi.org/10.1016/j.carbon.2017.06.042
M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5, 6945–6954 (2011). https://doi.org/10.1021/nn2014003
B. Yang, W. Li, M. Zhang, L. Wang, X. Ding, Recycling of high-value-added aramid nanofibers from waste aramid resources via a feasible and cost-effective approach. ACS Nano 15, 7195–7207 (2021). https://doi.org/10.1021/acsnano.1c00463
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211642
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17, 2101951 (2021). https://doi.org/10.1002/smll.202101951
J.M. Koo, H. Kim, M. Lee, S.-A. Park, H. Jeon et al., Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability. Macromolecules 52, 923–934 (2019). https://doi.org/10.1021/acs.macromol.8b02391
B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh et al., Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 418, 129282 (2021). https://doi.org/10.1016/j.cej.2021.129282
I. Okada, S. Shiratori, High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl. Mater. Interfaces 6, 1502–1508 (2014). https://doi.org/10.1021/am404077h
B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu et al., Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020). https://doi.org/10.1002/adfm.202000186
T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May et al., Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019). https://doi.org/10.1021/acs.chemmater.9b00414
Y. Yao, L. Lan, X. Liu, Y. Ying, J. Ping, Spontaneous growth and regulation of noble metal nanops on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020). https://doi.org/10.1016/j.bios.2019.111799
R. Rarima, G. Unnikrishnan, Poly(lactic acid)/gelatin foams by non-solvent induced phase separation for biomedical applications. Polym. Degrad. Stab. 177, 109187 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109187
R. Seymour, G. Estes, S.L.J.M. Cooper, Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromol. 3, 579–583 (1970). https://doi.org/10.1021/ma60017a021
K.N.M. Amin, C. Chaleat, G. Edwards, D.J. Martin, P.K. Annamalai, A cleaner processing approach for cellulose reinforced thermoplastic polyurethane nanocomposites. Polym. Eng. Sci. 62, 949–961 (2022). https://doi.org/10.1002/pen.25899
M. Dong, Q. Li, H. Liu, C. Liu, E.K. Wujcik et al., Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid p erosion resistance. Polymer 158, 381–390 (2018). https://doi.org/10.1016/j.polymer.2018.11.003
Y. Yang, J. Lyu, J. Chen, J. Liao, X. Zhang, Flame-retardant host–guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021). https://doi.org/10.1002/adfm.202102232
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research. 2022, 9780290 (2022). https://doi.org/10.34133/2022/9780290
S.M. Liff, N. Kumar, G.H. McKinley, High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 6, 76–83 (2007). https://doi.org/10.1038/nmat1798
A. Stribeck, E. Pöselt, B. Eling, F. Jokari-Sheshdeh, A. Hoell, Thermoplastic polyurethanes with varying hard-segment components. Mechanical performance and a filler-crosslink conversion of hard domains as monitored by SAXS. Eur. Polym. J. 94, 340–353 (2017). https://doi.org/10.1016/j.eurpolymj.2017.07.020
C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song et al., Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Composites Part A 139, 106143 (2020). https://doi.org/10.1016/j.compositesa.2020.106143
J. Li, A. Wang, J. Qin, H. Zhang, Z. Ma et al., Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Composites Part A 140, 106144 (2021). https://doi.org/10.1016/j.compositesa.2020.106144
L. Lu, B. Wang, D. Wu, S. Zou, B. Fang, Engineering porous Pd-Cu nanocrystals with tailored three-dimensional catalytic facets for highly efficient formic acid oxidation. Nanoscale 13, 3709–3722 (2021). https://doi.org/10.1039/d0nr09164b
S. Zhang, H. Liu, S. Yang, X. Shi, D. Zhang et al., Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11, 10922–10932 (2019). https://doi.org/10.1021/acsami.9b00900
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, 202200705 (2022). https://doi.org/10.1002/anie.202200705
L. Pu, Y. Liu, L. Li, C. Zhang, P. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
J. Ju, T. Kuang, X. Ke, M. Zeng, Z. Chen et al., Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020). https://doi.org/10.1016/j.compscitech.2020.108116
J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
C. Liang, J. He, Y. Zhang, W. Zhang, C. Liu et al., MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022). https://doi.org/10.1016/j.compscitech.2022.109445
Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
M. Yang, Z. Yang, C. Lv, Z. Wang, Z. Lu et al., Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Compos. Sci. Technol. 221, 109313 (2022). https://doi.org/10.1016/j.compscitech.2022.109313
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
Y. Chen, Y. Liu, Y. Li, H. Qi, Highly sensitive, flexible, stable, and hydrophobic biofoam based on wheat flour for multifunctional sensor and adjustable EMI shielding applications. ACS Appl. Mater. Interfaces 13, 30020–30029 (2021). https://doi.org/10.1021/acsami.1c05803
J.-H. Cai, J. Li, X.-D. Chen, M. Wang, Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem. Eng. J. 393, 124805 (2020). https://doi.org/10.1016/j.cej.2020.124805
H. Gu, Y. Xu, Y. Shen, P. Zhu, T. Zhao et al., Versatile biomass carbon foams for fast oil–water separation, flexible pressure-strain sensors, and electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 20740–20748 (2020). https://doi.org/10.1021/acs.iecr.0c04316