High Rate and Long Lifespan Sodium-Organic Batteries Using Pseudocapacitive Porphyrin Complexes-Based Cathode
Corresponding Author: Ping Gao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 71
Abstract
Sodium-organic batteries utilizing natural abundance of sodium element and renewable active materials gain great attentions for grid-scale applications. However, the development is still limited by lack of suitable organic cathode materials with high electronic conductivity that can be operated stably in liquid electrolyte. Herein, we present 5,15-bis(ethynyl)-10,20-diphenylporphyrin (DEPP) and [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) as new cathodes for extremely stable sodium-organic batteries. The copper(II) ion partially contributes the charge storage and significantly stabilizes the structure of porphyrin complex for electrochemical energy storage. In situ electrochemical stabilization of organic cathode with a lower charging current density was identified which enables both improved high energy density and power density. An excellent long-term cycling stability up to 600 cycles and an extremely high power density of 28 kW kg−1 were achieved for porphyrin-based cathode. This observation would open new pathway for developing highly stable sodium-organic cathode for electrochemical energy storage.
Highlights:
1 Functionalized porphyrin complexes are proposed as new pseudocapacitive cathodes for SIBs based on four-electron transfer.
2 The presence of copper(II) ion partially contributes the charge storage and significantly stabilizes the structure of porphyrin complex for electrochemical energy storage.
3 The electrochemical polymerization of porphyrin complex through the ethynyl groups in self-stabilization process contributes to high rate capability and excellent cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao et al., A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3(1), 2671 (2013). https://doi.org/10.1038/srep02671
- J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 52(17), 4633–4636 (2013). https://doi.org/10.1002/anie.201209689
- X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
- H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11(6), 512–517 (2012). https://doi.org/10.1038/nmat3309
- C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14(4), 2175–2180 (2014). https://doi.org/10.1021/nl500548a
- S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu et al., A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. Chemsuschem 7(8), 2115–2119 (2014). https://doi.org/10.1002/cssc.201402138
- J. Billaud, R.J. Clément, A.R. Armstrong, J. Canales-Vázquez, P. Rozier et al., β-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136(49), 17243–17248 (2014). https://doi.org/10.1021/ja509704t
- D. Su, C. Wang, H.J. Ahn, G. Wang, Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry 19(33), 10884–10889 (2013). https://doi.org/10.1002/chem.201301563
- S.-M. Oh, S.-T. Myung, J. Hassoun, B. Scrosati, Y.-K. Sun, Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 22, 149–152 (2012). https://doi.org/10.1016/j.elecom.2012.06.014
- A. Sun, F.R. Beck, D. Haynes, J.A. Poston, S.R. Narayanan et al., Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Engin. B 177(20), 1729–1733 (2012). https://doi.org/10.1016/j.mseb.2012.08.004
- D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54(11), 3431–3448 (2015). https://doi.org/10.1002/anie.201410376
- T. Sun, Z.-J. Li, H.-G. Wang, D. Bao, F.-L. Meng et al., A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55(36), 10662–10666 (2016). https://doi.org/10.1002/anie.201604519
- M. Lee, J. Hong, J. Lopez, Y. Sun, D. Feng et al., High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2(11), 861–868 (2017). https://doi.org/10.1038/s41560-017-0014-y
- K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou et al., Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 4, 1485 (2013). https://doi.org/10.1038/ncomms2481
- M.S. Kim, W.J. Lee, S.M. Paek, J.K. Park, Covalent organic nanosheets as effective sodium-ion storage materials. ACS Appl. Mater. Interfaces 10(38), 32102–32111 (2018). https://doi.org/10.1021/acsami.8b09546
- F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 32(4), e1905361 (2020). https://doi.org/10.1002/adma.201905361
- Z. Luo, L. Liu, Q. Zhao, F. Li, J. Chen, An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem. Int. Ed. 56(41), 12561–12565 (2017). https://doi.org/10.1002/anie.201706604
- H. Kim, J.E. Kwon, B. Lee, J. Hong, M. Lee et al., High energy organic cathode for sodium rechargeable batteries. Chem. Mater. 27(21), 7258–7264 (2015). https://doi.org/10.1021/acs.chemmater.5b02569
- Q. Zhao, Y. Lu, J. Chen, Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 7(8), 1601792 (2017). https://doi.org/10.1002/aenm.201601792
- M. Tang, S. Zhu, Z. Liu, C. Jiang, Y. Wu et al., Tailoring π-conjugated systems: From π-π stacking to high-rate-performance organic cathodes. Chem 4(11), 2600–2614 (2018). https://doi.org/10.1016/j.chempr.2018.08.014
- Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv Sci. 2(9), 1500124 (2015). https://doi.org/10.1002/advs.201500124
- S.H. Kang, M.J. Jeong, Y.K. Eom, I.T. Choi, S.M. Kwon et al., Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications. Adv. Energy Mater. 7(7), 1602117 (2017). https://doi.org/10.1002/aenm.201602117
- S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
- J. Min Park, J.H. Lee, W.-D. Jang, Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 407, 213157 (2020). https://doi.org/10.1016/j.ccr.2019.213157
- K. Jeong, J.M. Kim, S.H. Kim, G.Y. Jung, J. Yoo et al., Carbon-nanotube-cored cobalt porphyrin as a 1D nanohybrid strategy for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 29(24), 1806937 (2019). https://doi.org/10.1002/adfm.201806937
- J.-Y. Shin, T. Yamada, H. Yoshikawa, K. Awaga, H. Shinokubo, An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. Int. Ed. 53(12), 3096–3101 (2014). https://doi.org/10.1002/anie.201310374
- P. Gao, Z. Chen, Z. Zhao-Karger, J.E. Mueller, C. Jung et al., A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem. Int. Ed. 56(35), 10341–10346 (2017). https://doi.org/10.1002/anie.201702805
- L. Sun, J. Xie, Z. Chen, J. Wu, L. Li, Reversible lithium storage in a porphyrin-based MOF (PCN-600) with exceptionally high capacity and stability. Dalton Trans. 47(30), 9989–9993 (2018). https://doi.org/10.1039/C8DT02161A
- Z. Chen, P. Gao, W. Wang, S. Klyatskaya, Z. Zhao-Karger et al., A lithium-free energy-storage device based on an alkyne-substituted-porphyrin complex. Chemsuschem 12(16), 3737–3741 (2019). https://doi.org/10.1002/cssc.201901541
- H. Wu, J. Zhang, X. Du, M. Zhang, J. Yang et al., A large π-conjugated tetrakis (4-carboxyphenyl) porphyrin anode enables high specific capacity and superior cycling stability in lithium-ion batteries. Chem. Commun. 55(76), 11370–11373 (2019). https://doi.org/10.1039/c9cc05474j
- H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8(8), 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370
- H. Liao, H. Wang, H. Ding, X. Meng, H. Xu et al., A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J. Mater. Chem. A 4(19), 7416–7421 (2016). https://doi.org/10.1039/C6TA00483K
- B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries. Adv. Mater. 30(23), e1707483 (2018). https://doi.org/10.1002/adma.201707483
- X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan et al., Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021
- N.A. Kumar, R.R. Gaddam, M. Suresh, S.R. Varanasi, D. Yang et al., Porphyrin-graphene oxide frameworks for long life sodium ion batteries. J. Mater. Chem. A 5(25), 13204–13211 (2017). https://doi.org/10.1039/C7TA02370G
- F.-Z. Cui, Z. Liu, D.-L. Ma, L. Liu, T. Huang et al., Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem. Eng. J. 405, 127038 (2021). https://doi.org/10.1016/j.cej.2020.127038
- T. Ma, Z. Pan, L. Miao, C. Chen, M. Han et al., Porphyrin-based symmetric redox-flow batteries towards cold-climate energy storage. Angew. Chem. Int. Ed. 57(12), 3158–3162 (2018). https://doi.org/10.1002/anie.201713423
- H. Zhang, Y. Zhang, C. Gu, Y. Ma, Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv. Energy. Mater. 5(10), 1402175 (2015). https://doi.org/10.1002/aenm.201402175
- F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem. Int. Ed. 54(23), 6814–6818 (2015). https://doi.org/10.1002/anie.201501706
- M.-S. Liao, S. Scheiner, Electronic structure and bonding in metal porphyrins, metal=Fe Co, Ni, Cu. Zn. J. Chem. Phys. 117(1), 205–219 (2002). https://doi.org/10.1063/1.1480872
- P.K. Sonkar, K. Prakash, M. Yadav, V. Ganesan, M. Sankar et al., Co(2)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J. Mater. Chem. A 5(13), 6263–6276 (2017). https://doi.org/10.1039/c6ta10482g
- J. Yuan, B. Ren, X. Feng, P. Gao, E. Liu et al., A coupled polymeric porphyrin complex as a novel cathode for highly stable lithium organic batteries. Chem. Commun. 56(40), 5437–5440 (2020). https://doi.org/10.1039/C9CC09846A
- M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12(9), 827–835 (2013). https://doi.org/10.1038/nmat3699
- Y. Xie, M. Saubanère, M.L. Doublet, Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10(1), 266–274 (2017). https://doi.org/10.1039/C6EE02328B
- B. Li, Y. Wang, N. Jiang, L. An, J. Song et al., Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 72, 104727 (2020). https://doi.org/10.1016/j.nanoen.2020.104727
- Z. Zhang, H. Yoshikawa, K. Awaga, Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework. Chem. Mater. 28(5), 1298–1303 (2016). https://doi.org/10.1021/acs.chemmater.5b04075
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
- H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
- Y. Ma, X. Dong, Y. Wang, Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 57(11), 2904–2908 (2018). https://doi.org/10.1002/anie.201800436
- Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
References
S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao et al., A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3(1), 2671 (2013). https://doi.org/10.1038/srep02671
J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 52(17), 4633–4636 (2013). https://doi.org/10.1002/anie.201209689
X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11(6), 512–517 (2012). https://doi.org/10.1038/nmat3309
C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14(4), 2175–2180 (2014). https://doi.org/10.1021/nl500548a
S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu et al., A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. Chemsuschem 7(8), 2115–2119 (2014). https://doi.org/10.1002/cssc.201402138
J. Billaud, R.J. Clément, A.R. Armstrong, J. Canales-Vázquez, P. Rozier et al., β-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136(49), 17243–17248 (2014). https://doi.org/10.1021/ja509704t
D. Su, C. Wang, H.J. Ahn, G. Wang, Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry 19(33), 10884–10889 (2013). https://doi.org/10.1002/chem.201301563
S.-M. Oh, S.-T. Myung, J. Hassoun, B. Scrosati, Y.-K. Sun, Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 22, 149–152 (2012). https://doi.org/10.1016/j.elecom.2012.06.014
A. Sun, F.R. Beck, D. Haynes, J.A. Poston, S.R. Narayanan et al., Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Engin. B 177(20), 1729–1733 (2012). https://doi.org/10.1016/j.mseb.2012.08.004
D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54(11), 3431–3448 (2015). https://doi.org/10.1002/anie.201410376
T. Sun, Z.-J. Li, H.-G. Wang, D. Bao, F.-L. Meng et al., A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55(36), 10662–10666 (2016). https://doi.org/10.1002/anie.201604519
M. Lee, J. Hong, J. Lopez, Y. Sun, D. Feng et al., High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2(11), 861–868 (2017). https://doi.org/10.1038/s41560-017-0014-y
K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou et al., Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 4, 1485 (2013). https://doi.org/10.1038/ncomms2481
M.S. Kim, W.J. Lee, S.M. Paek, J.K. Park, Covalent organic nanosheets as effective sodium-ion storage materials. ACS Appl. Mater. Interfaces 10(38), 32102–32111 (2018). https://doi.org/10.1021/acsami.8b09546
F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 32(4), e1905361 (2020). https://doi.org/10.1002/adma.201905361
Z. Luo, L. Liu, Q. Zhao, F. Li, J. Chen, An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem. Int. Ed. 56(41), 12561–12565 (2017). https://doi.org/10.1002/anie.201706604
H. Kim, J.E. Kwon, B. Lee, J. Hong, M. Lee et al., High energy organic cathode for sodium rechargeable batteries. Chem. Mater. 27(21), 7258–7264 (2015). https://doi.org/10.1021/acs.chemmater.5b02569
Q. Zhao, Y. Lu, J. Chen, Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 7(8), 1601792 (2017). https://doi.org/10.1002/aenm.201601792
M. Tang, S. Zhu, Z. Liu, C. Jiang, Y. Wu et al., Tailoring π-conjugated systems: From π-π stacking to high-rate-performance organic cathodes. Chem 4(11), 2600–2614 (2018). https://doi.org/10.1016/j.chempr.2018.08.014
Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv Sci. 2(9), 1500124 (2015). https://doi.org/10.1002/advs.201500124
S.H. Kang, M.J. Jeong, Y.K. Eom, I.T. Choi, S.M. Kwon et al., Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications. Adv. Energy Mater. 7(7), 1602117 (2017). https://doi.org/10.1002/aenm.201602117
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
J. Min Park, J.H. Lee, W.-D. Jang, Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 407, 213157 (2020). https://doi.org/10.1016/j.ccr.2019.213157
K. Jeong, J.M. Kim, S.H. Kim, G.Y. Jung, J. Yoo et al., Carbon-nanotube-cored cobalt porphyrin as a 1D nanohybrid strategy for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 29(24), 1806937 (2019). https://doi.org/10.1002/adfm.201806937
J.-Y. Shin, T. Yamada, H. Yoshikawa, K. Awaga, H. Shinokubo, An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. Int. Ed. 53(12), 3096–3101 (2014). https://doi.org/10.1002/anie.201310374
P. Gao, Z. Chen, Z. Zhao-Karger, J.E. Mueller, C. Jung et al., A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem. Int. Ed. 56(35), 10341–10346 (2017). https://doi.org/10.1002/anie.201702805
L. Sun, J. Xie, Z. Chen, J. Wu, L. Li, Reversible lithium storage in a porphyrin-based MOF (PCN-600) with exceptionally high capacity and stability. Dalton Trans. 47(30), 9989–9993 (2018). https://doi.org/10.1039/C8DT02161A
Z. Chen, P. Gao, W. Wang, S. Klyatskaya, Z. Zhao-Karger et al., A lithium-free energy-storage device based on an alkyne-substituted-porphyrin complex. Chemsuschem 12(16), 3737–3741 (2019). https://doi.org/10.1002/cssc.201901541
H. Wu, J. Zhang, X. Du, M. Zhang, J. Yang et al., A large π-conjugated tetrakis (4-carboxyphenyl) porphyrin anode enables high specific capacity and superior cycling stability in lithium-ion batteries. Chem. Commun. 55(76), 11370–11373 (2019). https://doi.org/10.1039/c9cc05474j
H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8(8), 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370
H. Liao, H. Wang, H. Ding, X. Meng, H. Xu et al., A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J. Mater. Chem. A 4(19), 7416–7421 (2016). https://doi.org/10.1039/C6TA00483K
B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries. Adv. Mater. 30(23), e1707483 (2018). https://doi.org/10.1002/adma.201707483
X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan et al., Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021
N.A. Kumar, R.R. Gaddam, M. Suresh, S.R. Varanasi, D. Yang et al., Porphyrin-graphene oxide frameworks for long life sodium ion batteries. J. Mater. Chem. A 5(25), 13204–13211 (2017). https://doi.org/10.1039/C7TA02370G
F.-Z. Cui, Z. Liu, D.-L. Ma, L. Liu, T. Huang et al., Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem. Eng. J. 405, 127038 (2021). https://doi.org/10.1016/j.cej.2020.127038
T. Ma, Z. Pan, L. Miao, C. Chen, M. Han et al., Porphyrin-based symmetric redox-flow batteries towards cold-climate energy storage. Angew. Chem. Int. Ed. 57(12), 3158–3162 (2018). https://doi.org/10.1002/anie.201713423
H. Zhang, Y. Zhang, C. Gu, Y. Ma, Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv. Energy. Mater. 5(10), 1402175 (2015). https://doi.org/10.1002/aenm.201402175
F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem. Int. Ed. 54(23), 6814–6818 (2015). https://doi.org/10.1002/anie.201501706
M.-S. Liao, S. Scheiner, Electronic structure and bonding in metal porphyrins, metal=Fe Co, Ni, Cu. Zn. J. Chem. Phys. 117(1), 205–219 (2002). https://doi.org/10.1063/1.1480872
P.K. Sonkar, K. Prakash, M. Yadav, V. Ganesan, M. Sankar et al., Co(2)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J. Mater. Chem. A 5(13), 6263–6276 (2017). https://doi.org/10.1039/c6ta10482g
J. Yuan, B. Ren, X. Feng, P. Gao, E. Liu et al., A coupled polymeric porphyrin complex as a novel cathode for highly stable lithium organic batteries. Chem. Commun. 56(40), 5437–5440 (2020). https://doi.org/10.1039/C9CC09846A
M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12(9), 827–835 (2013). https://doi.org/10.1038/nmat3699
Y. Xie, M. Saubanère, M.L. Doublet, Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10(1), 266–274 (2017). https://doi.org/10.1039/C6EE02328B
B. Li, Y. Wang, N. Jiang, L. An, J. Song et al., Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 72, 104727 (2020). https://doi.org/10.1016/j.nanoen.2020.104727
Z. Zhang, H. Yoshikawa, K. Awaga, Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework. Chem. Mater. 28(5), 1298–1303 (2016). https://doi.org/10.1021/acs.chemmater.5b04075
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
Y. Ma, X. Dong, Y. Wang, Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 57(11), 2904–2908 (2018). https://doi.org/10.1002/anie.201800436
Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020