Tailoring MXene Thickness and Functionalization for Enhanced Room-Temperature Trace NO2 Sensing
Corresponding Author: Wanfeng Xie
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 84
Abstract
In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g−1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m−1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm−1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the –I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
Highlights:
1 Gas-phase functionalization of X-MXene (X = –F, –OH, –O, –Br, –I) films crafted from sub-100 nm thin MXene flakes for highly sensitive NO2 sensors.
2 I-MXene-based senor exhibited significant sensing performances toward trace NO2 at room temperature.
3 The hydrophobicity, larger atomic size, lower electronegativity, and reduced shielding of -I contribute to the excellent sensing enhancement of I-MXene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- S. Sardana, Z. Singh, A.K. Sharma, N. Kaur, P.K. Pati et al., Self-powered biocompatible humidity sensor based on anelectrospun anisotropic triboelectric nanogenerator for non-invasive diagnostic applications. Sens. Actuat. B Chem. 371, 132507 (2022). https://doi.org/10.1016/j.snb.2022.132507
- T. Rasheed, MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. J. Mater. Chem. A 10, 4558–4584 (2022). https://doi.org/10.1039/d1ta10083a
- S. Xiao, Y. Zheng, X. Wu, M. Zhou, X. Rong et al., Tunable structured MXenes with modulated atomic environments: a powerful new platform for electrocatalytic energy conversion. Small 18, e2203281 (2022). https://doi.org/10.1002/smll.202203281
- T. Bashir, S.A. Ismail, J. Wang, W. Zhu, J. Zhao et al., MXene terminating groups O, –F or–OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 76, 90–104 (2023). https://doi.org/10.1016/j.jechem.2022.08.032
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang et al., Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 12, 702–710 (2016). https://doi.org/10.1007/s13391-016-6088-z
- X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie et al., Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 6, 11035–11040 (2014). https://doi.org/10.1039/C4NR02080D
- A. Feng, Y. Yu, F. Jiang, Y. Wang, L. Mi et al., Fabrication and thermal stability of NH4 HF2-etched Ti3C2 MXene. Ceram. Int. 43, 6322–6328 (2017). https://doi.org/10.1016/j.ceramint.2017.02.039
- B. Zhang, J. Zhu, P. Shi, W. Wu, F. Wang, Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries. Ceram. Int. 45, 8395–8405 (2019). https://doi.org/10.1016/j.ceramint.2019.01.148
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- M.-Z. Liu, X.-H. Li, X.-H. Cui, H.-T. Yan, R.-Z. Zhang et al., The influence of different functional groups on quantum capacitance, electronic and optical properties of Hf2C MXene. Appl. Surf. Sci. 605, 154830 (2022). https://doi.org/10.1016/j.apsusc.2022.154830
- R. Ibragimova, P. Erhart, P. Rinke, H.-P. Komsa, Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties. J. Phys. Chem. Lett. 12, 2377–2384 (2021). https://doi.org/10.1021/acs.jpclett.0c03710
- K. Xiong, P. Wang, G. Yang, Z. Liu, H. Zhang et al., Functional Group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7, 15095 (2017). https://doi.org/10.1038/s41598-017-15233-8
- A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
- R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
- S.F. Zhao, F.X. Hu, Z.Z. Shi, J.J. Fu, Y. Chen et al., 2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide. Nano Res. 14, 879–886 (2021). https://doi.org/10.1007/s12274-020-3130-0
- A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
- S. Sardana, A.K. Debnath, D.K. Aswal, A. Mahajan, WS2 nanosheets decorated multi-layered MXene based chemiresistive sensor for efficient detection and discrimination of NH3 and NO2. Sens. Actuat. B Chem. 394, 134352 (2023). https://doi.org/10.1016/j.snb.2023.134352
- S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7, 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- W.Y. Chen, S.N. Lai, C.C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14, 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
- J. Ji, L. Zhao, Y. Shen, S. Liu, Y. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. FlatChem 17, 100128 (2019). https://doi.org/10.1016/j.flatc.2019.100128
- S. Lim, H. Park, J. Yang, C. Kwak, J. Lee, Stable colloidal dispersion of octylated Ti3C2-MXenes in a nonpolar solvent. Colloids Surf. A Physicochem. Eng. Aspects 579, 123648 (2019). https://doi.org/10.1016/j.colsurfa.2019.123648
- X. Li, Z. An, Y. Lu, J. Shan, H. Xing et al., Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol. 7, 2100872 (2022). https://doi.org/10.1002/admt.202100872
- H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
- J. Wang, Z. Cai, D. Lin, K. Chen, L. Zhao et al., Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 13, 32495–32502 (2021). https://doi.org/10.1021/acsami.1c07146
- A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15, 2771–2777 (2021). https://doi.org/10.1021/acsnano.0c08630
- M. Li, X. Li, G. Qin, K. Luo, J. Lu et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). https://doi.org/10.1021/acsnano.0c07972
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) (MXenes. Jenny Stanford Publishing, New York, 2023), pp.415–449. https://doi.org/10.1201/9781003306511-21
- M. Mojtabavi, A. VahidMohammadi, K. Ganeshan, D. Hejazi, S. Shahbazmohamadi et al., Wafer-scale lateral self-assembly of mosaic Ti3C2Tx MXene monolayer films. ACS Nano 15, 625–636 (2021). https://doi.org/10.1021/acsnano.0c06393
- D. Han, X. Han, X. Zhang, W. Wang, D. Li et al., Highly sensitive and rapidly responding room-temperature NH3 gas sensor that is based on exfoliated black phosphorus. Sens. Actuat. B Chem. 367, 132038 (2022). https://doi.org/10.1016/j.snb.2022.132038
- S. Sardana, A. Mahajan, Edge-site-enriched Ti3C2Tx MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring. ACS Appl. Nano Mater. 6, 469–481 (2023). https://doi.org/10.1021/acsanm.2c04581
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D.V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide mxenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- H. Riazi, M. Anayee, K. Hantanasirisakul, A.A. Shamsabadi, B. Anasori et al., Surface modification of a MXene by an aminosilane coupling agent. Adv. Mater. Interfaces 7, 1902008 (2020). https://doi.org/10.1002/admi.201902008
- H. Xu, D. Zheng, F. Liu, W. Li, J. Lin, Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 8, 5853–5858 (2020). https://doi.org/10.1039/D0TA00572J
- Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu et al., Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide. Int. J. Photoenergy 2012, 702503 (2012). https://doi.org/10.1155/2012/702503
- Z. Wu, S. Li, M. Liu, Z. Wang, J. Li, Synthesis and characterization of a liquid oxygen-compatible epoxy resin. High Perform. Polym. 27, 74–84 (2015). https://doi.org/10.1177/0954008314539359
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- B. Saruhan, R. Lontio Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front. Sens. 2, 657931 (2021). https://doi.org/10.3389/fsens.2021.657931
- Y. Wang, J. Fu, J. Xu, H. Hu, D. Ho, Atomic plasma grafting: precise control of functional groups on Ti3C2Tx MXene for room temperature gas sensors. ACS Appl. Mater. Interfaces 15, 12232–12239 (2023). https://doi.org/10.1021/acsami.2c22609
- Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
- S.H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.-P. Lv, X. Hong et al., Highly selective H2S gas sensor based on Ti3C2Tx MXene–organic composites. ACS Appl. Mater. Interfaces 15, 7063–7073 (2023). https://doi.org/10.1021/acsami.2c19883
- S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
- W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D MXene framework with a high sensing performance. J. Mater. Chem. A 6, 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
- F. Guo, C. Feng, Z. Zhang, L. Zhang, C. Xu et al., A room-temperature NO2 sensor based on Ti3C2TX MXene modified with sphere-like CuO. Sens. Actuat. B Chem. 375, 132885 (2023). https://doi.org/10.1016/j.snb.2022.132885
References
Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
S. Sardana, Z. Singh, A.K. Sharma, N. Kaur, P.K. Pati et al., Self-powered biocompatible humidity sensor based on anelectrospun anisotropic triboelectric nanogenerator for non-invasive diagnostic applications. Sens. Actuat. B Chem. 371, 132507 (2022). https://doi.org/10.1016/j.snb.2022.132507
T. Rasheed, MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. J. Mater. Chem. A 10, 4558–4584 (2022). https://doi.org/10.1039/d1ta10083a
S. Xiao, Y. Zheng, X. Wu, M. Zhou, X. Rong et al., Tunable structured MXenes with modulated atomic environments: a powerful new platform for electrocatalytic energy conversion. Small 18, e2203281 (2022). https://doi.org/10.1002/smll.202203281
T. Bashir, S.A. Ismail, J. Wang, W. Zhu, J. Zhao et al., MXene terminating groups O, –F or–OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 76, 90–104 (2023). https://doi.org/10.1016/j.jechem.2022.08.032
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang et al., Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 12, 702–710 (2016). https://doi.org/10.1007/s13391-016-6088-z
X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie et al., Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 6, 11035–11040 (2014). https://doi.org/10.1039/C4NR02080D
A. Feng, Y. Yu, F. Jiang, Y. Wang, L. Mi et al., Fabrication and thermal stability of NH4 HF2-etched Ti3C2 MXene. Ceram. Int. 43, 6322–6328 (2017). https://doi.org/10.1016/j.ceramint.2017.02.039
B. Zhang, J. Zhu, P. Shi, W. Wu, F. Wang, Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries. Ceram. Int. 45, 8395–8405 (2019). https://doi.org/10.1016/j.ceramint.2019.01.148
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
M.-Z. Liu, X.-H. Li, X.-H. Cui, H.-T. Yan, R.-Z. Zhang et al., The influence of different functional groups on quantum capacitance, electronic and optical properties of Hf2C MXene. Appl. Surf. Sci. 605, 154830 (2022). https://doi.org/10.1016/j.apsusc.2022.154830
R. Ibragimova, P. Erhart, P. Rinke, H.-P. Komsa, Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties. J. Phys. Chem. Lett. 12, 2377–2384 (2021). https://doi.org/10.1021/acs.jpclett.0c03710
K. Xiong, P. Wang, G. Yang, Z. Liu, H. Zhang et al., Functional Group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7, 15095 (2017). https://doi.org/10.1038/s41598-017-15233-8
A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
S.F. Zhao, F.X. Hu, Z.Z. Shi, J.J. Fu, Y. Chen et al., 2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide. Nano Res. 14, 879–886 (2021). https://doi.org/10.1007/s12274-020-3130-0
A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
S. Sardana, A.K. Debnath, D.K. Aswal, A. Mahajan, WS2 nanosheets decorated multi-layered MXene based chemiresistive sensor for efficient detection and discrimination of NH3 and NO2. Sens. Actuat. B Chem. 394, 134352 (2023). https://doi.org/10.1016/j.snb.2023.134352
S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7, 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
W.Y. Chen, S.N. Lai, C.C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14, 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
J. Ji, L. Zhao, Y. Shen, S. Liu, Y. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. FlatChem 17, 100128 (2019). https://doi.org/10.1016/j.flatc.2019.100128
S. Lim, H. Park, J. Yang, C. Kwak, J. Lee, Stable colloidal dispersion of octylated Ti3C2-MXenes in a nonpolar solvent. Colloids Surf. A Physicochem. Eng. Aspects 579, 123648 (2019). https://doi.org/10.1016/j.colsurfa.2019.123648
X. Li, Z. An, Y. Lu, J. Shan, H. Xing et al., Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol. 7, 2100872 (2022). https://doi.org/10.1002/admt.202100872
H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
J. Wang, Z. Cai, D. Lin, K. Chen, L. Zhao et al., Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 13, 32495–32502 (2021). https://doi.org/10.1021/acsami.1c07146
A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15, 2771–2777 (2021). https://doi.org/10.1021/acsnano.0c08630
M. Li, X. Li, G. Qin, K. Luo, J. Lu et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). https://doi.org/10.1021/acsnano.0c07972
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) (MXenes. Jenny Stanford Publishing, New York, 2023), pp.415–449. https://doi.org/10.1201/9781003306511-21
M. Mojtabavi, A. VahidMohammadi, K. Ganeshan, D. Hejazi, S. Shahbazmohamadi et al., Wafer-scale lateral self-assembly of mosaic Ti3C2Tx MXene monolayer films. ACS Nano 15, 625–636 (2021). https://doi.org/10.1021/acsnano.0c06393
D. Han, X. Han, X. Zhang, W. Wang, D. Li et al., Highly sensitive and rapidly responding room-temperature NH3 gas sensor that is based on exfoliated black phosphorus. Sens. Actuat. B Chem. 367, 132038 (2022). https://doi.org/10.1016/j.snb.2022.132038
S. Sardana, A. Mahajan, Edge-site-enriched Ti3C2Tx MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring. ACS Appl. Nano Mater. 6, 469–481 (2023). https://doi.org/10.1021/acsanm.2c04581
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D.V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide mxenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
H. Riazi, M. Anayee, K. Hantanasirisakul, A.A. Shamsabadi, B. Anasori et al., Surface modification of a MXene by an aminosilane coupling agent. Adv. Mater. Interfaces 7, 1902008 (2020). https://doi.org/10.1002/admi.201902008
H. Xu, D. Zheng, F. Liu, W. Li, J. Lin, Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 8, 5853–5858 (2020). https://doi.org/10.1039/D0TA00572J
Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu et al., Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide. Int. J. Photoenergy 2012, 702503 (2012). https://doi.org/10.1155/2012/702503
Z. Wu, S. Li, M. Liu, Z. Wang, J. Li, Synthesis and characterization of a liquid oxygen-compatible epoxy resin. High Perform. Polym. 27, 74–84 (2015). https://doi.org/10.1177/0954008314539359
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
B. Saruhan, R. Lontio Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front. Sens. 2, 657931 (2021). https://doi.org/10.3389/fsens.2021.657931
Y. Wang, J. Fu, J. Xu, H. Hu, D. Ho, Atomic plasma grafting: precise control of functional groups on Ti3C2Tx MXene for room temperature gas sensors. ACS Appl. Mater. Interfaces 15, 12232–12239 (2023). https://doi.org/10.1021/acsami.2c22609
Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
S.H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.-P. Lv, X. Hong et al., Highly selective H2S gas sensor based on Ti3C2Tx MXene–organic composites. ACS Appl. Mater. Interfaces 15, 7063–7073 (2023). https://doi.org/10.1021/acsami.2c19883
S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D MXene framework with a high sensing performance. J. Mater. Chem. A 6, 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
F. Guo, C. Feng, Z. Zhang, L. Zhang, C. Xu et al., A room-temperature NO2 sensor based on Ti3C2TX MXene modified with sphere-like CuO. Sens. Actuat. B Chem. 375, 132885 (2023). https://doi.org/10.1016/j.snb.2022.132885