Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92%
Corresponding Author: Junfeng Fang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 170
Abstract
Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the regular. However, relatively low opening circuit voltage (Voc) and limited moisture stability have lagged their progress far from the regular. Here, we propose an effective surface treatment strategy with high-temperature FABr treatment to address these issues. The induced ions exchange can not only adjust energy level, but also gift effective passivation. Meanwhile, the gradient distribution of FA+ can accelerate the carriers transport to further suppress bulk recombination. Besides, the Br-rich surface and FA+ substitution can isolate moisture erosions. As a result, the optimized devices show champion efficiency of 15.92% with Voc of 1.223 V. In addition, the tolerance of humidity and operation get significant promotion: maintaining 91.7% efficiency after aged at RH 20% ambient condition for 1300 h and 81.8% via maximum power point tracking at 45 °C for 500 h in N2. Furthermore, the unpackaged devices realize the rare reported air operational stability and, respectively, remain almost efficiency (98.9%) after operated under RH 35% for 600 min and 91.2% under RH 50% for 300 min.
Highlights:
1 A simple and multifunctional surface treatment strategy is proposed to address the inferior-performance inverted CsPbI2Br perovskite solar cells (PSCs).
2 The induced-ions exchange can align energy levels, passivate both GBs and surface, and gift the solid protection from external erosions.
3 The inverted CsPbI2Br PSCs reveal a champion efficiency of 15.92% and superior stability after moisture, operational, and thermal ages.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, Y. Wang, H. Sun, H. Zeng, Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 29(36), 1701185 (2017). https://doi.org/10.1002/adma.201701185
- Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019). https://doi.org/10.1039/c8ee03559h
- C.C. Vidyasagar, B.M. Munoz Flores, V.M. Jimenez Perez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
- J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, J.M. Luther, Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). https://doi.org/10.1016/j.joule.2020.04.006
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye et al., Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
- F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650
- K.L. Wang, R. Wang, Z.K. Wang, M. Li, Y. Zhang et al., Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett. 19, 5176–5184 (2019). https://doi.org/10.1021/acs.nanolett.9b01553
- Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30, 1909972 (2020). https://doi.org/10.1002/adfm.201909972
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- W. Zhang, L. Wan, X. Li, Y. Wu, S. Fu, J. Fang, A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. J. Mater. Chem. A 7, 18898–18905 (2019). https://doi.org/10.1039/C9TA05048E
- E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
- Q. Xiao, J. Tian, Q. Xue, J. Wang, B. Xiong et al., Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 58, 17724–17730 (2019). https://doi.org/10.1002/anie.201907331
- Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen et al., Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv. Mater. 31, 1902781 (2019). https://doi.org/10.1002/adma.201902781
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 6408 (2018). https://doi.org/10.1126/science.aat8235
- J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 117 (2020). https://doi.org/10.1038/s41467-019-13909-5
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with oxidation in precursor ink. Nat. Energy 4, 864–873 (2019)
- T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, e1900605 (2019). https://doi.org/10.1002/adma.201900605
- K. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao et al., Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv. Mater. 32, e1908011 (2020). https://doi.org/10.1002/adma.201908011
- C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018). https://doi.org/10.1021/jacs.7b13229
- S. Zhang, W. Chen, S. Wu, R. Chen, Y. Huang et al., A general strategy to prepare high-quality inorganic charge-transporting layers for efficient and stable all-layer-inorganic perovskite solar cells. J. Mater. Chem. A 7, 18603–18611 (2019). https://doi.org/10.1039/C9TA05802H
- S. Zhang, W. Chen, S. Wu, R. Chen, Z. Liu et al., Hybrid inorganic electron-transporting layer coupled with a halogen-resistant electrode in CsPbI2Br-based perovskite solar cells to achieve robust long-term stability. ACS Appl. Mater. Interfaces. 11, 43303–43311 (2019). https://doi.org/10.1021/acsami.9b17464
- X. Liu, Y. Xiao, Q. Zeng, J. Jiang, Y. Li, Large-area organic-free perovskite solar cells with high thermal stability. J. Phys. Chem. Lett. 10, 6382–6388 (2019). https://doi.org/10.1021/acs.jpclett.9b02644
- W. Xu, F. He, M. Zhang, P. Nie, S. Zhang et al., Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 4, 2491–2499 (2019). https://doi.org/10.1021/acsenergylett.9b01662
- C. Liu, Y. Yang, C. Zhang, S. Wu, L. Wei et al., Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 32, e1907361 (2020). https://doi.org/10.1002/adma.201907361
- H. Rao, S. Ye, F. Gu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv. Energy Mater. 8, 1800758 (2018). https://doi.org/10.1002/aenm.201800758
- S. Fu, W. Zhang, X. Li, L. Wan, Y. Wu et al., Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett. 5, 676–684 (2020). https://doi.org/10.1021/acsenergylett.9b02716
- T. Niu, J. Lu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, e1706576 (2018). https://doi.org/10.1002/adma.201706576
- X.D. Li, S. Fu, S.Y. Liu, Y.L. Wu, W.X. Zhang, W.J. Song, J.F. Fang, Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy 64, 103962 (2019). https://doi.org/10.1016/j.nanoen.2019.103962
- X.D. Li, W. Zhang, Y.C. Wang, W. Zhang, H.Q. Wang, J. Fang, In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat. Commun. 9, 3806 (2018). https://doi.org/10.1038/s41467-018-06204-2
- C. Liu, W. Li, H. Li, H. Wang, C. Zhang et al., Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 9, 1803572 (2019). https://doi.org/10.1002/aenm.201803572
- L. Chen, L. Wan, X. Li, W. Zhang, S. Fu et al., Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation. Chem. Mater. 31, 9032–9039 (2019). https://doi.org/10.1021/acs.chemmater.9b03277
- W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Precise control of crystal growth for highly efficient CsPbI2Br Perovskite solar cells. Joule 3, 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011
- H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang et al., A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9, 1902279 (2019). https://doi.org/10.1002/aenm.201902279
- J. Xue, R. Wang, K.L. Wang, Z.K. Wang, I. Yavuz et al., Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948–13953 (2019). https://doi.org/10.1021/jacs.9b06940
- F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang et al., Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 4, 2571–2578 (2019). https://doi.org/10.1021/acsenergylett.9b01920
- D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang et al., Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3, 970–978 (2018). https://doi.org/10.1021/acsenergylett.8b00270
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
- Y. Zong, Z. Zhou, M. Chen, N.P. Padture, Y. Zhou, Lewis adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1800997 (2018). https://doi.org/10.1002/aenm.201800997
- S. Fu, X. Li, L. Wan, Y. Wu, W. Zhang et al., Efficient passivation with lead pyridine-2-carboxylic for high-performance and stable perovskite solar cells. Adv. Energy Mater. 9, 1901852 (2019). https://doi.org/10.1002/aenm.201901852
- E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)
- Q. Zhao, A. Hazarika, X. Chen, S.P. Harvey, B.W. Larson et al., High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019). https://doi.org/10.1038/s41467-019-10856-z
- Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li, J. Fang, Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. J. Mater. Chem. A 7, 14136–14144 (2019). https://doi.org/10.1039/c9ta04192c
- S.C. Liu, Z. Li, Y. Yang, X. Wang, Y.X. Chen, D.J. Xue, J.S. Hu, Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells. J. Am. Chem. Soc. 141, 18075–18082 (2019). https://doi.org/10.1021/jacs.9b07182
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
- H. Sun, J. Zhang, X. Gan, L. Yu, H. Yuan et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 9, 1900896 (2019)
- Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 58, 16691–16696 (2019). https://doi.org/10.1002/anie.201910800
- Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen et al., Inorganic CsPbI2Br perovskite solar cells: the progress and perspective. Solar RRL 3, 1800239 (2019). https://doi.org/10.1002/solr.201800239
- Y. Wu, X. Li, H. Zeng, Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 4, 673–681 (2019). https://doi.org/10.1021/acsenergylett.8b02100
- W. Li, M.U. Rothmann, A. Liu, Z. Wang, Y. Zhang et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr 2 solar cells. Adv. Energy Mater. 7, 1700946 (2017). https://doi.org/10.1002/aenm.201700946
- H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
- D.W. Ferdani, S.R. Pering, D. Ghosh, P. Kubiak, A.B. Walker et al., Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019). https://doi.org/10.1039/c9ee00476a
References
X. Li, Y. Wang, H. Sun, H. Zeng, Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 29(36), 1701185 (2017). https://doi.org/10.1002/adma.201701185
Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019). https://doi.org/10.1039/c8ee03559h
C.C. Vidyasagar, B.M. Munoz Flores, V.M. Jimenez Perez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, J.M. Luther, Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). https://doi.org/10.1016/j.joule.2020.04.006
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye et al., Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650
K.L. Wang, R. Wang, Z.K. Wang, M. Li, Y. Zhang et al., Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett. 19, 5176–5184 (2019). https://doi.org/10.1021/acs.nanolett.9b01553
Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30, 1909972 (2020). https://doi.org/10.1002/adfm.201909972
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
W. Zhang, L. Wan, X. Li, Y. Wu, S. Fu, J. Fang, A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. J. Mater. Chem. A 7, 18898–18905 (2019). https://doi.org/10.1039/C9TA05048E
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
Q. Xiao, J. Tian, Q. Xue, J. Wang, B. Xiong et al., Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 58, 17724–17730 (2019). https://doi.org/10.1002/anie.201907331
Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen et al., Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv. Mater. 31, 1902781 (2019). https://doi.org/10.1002/adma.201902781
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 6408 (2018). https://doi.org/10.1126/science.aat8235
J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 117 (2020). https://doi.org/10.1038/s41467-019-13909-5
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with oxidation in precursor ink. Nat. Energy 4, 864–873 (2019)
T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, e1900605 (2019). https://doi.org/10.1002/adma.201900605
K. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao et al., Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv. Mater. 32, e1908011 (2020). https://doi.org/10.1002/adma.201908011
C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018). https://doi.org/10.1021/jacs.7b13229
S. Zhang, W. Chen, S. Wu, R. Chen, Y. Huang et al., A general strategy to prepare high-quality inorganic charge-transporting layers for efficient and stable all-layer-inorganic perovskite solar cells. J. Mater. Chem. A 7, 18603–18611 (2019). https://doi.org/10.1039/C9TA05802H
S. Zhang, W. Chen, S. Wu, R. Chen, Z. Liu et al., Hybrid inorganic electron-transporting layer coupled with a halogen-resistant electrode in CsPbI2Br-based perovskite solar cells to achieve robust long-term stability. ACS Appl. Mater. Interfaces. 11, 43303–43311 (2019). https://doi.org/10.1021/acsami.9b17464
X. Liu, Y. Xiao, Q. Zeng, J. Jiang, Y. Li, Large-area organic-free perovskite solar cells with high thermal stability. J. Phys. Chem. Lett. 10, 6382–6388 (2019). https://doi.org/10.1021/acs.jpclett.9b02644
W. Xu, F. He, M. Zhang, P. Nie, S. Zhang et al., Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 4, 2491–2499 (2019). https://doi.org/10.1021/acsenergylett.9b01662
C. Liu, Y. Yang, C. Zhang, S. Wu, L. Wei et al., Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 32, e1907361 (2020). https://doi.org/10.1002/adma.201907361
H. Rao, S. Ye, F. Gu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv. Energy Mater. 8, 1800758 (2018). https://doi.org/10.1002/aenm.201800758
S. Fu, W. Zhang, X. Li, L. Wan, Y. Wu et al., Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett. 5, 676–684 (2020). https://doi.org/10.1021/acsenergylett.9b02716
T. Niu, J. Lu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, e1706576 (2018). https://doi.org/10.1002/adma.201706576
X.D. Li, S. Fu, S.Y. Liu, Y.L. Wu, W.X. Zhang, W.J. Song, J.F. Fang, Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy 64, 103962 (2019). https://doi.org/10.1016/j.nanoen.2019.103962
X.D. Li, W. Zhang, Y.C. Wang, W. Zhang, H.Q. Wang, J. Fang, In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat. Commun. 9, 3806 (2018). https://doi.org/10.1038/s41467-018-06204-2
C. Liu, W. Li, H. Li, H. Wang, C. Zhang et al., Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 9, 1803572 (2019). https://doi.org/10.1002/aenm.201803572
L. Chen, L. Wan, X. Li, W. Zhang, S. Fu et al., Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation. Chem. Mater. 31, 9032–9039 (2019). https://doi.org/10.1021/acs.chemmater.9b03277
W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Precise control of crystal growth for highly efficient CsPbI2Br Perovskite solar cells. Joule 3, 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011
H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang et al., A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9, 1902279 (2019). https://doi.org/10.1002/aenm.201902279
J. Xue, R. Wang, K.L. Wang, Z.K. Wang, I. Yavuz et al., Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948–13953 (2019). https://doi.org/10.1021/jacs.9b06940
F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang et al., Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 4, 2571–2578 (2019). https://doi.org/10.1021/acsenergylett.9b01920
D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang et al., Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3, 970–978 (2018). https://doi.org/10.1021/acsenergylett.8b00270
D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
Y. Zong, Z. Zhou, M. Chen, N.P. Padture, Y. Zhou, Lewis adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1800997 (2018). https://doi.org/10.1002/aenm.201800997
S. Fu, X. Li, L. Wan, Y. Wu, W. Zhang et al., Efficient passivation with lead pyridine-2-carboxylic for high-performance and stable perovskite solar cells. Adv. Energy Mater. 9, 1901852 (2019). https://doi.org/10.1002/aenm.201901852
E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)
Q. Zhao, A. Hazarika, X. Chen, S.P. Harvey, B.W. Larson et al., High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019). https://doi.org/10.1038/s41467-019-10856-z
Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li, J. Fang, Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. J. Mater. Chem. A 7, 14136–14144 (2019). https://doi.org/10.1039/c9ta04192c
S.C. Liu, Z. Li, Y. Yang, X. Wang, Y.X. Chen, D.J. Xue, J.S. Hu, Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells. J. Am. Chem. Soc. 141, 18075–18082 (2019). https://doi.org/10.1021/jacs.9b07182
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
H. Sun, J. Zhang, X. Gan, L. Yu, H. Yuan et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 9, 1900896 (2019)
Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 58, 16691–16696 (2019). https://doi.org/10.1002/anie.201910800
Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen et al., Inorganic CsPbI2Br perovskite solar cells: the progress and perspective. Solar RRL 3, 1800239 (2019). https://doi.org/10.1002/solr.201800239
Y. Wu, X. Li, H. Zeng, Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 4, 673–681 (2019). https://doi.org/10.1021/acsenergylett.8b02100
W. Li, M.U. Rothmann, A. Liu, Z. Wang, Y. Zhang et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr 2 solar cells. Adv. Energy Mater. 7, 1700946 (2017). https://doi.org/10.1002/aenm.201700946
H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
D.W. Ferdani, S.R. Pering, D. Ghosh, P. Kubiak, A.B. Walker et al., Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019). https://doi.org/10.1039/c9ee00476a