Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects
Corresponding Author: Haitao Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 150
Abstract
The severe degradation of electrochemical performance for lithium-ion batteries (LIBs) at low temperatures poses a significant challenge to their practical applications. Consequently, extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li+ diffusion kinetics for achieving favorable low-temperature performance of LIBs. Herein, we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials. First, we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures. Second, detailed discussions concerning the key pathways (boosting electronic conductivity, enhancing Li+ diffusion kinetics, and inhibiting lithium dendrite) for improving the low-temperature performance of anode materials are presented. Third, several commonly used low-temperature anode materials are briefly introduced. Fourth, recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design, morphology control, surface & interface modifications, and multiphase materials. Finally, the challenges that remain to be solved in the field of low-temperature anode materials are discussed. This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
Highlights:
1 The working principles and limitations of current anode materials at low temperatures are elucidated.
2 Advantages and emphases of various modification strategies, including structural design, morphology control, surface & interface modifications, and multiphase materials of low-temperature anode materials, are reviewed.
3 Perspectives and challenges in developing novel low-temperature anode materials are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264
- Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33, e2100855 (2021). https://doi.org/10.1002/adma.202100855
- M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022). https://doi.org/10.1002/idm2.12040
- J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
- IEA, Paris. Global EV Policy Explorer (2022). https://www.iea.org/s/global-ev-policy-explorer
- M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, F.J. Puglia, S. Santee et al., Life verification of large capacity Yardney Li-ion cells and batteries in support of NASA missions. Int. J. Energy Res. 34, 116–132 (2010). https://doi.org/10.1002/er.1653
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
- G. Nagasubramanian, Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31, 99–104 (2001). https://doi.org/10.1023/1004113825283
- P. Selinis, F. Farmakis, Review—a review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance. J. Electrochem. Soc. 169, 010526 (2022). https://doi.org/10.1149/1945-7111/ac49cc
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 (2022). https://doi.org/10.1002/adfm.202200796
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
- Y. Na, X. Sun, A. Fan, S. Cai, C. Zheng, Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 32, 973–982 (2021). https://doi.org/10.1016/j.cclet.2020.09.007
- D. Zhang, C. Tan, T. Ou, S. Zhang, L. Li et al., Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review. Energy Rep. 8, 4525–4534 (2022). https://doi.org/10.1016/j.egyr.2022.03.130
- S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
- J. Sun, L. Ye, X. Zhao, P. Zhang, J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: a review. Molecules 28, 2108 (2023). https://doi.org/10.3390/molecules28052108
- Y. Zheng, T. Qian, J. Zhou, J. Liu, Z. Wang et al., Advanced strategies for improving lithium storage performance under cryogenic conditions. Adv. Energy Mater. 13, 2203719 (2023). https://doi.org/10.1002/aenm.202203719
- Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2, 434–442 (2023). https://doi.org/10.1002/idm2.12080
- C.E.L. Foss, A.M. Svensson, Ø. Gullbrekken, S. Sunde, F. Vullum-Bruer, Temperature effects on performance of graphite anodes in carbonate based electrolytes for lithium ion batteries. J. Energy Storage 17, 395–402 (2018). https://doi.org/10.1016/j.est.2018.04.001
- X. Dong, Y. Yang, P. Li, Z. Fang, Y. Wang et al., A high-rate and long-life rechargeable battery operated at –75 °C. Batter. Supercaps 3, 1016–1020 (2020). https://doi.org/10.1002/batt.202000117
- L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1–x S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
- G.A. Collins, H. Geaney, K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 9, 14172–14213 (2021). https://doi.org/10.1039/D1TA00998B
- Y. Li, G. Zheng, G. Liu, Z. Yuan, X. Huang et al., A review on electrode and electrolyte for lithium ion batteries under low temperature. Electroanalysis 35, e202300042 (2023). https://doi.org/10.1002/elan.202300042
- Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 50, 3178–3210 (2021). https://doi.org/10.1039/d0cs01017k
- P. Mei, Y. Zhang, W. Zhang, Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance. Nanoscale 15, 987–997 (2023). https://doi.org/10.1039/d2nr06294a
- Y. Li, K. Qian, Y.-B. He, Y.V. Kaneti, D. Liu et al., Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. J. Power. Sources 342, 24–30 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.033
- P.F. Lang, Is a metal “ions in a sea of delocalized electrons?” J. Chem. Educ. 95, 1787–1793 (2018). https://doi.org/10.1021/acs.jchemed.8b00239
- X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54, 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
- X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
- L. Zhao, H. Zhao, X. Long, Z. Li, Z. Du, Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl. Mater. Interfaces 10, 35963–35971 (2018). https://doi.org/10.1021/acsami.8b12055
- M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34, e2105611 (2022). https://doi.org/10.1002/adma.202105611
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- J. Han, P. Liu, Y. Ito, X. Guo, A. Hirata et al., Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy 45, 273–279 (2018). https://doi.org/10.1016/j.nanoen.2018.01.006
- M.C. Smart, B.V. Ratnakumar, Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158, A379–A389 (2011). https://doi.org/10.1149/1.3544439
- H. Ge, T. Aoki, N. Ikeda, S. Suga, T. Isobe et al., Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization. J. Electrochem. Soc. 164, A1050–A1060 (2017). https://doi.org/10.1149/2.0461706jes
- C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24–A27 (2015). https://doi.org/10.1149/2.0041502eel
- P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020). https://doi.org/10.1016/j.ensm.2020.06.042
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- D. Deng, Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3, 385–418 (2015). https://doi.org/10.1002/ese3.95
- Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6, 88683–88700 (2016). https://doi.org/10.1039/C6RA19482F
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei et al., In-situ formation of Co1–xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem. Eng. J. 421, 127755 (2021). https://doi.org/10.1016/j.cej.2020.127755
- J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35, e2210734 (2023). https://doi.org/10.1002/adma.202210734
- S. Faraji, O. Yildiz, C. Rost, K. Stano, N. Farahbakhsh et al., Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 111, 411–418 (2017). https://doi.org/10.1016/j.carbon.2016.10.012
- S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang et al., Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23–28 (2005). https://doi.org/10.1016/j.electacta.2005.04.045
- Q. Wei, X. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14, 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
- B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1–71 (2015). https://doi.org/10.1016/j.mser.2015.10.001
- J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. J. Power. Sources 159, 1340–1345 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.039
- X.-H. Ma, X. Cao, Y.-Y. Ye, F. Qiao, M.-F. Qian et al., Study on low-temperature performances of Nb16W5O55 anode for lithium-ion batteries. Solid State Ion. 353, 115376 (2020). https://doi.org/10.1016/j.ssi.2020.115376
- N.V. Kosova, D.Z. Tsydypylov, Effect of mechanical activation and carbon coating on electrochemistry of TiNb2O7 anodes for lithium-ion batteries. Batteries 8, 52 (2022). https://doi.org/10.3390/batteries8060052
- G. Yu, Q. Zhang, J. Jing, X. Wang, Y. Li et al., Bulk modification of porous TiNb2 O7 microsphere to achieve superior lithium-storage properties at low temperature. Small 19, e2303087 (2023). https://doi.org/10.1002/smll.202303087
- Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition. J. Power. Sources 515, 230601 (2021). https://doi.org/10.1016/j.jpowsour.2021.230601
- L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. 419, 129387 (2021). https://doi.org/10.1016/j.cej.2021.129387
- N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021). https://doi.org/10.1016/j.jmst.2020.06.037
- C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
- X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). https://doi.org/10.1016/j.nantod.2014.09.005
- X. Tian, L. Du, Y. Yan, S. Wu, An investigation into the charge-storage mechanism of MnO@Graphite as anode for lithium-ion batteries at low temperature. ChemElectroChem 6, 2248–2253 (2019). https://doi.org/10.1002/celc.201900324
- L. Tan, X. Lan, R. Hu, J. Liu, B. Yuan et al., Stable lithium storage at subzero temperatures for high-capacity Co3O4@graphene composite anodes. ChemNanoMat 7, 61–70 (2021). https://doi.org/10.1002/cnma.202000547
- J.-G. Han, I. Park, J. Cha, S. Park, S. Park et al., Interfacial architectures derived by lithium difluoro(bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability. ChemElectroChem 4, 3 (2017). https://doi.org/10.1002/celc.201600812
- H. Duan, L. Du, S. Zhang, Z. Chen, S. Wu, Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode. J. Mater. Chem. A 7, 8327–8334 (2019). https://doi.org/10.1039/C9TA00294D
- X. Liu, Y. Wang, Y. Yang, W. Lv, G. Lian et al., A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 70, 104550 (2020). https://doi.org/10.1016/j.nanoen.2020.104550
- W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196, 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
- L. Li, Y. Ma, F. Cui, Y. Li, D. Yu et al., Novel insight into rechargeable aluminum batteries with promising selenium Sulfide@Carbon nanofibers cathode. Adv. Mater. 35, e2209628 (2023). https://doi.org/10.1002/adma.202209628
- E. Markevich, G. Salitra, D. Aurbach, Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J. Electrochem. Soc. 163, A2407–A2412 (2016). https://doi.org/10.1149/2.1291610jes
- Y. Domi, H. Usui, T. Hirosawa, K. Sugimoto, T. Nakano et al., Impact of low temperatures on the lithiation and delithiation properties of Si-based electrodes in ionic liquid electrolytes. ACS Omega 7, 15846–15853 (2022). https://doi.org/10.1021/acsomega.2c00947
- H. Mou, W. Xiao, C. Miao, R. Li, L. Yu, Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front. Chem. 8, 141 (2020). https://doi.org/10.3389/fchem.2020.00141
- L. Tan, Y. Wu, D. Cheng, R. Hu, Tailoring electrolytes for Sn-based anodes toward Li storage at a low temperature of − 50 °C. Electrochim. Acta 469, 143225 (2023). https://doi.org/10.1016/j.electacta.2023.143225
- X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020). https://doi.org/10.1016/j.ensm.2020.05.010
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- Z. Yao, X. Xia, C.-A. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018). https://doi.org/10.1002/advs.201700786
- M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska et al., Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017). https://doi.org/10.1038/ncomms15636
- J. Li, T. Zhang, C. Han, H. Li, R. Shi et al., Crystallized lithium titanate nanosheets prepared via spark plasma sintering for ultra-high rate lithium ion batteries. J. Mater. Chem. A 7, 455–460 (2019). https://doi.org/10.1039/C8TA10680K
- Z. Lu, J. Wang, X. Cheng, W. Xie, Z. Gao et al., Riemannian surface on carbon anodes enables Li-ion storage at − 35 °C. ACS Cent. Sci. 8, 905–914 (2022). https://doi.org/10.1021/acscentsci.2c00411
- E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 p size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277–2283 (2015). https://doi.org/10.1021/jp509428c
- M. Marinaro, M. Pfanzelt, P. Kubiak, R. Marassi, M. Wohlfahrt-Mehrens, Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power. Sources 196, 9825–9829 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.008
- L. Tan, R. Hu, H. Zhang, X. Lan, J. Liu et al., Subzero temperature promotes stable lithium storage in SnO2. Energy Storage Mater. 36, 242–250 (2021). https://doi.org/10.1016/j.ensm.2020.12.033
- S. Choi, Y.-G. Cho, J. Kim, N.-S. Choi, H.-K. Song et al., Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range. Small 13, 201603045 (2017). https://doi.org/10.1002/smll.201603045
- J. Li, Z. Tang, Z. Zhang, Excellent low-temperature lithium intercalation performance of nanostructured hydrogen titanate electrodes. Electrochem. Solid-State Lett. 8, A570 (2005). https://doi.org/10.1149/1.2039960
- H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng et al., Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloys Compd. 701, 99–106 (2017). https://doi.org/10.1016/j.jallcom.2017.01.067
- I.M. Gavrilin, Y.O. Kudryashova, A.A. Kuz’mina, T.L. Kulova, A.M. Skundin et al., High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 888, 115209 (2021). https://doi.org/10.1016/j.jelechem.2021.115209
- J. Wang, M. Yang, J. Wang, D. Liu, G. Zou et al., Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a wide-temperature range. Energy Storage Mater. 47, 611–619 (2022). https://doi.org/10.1016/j.ensm.2022.02.050
- Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10, 8526–8535 (2016). https://doi.org/10.1021/acsnano.6b03683
- J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding et al., Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power. Sources 430, 74–79 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.024
- M. Shang, X. Chen, B. Li, J. Niu, A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode. ACS Nano 14, 3678–3686 (2020). https://doi.org/10.1021/acsnano.0c00556
- F. Lu, J. Liu, J. Xia, Y. Yang, X. Wang, Engineering C-N moieties in branched nitrogen-doped graphite tubular foam toward stable Li+-storage at low temperature. Ind. Eng. Chem. Res. 59, 5858–5864 (2020). https://doi.org/10.1021/acs.iecr.0c00847
- H.-H. Fan, H.-H. Li, Z.-W. Wang, W.-L. Li, J.-Z. Guo et al., Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 11, 47886–47893 (2019). https://doi.org/10.1021/acsami.9b15765
- C. Liang, Y. Tao, N. Yang, D. Huang, S. Li et al., Bubble-templated synthesis of Fe2(MoO4)3 hollow hierarchical microsphere with superior low-temperature behavior and high areal capacity for lithium ion batteries. Electrochim. Acta 311, 192–200 (2019). https://doi.org/10.1016/j.electacta.2019.04.133
- L. Li, S. Peng, J.K.Y. Lee, D. Ji, M. Srinivasan et al., Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
- A. Huang, Y. Ma, J. Peng, L. Li, S.-L. Chou et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141–162 (2021). https://doi.org/10.1016/j.esci.2021.11.006
- G. Zhao, Z. Wei, N. Zhang, K. Sun, Enhanced low temperature performances of expanded commercial mesocarbon microbe (MCMB) as lithium ion battery anodes. Mater. Lett. 89, 243–246 (2012). https://doi.org/10.1016/j.matlet.2012.07.066
- C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 (2022). https://doi.org/10.1002/aenm.202102550
- Q. Meng, F. Chen, Q. Hao, N. Li, X. Sun, Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J. Alloys Compd. 885, 160842 (2021). https://doi.org/10.1016/j.jallcom.2021.160842
- Z. Gao, X. Zhang, H. Hu, D. Guo, H. Zhao et al., Influencing factors of low- and high-temperature behavior of Co-doped Zn2SnO4–graphene–carbon nanocomposite as anode material for lithium-ion batteries. J. Electroanal. Chem. 791, 56–63 (2017). https://doi.org/10.1016/j.jelechem.2017.03.020
- Z. Pu, Q. Lan, Y. Li, S. Liu, D. Yu et al., Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at –20 °C. J. Power. Sources 437, 226890 (2019). https://doi.org/10.1016/j.jpowsour.2019.226890
- J. Li, Y. Li, Q. Lan, Z. Yang, X.-J. Lv, Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J. Power. Sources 423, 166–173 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.060
- G. Yan, X. Xu, W. Zhang, Z. Liu, W. Liu, Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology 31, 205402 (2020). https://doi.org/10.1088/1361-6528/ab7047
- T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin et al., Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9, e2105119 (2022). https://doi.org/10.1002/advs.202105119
- D. Lin, L. Lyu, K. Li, G. Chen, H. Yao et al., Ultrahigh capacity and cyclability of dual-phase TiO2 nanowires with low working potential at room and subzero temperatures. J. Mater. Chem. A 9, 9256–9265 (2021). https://doi.org/10.1039/D0TA12112F
- M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31, 2009397 (2021). https://doi.org/10.1002/adfm.202009397
- Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 (2017). https://doi.org/10.1002/aenm.201602684
- Z. Yao, H. Yin, L. Zhou, G. Pan, Y. Wang et al., Ti3+ self-doped Li4 Ti5 O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 15, e1905296 (2019). https://doi.org/10.1002/smll.201905296
- L. Hou, X. Qin, X. Gao, T. Guo, X. Li et al., Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J. Alloys Compd. 774, 38–45 (2019). https://doi.org/10.1016/j.jallcom.2018.09.364
- Z. Shen, Z. Zhang, S. Wang, Z. Liu, L. Wang et al., Mg2+–W6+ Co-doped Li2ZnTi3O8 anode with outstanding room, high and low temperature electrochemical performance for lithium-ion batteries. Inorg. Chem. Front. 6, 3288–3294 (2019). https://doi.org/10.1039/C9QI01008D
- Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2, 122–130 (2020). https://doi.org/10.1002/cey2.16
- N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura et al., Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification. Electrochem. Commun. 13, 1116–1118 (2011). https://doi.org/10.1016/j.elecom.2011.07.014
- K. Li, Y. Zhang, Y. Sun, Y. Xu, H. Zhang et al., Template-free synthesis of biomass-derived carbon coated Li4Ti5O12 microspheres as high performance anodes for lithium-ion batteries. Appl. Surf. Sci. 459, 572–582 (2018). https://doi.org/10.1016/j.apsusc.2018.08.047
- W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes. Small Struct. 1, 2070001 (2020). https://doi.org/10.1002/sstr.202070001
- Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 9, 17145–17154 (2017). https://doi.org/10.1021/acsami.7b03489
- Y. Wang, Y.-X. Zhang, W.-J. Yang, S. Jiang, X.-W. Hou et al., Enhanced rate performance of Li4Ti5O12 anode for advanced lithium batteries. J. Electrochem. Soc. 166, A5014–A5018 (2018). https://doi.org/10.1149/2.0041903jes
- F. Nobili, M. Mancini, S. Dsoke, R. Tossici, R. Marassi, Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. J. Power. Sources 195, 7090–7097 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.001
- Z. Zhang, T. Hu, Q. Sun, Y. Chen, Q. Yang et al., The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power. Sources 453, 227908 (2020). https://doi.org/10.1016/j.jpowsour.2020.227908
- L. Tan, X. Lan, J. Chen, H. Zhang, R. Hu et al., LiF-induced stable solid electrolyte interphase for a wide temperature SnO2-based anode extensible to –50℃. Adv. Energy Mater. 11, 2101855 (2021). https://doi.org/10.1002/aenm.202101855
- X. Liu, T. Zhang, X. Shi, Y. Ma, D. Song et al., Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries. Adv. Sci. 9, e2104531 (2022). https://doi.org/10.1002/advs.202104531
- Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6, 045025 (2019). https://doi.org/10.1088/2053-1583/ab30f9
- D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur Co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 27, 387–395 (2020). https://doi.org/10.1016/j.ensm.2020.02.019
- A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch et al., Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior. J. Power. Sources 363, 70–77 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.062
- Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, 15292 (2017). https://doi.org/10.1038/s41598-017-15504-4
- Y. Yan, L. Ben, Y. Zhan, X. Huang, Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 187, 186–192 (2016). https://doi.org/10.1016/j.electacta.2015.11.015
- G. Wang, J. Chen, F. Zhang, L. Zhao, Q. Chen et al., Enhanced low-temperature performance of multiscale (Nb2O5/TiNb2O7)@C nanoarchitectures with intensified ion diffusion kinetics. J. Energy Storage 74, 109415 (2023). https://doi.org/10.1016/j.est.2023.109415
- B. Hu, X. Zhou, J. Xu, X. Wang, N. Yuan et al., Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li4Ti5O12 electrode. ChemElectroChem 7, 716–722 (2020). https://doi.org/10.1002/celc.201901914
- A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018). https://doi.org/10.1002/aenm.201701706
- W. Ma, Y. Wang, Y. Yang, X. Wang, Z. Yuan et al., Temperature-dependent Li storage performance in nanoporous Cu–Ge–Al alloy. ACS Appl. Mater. Interfaces 11, 9073–9082 (2019). https://doi.org/10.1021/acsami.8b20654
- L. Lin, L. Zhang, S. Wang, F. Kang, B. Li, Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J. Mater. Chem. A 11, 7867–7897 (2023). https://doi.org/10.1039/D3TA00320E
- P. Wang, J. Tian, J. Hu, X. Zhou, C. Li, Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 11, 7390–7400 (2017). https://doi.org/10.1021/acsnano.7b03665
- C.-K. Ho, C.-Y.V. Li, Z. Deng, K.-Y. Chan, H. Yung et al., Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon 145, 614–621 (2019). https://doi.org/10.1016/j.carbon.2019.01.068
- Y. Xue, H. Li, M. Zhang, W. Yu, K. Zhuo et al., MnO@N–C/flake graphite composite featuring bottom-top charge transfer channels and superior Li-storage performance at low-temperature. J. Alloys Compd. 848, 156571 (2020). https://doi.org/10.1016/j.jallcom.2020.156571
- G. Wang, M. Aubin, A. Mehta, H. Tian, J. Chang et al., Stabilization of Sn anode through structural reconstruction of a Cu–Sn intermetallic coating layer. Adv. Mater. 32, e2003684 (2020). https://doi.org/10.1002/adma.202003684
- Z. Yi, Z. Wang, Y. Cheng, L. Wang, Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy Environ. Mater. 1, 132–147 (2018). https://doi.org/10.1002/eem2.12016
- J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga et al., Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021). https://doi.org/10.1038/s41563-020-00879-z
- F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang et al., Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021). https://doi.org/10.1038/s41586-021-04168-w
- H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
- H. Liang, L. Liu, N. Wang, W. Zhang, C.-T. Hung et al., Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at − 40 ℃. Adv. Mater. 34, e2202873 (2022). https://doi.org/10.1002/adma.202202873
- S.X. Drakopoulos, A. Gholamipour-Shirazi, P. MacDonald, R.C. Parini, C.D. Reynolds et al., Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning. Cell Rep. Phys. Sci. 2, 100683 (2021). https://doi.org/10.1016/j.xcrp.2021.100683
References
G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264
Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33, e2100855 (2021). https://doi.org/10.1002/adma.202100855
M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022). https://doi.org/10.1002/idm2.12040
J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
IEA, Paris. Global EV Policy Explorer (2022). https://www.iea.org/s/global-ev-policy-explorer
M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, F.J. Puglia, S. Santee et al., Life verification of large capacity Yardney Li-ion cells and batteries in support of NASA missions. Int. J. Energy Res. 34, 116–132 (2010). https://doi.org/10.1002/er.1653
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
G. Nagasubramanian, Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31, 99–104 (2001). https://doi.org/10.1023/1004113825283
P. Selinis, F. Farmakis, Review—a review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance. J. Electrochem. Soc. 169, 010526 (2022). https://doi.org/10.1149/1945-7111/ac49cc
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021). https://doi.org/10.1002/aenm.202101126
S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 (2022). https://doi.org/10.1002/adfm.202200796
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
Y. Na, X. Sun, A. Fan, S. Cai, C. Zheng, Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 32, 973–982 (2021). https://doi.org/10.1016/j.cclet.2020.09.007
D. Zhang, C. Tan, T. Ou, S. Zhang, L. Li et al., Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review. Energy Rep. 8, 4525–4534 (2022). https://doi.org/10.1016/j.egyr.2022.03.130
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
J. Sun, L. Ye, X. Zhao, P. Zhang, J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: a review. Molecules 28, 2108 (2023). https://doi.org/10.3390/molecules28052108
Y. Zheng, T. Qian, J. Zhou, J. Liu, Z. Wang et al., Advanced strategies for improving lithium storage performance under cryogenic conditions. Adv. Energy Mater. 13, 2203719 (2023). https://doi.org/10.1002/aenm.202203719
Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2, 434–442 (2023). https://doi.org/10.1002/idm2.12080
C.E.L. Foss, A.M. Svensson, Ø. Gullbrekken, S. Sunde, F. Vullum-Bruer, Temperature effects on performance of graphite anodes in carbonate based electrolytes for lithium ion batteries. J. Energy Storage 17, 395–402 (2018). https://doi.org/10.1016/j.est.2018.04.001
X. Dong, Y. Yang, P. Li, Z. Fang, Y. Wang et al., A high-rate and long-life rechargeable battery operated at –75 °C. Batter. Supercaps 3, 1016–1020 (2020). https://doi.org/10.1002/batt.202000117
L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1–x S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
G.A. Collins, H. Geaney, K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 9, 14172–14213 (2021). https://doi.org/10.1039/D1TA00998B
Y. Li, G. Zheng, G. Liu, Z. Yuan, X. Huang et al., A review on electrode and electrolyte for lithium ion batteries under low temperature. Electroanalysis 35, e202300042 (2023). https://doi.org/10.1002/elan.202300042
Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 50, 3178–3210 (2021). https://doi.org/10.1039/d0cs01017k
P. Mei, Y. Zhang, W. Zhang, Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance. Nanoscale 15, 987–997 (2023). https://doi.org/10.1039/d2nr06294a
Y. Li, K. Qian, Y.-B. He, Y.V. Kaneti, D. Liu et al., Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. J. Power. Sources 342, 24–30 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.033
P.F. Lang, Is a metal “ions in a sea of delocalized electrons?” J. Chem. Educ. 95, 1787–1793 (2018). https://doi.org/10.1021/acs.jchemed.8b00239
X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54, 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
L. Zhao, H. Zhao, X. Long, Z. Li, Z. Du, Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl. Mater. Interfaces 10, 35963–35971 (2018). https://doi.org/10.1021/acsami.8b12055
M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34, e2105611 (2022). https://doi.org/10.1002/adma.202105611
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
J. Han, P. Liu, Y. Ito, X. Guo, A. Hirata et al., Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy 45, 273–279 (2018). https://doi.org/10.1016/j.nanoen.2018.01.006
M.C. Smart, B.V. Ratnakumar, Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158, A379–A389 (2011). https://doi.org/10.1149/1.3544439
H. Ge, T. Aoki, N. Ikeda, S. Suga, T. Isobe et al., Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization. J. Electrochem. Soc. 164, A1050–A1060 (2017). https://doi.org/10.1149/2.0461706jes
C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24–A27 (2015). https://doi.org/10.1149/2.0041502eel
P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020). https://doi.org/10.1016/j.ensm.2020.06.042
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
D. Deng, Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3, 385–418 (2015). https://doi.org/10.1002/ese3.95
Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6, 88683–88700 (2016). https://doi.org/10.1039/C6RA19482F
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei et al., In-situ formation of Co1–xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem. Eng. J. 421, 127755 (2021). https://doi.org/10.1016/j.cej.2020.127755
J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35, e2210734 (2023). https://doi.org/10.1002/adma.202210734
S. Faraji, O. Yildiz, C. Rost, K. Stano, N. Farahbakhsh et al., Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 111, 411–418 (2017). https://doi.org/10.1016/j.carbon.2016.10.012
S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang et al., Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23–28 (2005). https://doi.org/10.1016/j.electacta.2005.04.045
Q. Wei, X. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14, 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1–71 (2015). https://doi.org/10.1016/j.mser.2015.10.001
J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. J. Power. Sources 159, 1340–1345 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.039
X.-H. Ma, X. Cao, Y.-Y. Ye, F. Qiao, M.-F. Qian et al., Study on low-temperature performances of Nb16W5O55 anode for lithium-ion batteries. Solid State Ion. 353, 115376 (2020). https://doi.org/10.1016/j.ssi.2020.115376
N.V. Kosova, D.Z. Tsydypylov, Effect of mechanical activation and carbon coating on electrochemistry of TiNb2O7 anodes for lithium-ion batteries. Batteries 8, 52 (2022). https://doi.org/10.3390/batteries8060052
G. Yu, Q. Zhang, J. Jing, X. Wang, Y. Li et al., Bulk modification of porous TiNb2 O7 microsphere to achieve superior lithium-storage properties at low temperature. Small 19, e2303087 (2023). https://doi.org/10.1002/smll.202303087
Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition. J. Power. Sources 515, 230601 (2021). https://doi.org/10.1016/j.jpowsour.2021.230601
L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. 419, 129387 (2021). https://doi.org/10.1016/j.cej.2021.129387
N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021). https://doi.org/10.1016/j.jmst.2020.06.037
C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). https://doi.org/10.1016/j.nantod.2014.09.005
X. Tian, L. Du, Y. Yan, S. Wu, An investigation into the charge-storage mechanism of MnO@Graphite as anode for lithium-ion batteries at low temperature. ChemElectroChem 6, 2248–2253 (2019). https://doi.org/10.1002/celc.201900324
L. Tan, X. Lan, R. Hu, J. Liu, B. Yuan et al., Stable lithium storage at subzero temperatures for high-capacity Co3O4@graphene composite anodes. ChemNanoMat 7, 61–70 (2021). https://doi.org/10.1002/cnma.202000547
J.-G. Han, I. Park, J. Cha, S. Park, S. Park et al., Interfacial architectures derived by lithium difluoro(bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability. ChemElectroChem 4, 3 (2017). https://doi.org/10.1002/celc.201600812
H. Duan, L. Du, S. Zhang, Z. Chen, S. Wu, Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode. J. Mater. Chem. A 7, 8327–8334 (2019). https://doi.org/10.1039/C9TA00294D
X. Liu, Y. Wang, Y. Yang, W. Lv, G. Lian et al., A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 70, 104550 (2020). https://doi.org/10.1016/j.nanoen.2020.104550
W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196, 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
L. Li, Y. Ma, F. Cui, Y. Li, D. Yu et al., Novel insight into rechargeable aluminum batteries with promising selenium Sulfide@Carbon nanofibers cathode. Adv. Mater. 35, e2209628 (2023). https://doi.org/10.1002/adma.202209628
E. Markevich, G. Salitra, D. Aurbach, Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J. Electrochem. Soc. 163, A2407–A2412 (2016). https://doi.org/10.1149/2.1291610jes
Y. Domi, H. Usui, T. Hirosawa, K. Sugimoto, T. Nakano et al., Impact of low temperatures on the lithiation and delithiation properties of Si-based electrodes in ionic liquid electrolytes. ACS Omega 7, 15846–15853 (2022). https://doi.org/10.1021/acsomega.2c00947
H. Mou, W. Xiao, C. Miao, R. Li, L. Yu, Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front. Chem. 8, 141 (2020). https://doi.org/10.3389/fchem.2020.00141
L. Tan, Y. Wu, D. Cheng, R. Hu, Tailoring electrolytes for Sn-based anodes toward Li storage at a low temperature of − 50 °C. Electrochim. Acta 469, 143225 (2023). https://doi.org/10.1016/j.electacta.2023.143225
X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020). https://doi.org/10.1016/j.ensm.2020.05.010
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
Z. Yao, X. Xia, C.-A. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018). https://doi.org/10.1002/advs.201700786
M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska et al., Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017). https://doi.org/10.1038/ncomms15636
J. Li, T. Zhang, C. Han, H. Li, R. Shi et al., Crystallized lithium titanate nanosheets prepared via spark plasma sintering for ultra-high rate lithium ion batteries. J. Mater. Chem. A 7, 455–460 (2019). https://doi.org/10.1039/C8TA10680K
Z. Lu, J. Wang, X. Cheng, W. Xie, Z. Gao et al., Riemannian surface on carbon anodes enables Li-ion storage at − 35 °C. ACS Cent. Sci. 8, 905–914 (2022). https://doi.org/10.1021/acscentsci.2c00411
E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 p size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277–2283 (2015). https://doi.org/10.1021/jp509428c
M. Marinaro, M. Pfanzelt, P. Kubiak, R. Marassi, M. Wohlfahrt-Mehrens, Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power. Sources 196, 9825–9829 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.008
L. Tan, R. Hu, H. Zhang, X. Lan, J. Liu et al., Subzero temperature promotes stable lithium storage in SnO2. Energy Storage Mater. 36, 242–250 (2021). https://doi.org/10.1016/j.ensm.2020.12.033
S. Choi, Y.-G. Cho, J. Kim, N.-S. Choi, H.-K. Song et al., Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range. Small 13, 201603045 (2017). https://doi.org/10.1002/smll.201603045
J. Li, Z. Tang, Z. Zhang, Excellent low-temperature lithium intercalation performance of nanostructured hydrogen titanate electrodes. Electrochem. Solid-State Lett. 8, A570 (2005). https://doi.org/10.1149/1.2039960
H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng et al., Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloys Compd. 701, 99–106 (2017). https://doi.org/10.1016/j.jallcom.2017.01.067
I.M. Gavrilin, Y.O. Kudryashova, A.A. Kuz’mina, T.L. Kulova, A.M. Skundin et al., High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 888, 115209 (2021). https://doi.org/10.1016/j.jelechem.2021.115209
J. Wang, M. Yang, J. Wang, D. Liu, G. Zou et al., Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a wide-temperature range. Energy Storage Mater. 47, 611–619 (2022). https://doi.org/10.1016/j.ensm.2022.02.050
Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10, 8526–8535 (2016). https://doi.org/10.1021/acsnano.6b03683
J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding et al., Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power. Sources 430, 74–79 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.024
M. Shang, X. Chen, B. Li, J. Niu, A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode. ACS Nano 14, 3678–3686 (2020). https://doi.org/10.1021/acsnano.0c00556
F. Lu, J. Liu, J. Xia, Y. Yang, X. Wang, Engineering C-N moieties in branched nitrogen-doped graphite tubular foam toward stable Li+-storage at low temperature. Ind. Eng. Chem. Res. 59, 5858–5864 (2020). https://doi.org/10.1021/acs.iecr.0c00847
H.-H. Fan, H.-H. Li, Z.-W. Wang, W.-L. Li, J.-Z. Guo et al., Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 11, 47886–47893 (2019). https://doi.org/10.1021/acsami.9b15765
C. Liang, Y. Tao, N. Yang, D. Huang, S. Li et al., Bubble-templated synthesis of Fe2(MoO4)3 hollow hierarchical microsphere with superior low-temperature behavior and high areal capacity for lithium ion batteries. Electrochim. Acta 311, 192–200 (2019). https://doi.org/10.1016/j.electacta.2019.04.133
L. Li, S. Peng, J.K.Y. Lee, D. Ji, M. Srinivasan et al., Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
A. Huang, Y. Ma, J. Peng, L. Li, S.-L. Chou et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141–162 (2021). https://doi.org/10.1016/j.esci.2021.11.006
G. Zhao, Z. Wei, N. Zhang, K. Sun, Enhanced low temperature performances of expanded commercial mesocarbon microbe (MCMB) as lithium ion battery anodes. Mater. Lett. 89, 243–246 (2012). https://doi.org/10.1016/j.matlet.2012.07.066
C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 (2022). https://doi.org/10.1002/aenm.202102550
Q. Meng, F. Chen, Q. Hao, N. Li, X. Sun, Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J. Alloys Compd. 885, 160842 (2021). https://doi.org/10.1016/j.jallcom.2021.160842
Z. Gao, X. Zhang, H. Hu, D. Guo, H. Zhao et al., Influencing factors of low- and high-temperature behavior of Co-doped Zn2SnO4–graphene–carbon nanocomposite as anode material for lithium-ion batteries. J. Electroanal. Chem. 791, 56–63 (2017). https://doi.org/10.1016/j.jelechem.2017.03.020
Z. Pu, Q. Lan, Y. Li, S. Liu, D. Yu et al., Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at –20 °C. J. Power. Sources 437, 226890 (2019). https://doi.org/10.1016/j.jpowsour.2019.226890
J. Li, Y. Li, Q. Lan, Z. Yang, X.-J. Lv, Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J. Power. Sources 423, 166–173 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.060
G. Yan, X. Xu, W. Zhang, Z. Liu, W. Liu, Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology 31, 205402 (2020). https://doi.org/10.1088/1361-6528/ab7047
T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin et al., Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9, e2105119 (2022). https://doi.org/10.1002/advs.202105119
D. Lin, L. Lyu, K. Li, G. Chen, H. Yao et al., Ultrahigh capacity and cyclability of dual-phase TiO2 nanowires with low working potential at room and subzero temperatures. J. Mater. Chem. A 9, 9256–9265 (2021). https://doi.org/10.1039/D0TA12112F
M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31, 2009397 (2021). https://doi.org/10.1002/adfm.202009397
Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 (2017). https://doi.org/10.1002/aenm.201602684
Z. Yao, H. Yin, L. Zhou, G. Pan, Y. Wang et al., Ti3+ self-doped Li4 Ti5 O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 15, e1905296 (2019). https://doi.org/10.1002/smll.201905296
L. Hou, X. Qin, X. Gao, T. Guo, X. Li et al., Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J. Alloys Compd. 774, 38–45 (2019). https://doi.org/10.1016/j.jallcom.2018.09.364
Z. Shen, Z. Zhang, S. Wang, Z. Liu, L. Wang et al., Mg2+–W6+ Co-doped Li2ZnTi3O8 anode with outstanding room, high and low temperature electrochemical performance for lithium-ion batteries. Inorg. Chem. Front. 6, 3288–3294 (2019). https://doi.org/10.1039/C9QI01008D
Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2, 122–130 (2020). https://doi.org/10.1002/cey2.16
N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura et al., Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification. Electrochem. Commun. 13, 1116–1118 (2011). https://doi.org/10.1016/j.elecom.2011.07.014
K. Li, Y. Zhang, Y. Sun, Y. Xu, H. Zhang et al., Template-free synthesis of biomass-derived carbon coated Li4Ti5O12 microspheres as high performance anodes for lithium-ion batteries. Appl. Surf. Sci. 459, 572–582 (2018). https://doi.org/10.1016/j.apsusc.2018.08.047
W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes. Small Struct. 1, 2070001 (2020). https://doi.org/10.1002/sstr.202070001
Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 9, 17145–17154 (2017). https://doi.org/10.1021/acsami.7b03489
Y. Wang, Y.-X. Zhang, W.-J. Yang, S. Jiang, X.-W. Hou et al., Enhanced rate performance of Li4Ti5O12 anode for advanced lithium batteries. J. Electrochem. Soc. 166, A5014–A5018 (2018). https://doi.org/10.1149/2.0041903jes
F. Nobili, M. Mancini, S. Dsoke, R. Tossici, R. Marassi, Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. J. Power. Sources 195, 7090–7097 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.001
Z. Zhang, T. Hu, Q. Sun, Y. Chen, Q. Yang et al., The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power. Sources 453, 227908 (2020). https://doi.org/10.1016/j.jpowsour.2020.227908
L. Tan, X. Lan, J. Chen, H. Zhang, R. Hu et al., LiF-induced stable solid electrolyte interphase for a wide temperature SnO2-based anode extensible to –50℃. Adv. Energy Mater. 11, 2101855 (2021). https://doi.org/10.1002/aenm.202101855
X. Liu, T. Zhang, X. Shi, Y. Ma, D. Song et al., Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries. Adv. Sci. 9, e2104531 (2022). https://doi.org/10.1002/advs.202104531
Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6, 045025 (2019). https://doi.org/10.1088/2053-1583/ab30f9
D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur Co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 27, 387–395 (2020). https://doi.org/10.1016/j.ensm.2020.02.019
A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch et al., Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior. J. Power. Sources 363, 70–77 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.062
Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, 15292 (2017). https://doi.org/10.1038/s41598-017-15504-4
Y. Yan, L. Ben, Y. Zhan, X. Huang, Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 187, 186–192 (2016). https://doi.org/10.1016/j.electacta.2015.11.015
G. Wang, J. Chen, F. Zhang, L. Zhao, Q. Chen et al., Enhanced low-temperature performance of multiscale (Nb2O5/TiNb2O7)@C nanoarchitectures with intensified ion diffusion kinetics. J. Energy Storage 74, 109415 (2023). https://doi.org/10.1016/j.est.2023.109415
B. Hu, X. Zhou, J. Xu, X. Wang, N. Yuan et al., Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li4Ti5O12 electrode. ChemElectroChem 7, 716–722 (2020). https://doi.org/10.1002/celc.201901914
A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018). https://doi.org/10.1002/aenm.201701706
W. Ma, Y. Wang, Y. Yang, X. Wang, Z. Yuan et al., Temperature-dependent Li storage performance in nanoporous Cu–Ge–Al alloy. ACS Appl. Mater. Interfaces 11, 9073–9082 (2019). https://doi.org/10.1021/acsami.8b20654
L. Lin, L. Zhang, S. Wang, F. Kang, B. Li, Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J. Mater. Chem. A 11, 7867–7897 (2023). https://doi.org/10.1039/D3TA00320E
P. Wang, J. Tian, J. Hu, X. Zhou, C. Li, Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 11, 7390–7400 (2017). https://doi.org/10.1021/acsnano.7b03665
C.-K. Ho, C.-Y.V. Li, Z. Deng, K.-Y. Chan, H. Yung et al., Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon 145, 614–621 (2019). https://doi.org/10.1016/j.carbon.2019.01.068
Y. Xue, H. Li, M. Zhang, W. Yu, K. Zhuo et al., MnO@N–C/flake graphite composite featuring bottom-top charge transfer channels and superior Li-storage performance at low-temperature. J. Alloys Compd. 848, 156571 (2020). https://doi.org/10.1016/j.jallcom.2020.156571
G. Wang, M. Aubin, A. Mehta, H. Tian, J. Chang et al., Stabilization of Sn anode through structural reconstruction of a Cu–Sn intermetallic coating layer. Adv. Mater. 32, e2003684 (2020). https://doi.org/10.1002/adma.202003684
Z. Yi, Z. Wang, Y. Cheng, L. Wang, Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy Environ. Mater. 1, 132–147 (2018). https://doi.org/10.1002/eem2.12016
J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga et al., Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021). https://doi.org/10.1038/s41563-020-00879-z
F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang et al., Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021). https://doi.org/10.1038/s41586-021-04168-w
H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
H. Liang, L. Liu, N. Wang, W. Zhang, C.-T. Hung et al., Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at − 40 ℃. Adv. Mater. 34, e2202873 (2022). https://doi.org/10.1002/adma.202202873
S.X. Drakopoulos, A. Gholamipour-Shirazi, P. MacDonald, R.C. Parini, C.D. Reynolds et al., Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning. Cell Rep. Phys. Sci. 2, 100683 (2021). https://doi.org/10.1016/j.xcrp.2021.100683