Induction Effect of Fluorine-Grafted Polymer-Based Electrolytes for High-Performance Lithium Metal Batteries
Corresponding Author: Xiaoyan Ji
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 256
Abstract
Quasi-solid-state composite electrolytes (QSCEs) show promise for high-performance solid-state batteries, while they still struggle with interfacial stability and cycling performance. Herein, a F-grafted QSCE (F-QSCE) was developed via copolymerizing the F monomers and ionic liquid monomers. The F-QSCE demonstrates better overall performance, such as high ionic conductivity of 1.21 mS cm–1 at 25 °C, wide electrochemical windows of 5.20 V, and stable cycling stability for Li//Li symmetric cells over 4000 h. This is attributed to the significant electronegativity difference between C and F in the fluorinated chain (‒CF2‒CF‒CF3), which causes the electron cloud to shift toward the F atom, surrounding it with a negative charge and producing the inductive effect. Furthermore, the interactions between Li+ and F, TFSI‒, and C are enhanced, reducing ion pair aggregation (Li+‒TFSI‒‒Li+) and promoting Li+ transport. Besides, ‒CF2‒CF‒CF3 decomposes to form LiF preferentially over TFSI–, resulting in better interfacial stability for F-QSCE. This work provides a pathway to enable the development of high-performance Li metal batteries.
Highlights:
1 Fluorine-grafted quasi-solid-state composite electrolyte (F-QSCE)@30 exhibits high ionic conductivity of 1.21 mS cm–1 at 25 °C.
2 The inductive effect weakens the coordination between Li+ and TFSI‒, enhancing Li+ transport.
3 LiF in the solid electrolyte interphase of F-QSCE@30 comes from decomposed F segments, not TFSI‒.
4 F-QSCE@30 maintains stability with Li metal for over 4000 h and inhibits dendrite growth.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
- B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang et al., Bulk/interfacial structure design of Li-rich Mn-based cathodes for all-solid-state lithium batteries. J. Am. Chem. Soc. 146(41), 28190–28200 (2024). https://doi.org/10.1021/jacs.4c08115
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- F. Chen, X. Wang, M. Armand, M. Forsyth, Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21(10), 1175–1182 (2022). https://doi.org/10.1038/s41563-022-01319-w
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- C. Ma, F. Xu, T. Song, Dual-layered interfacial evolution of lithium metal anode: sei analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14(17), 20197–20207 (2022). https://doi.org/10.1021/acsami.2c00842
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- X. Zhang, Y. Zhang, S. Zhou, J. Dang, C. Wang et al., Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery. Nano Res. 17(6), 5159–5167 (2024). https://doi.org/10.1007/s12274-024-6439-2
- H. Zhu, S. Li, L. Peng, W. Zhong, Q. Wu et al., Review of MOF-guided ion transport for lithium metal battery electrolytes. Nano Energy 125, 109571 (2024). https://doi.org/10.1016/j.nanoen.2024.109571
- L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du et al., Li-Solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem. Energy Rev. 7, 12 (2024). https://doi.org/10.1007/s41918-024-00212-1
- J. Hwang, K. Matsumoto, C.-Y. Chen, R. Hagiwara, Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy Environ. Sci. 14(11), 5834–5863 (2021). https://doi.org/10.1039/d1ee02567h
- Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energy Rev. 4(2), 169–193 (2021). https://doi.org/10.1007/s41918-020-00092-1
- Z. Wang, Y. Hou, S. Li, Z. Xu, X. Zhu et al., Quasi-solid composite polymer electrolyte-based structural batteries with high ionic conductivity and excellent mechanical properties. Small Struct. 5(8), 2400050 (2024). https://doi.org/10.1002/sstr.202400050
- P. Liang, S. Di, Y. Zhu, Z. Li, S. Wang et al., Realization of long-life proton battery by layer intercalatable electrolyte. Angew. Chem. Int. Ed. 63(38), e202409871 (2024). https://doi.org/10.1002/anie.202409871
- A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16(1), 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
- L. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang et al., A nano fiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 3(2), 100090 (2023). https://doi.org/10.1016/j.esci.2022.100090
- J. Yang, X. Zhang, M. Hou, C. Ni, C. Chen et al., Research advances in interface engineering of solid-state lithium batteries. Carbon Neutral. 4(1), e188 (2025). https://doi.org/10.1002/cnl2.188
- S. Di, H. Li, B. Zhai, X. Zhi, P. Niu et al., A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. 120(33), e2302375120 (2023). https://doi.org/10.1073/pnas.2302375120
- D. Zhang, S. Li, Q. Xiong, Z. Huang, H. Hong et al., Interface challenges and research progress toward solid polymer electrolytes-based lithium metal batteries. MetalMat 1(1), e13 (2024). https://doi.org/10.1002/metm.13
- T. Qin, H. Yang, Q. Li, X. Yu, H. Li, Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. Ind. Chem. Mater. 2(2), 191–225 (2024). https://doi.org/10.1039/D3IM00089C
- M. Dong, K. Zhang, X. Wan, S. Wang, S. Fan et al., Stable two-dimensional nanoconfined ionic liquids with highly efficient ionic conductivity. Small 18(14), e2108026 (2022). https://doi.org/10.1002/smll.202108026
- H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
- T. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22791–22796 (2021). https://doi.org/10.1002/anie.202106237
- A.R. Polu, H.-W. Rhee, Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrog. Energy 42(10), 7212–7219 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.160
- X. Gong, J. Wang, L. Zhong, G. Qi, F. Liu et al., Recent advances on cellulose-based solid polymer electrolytes. Ind. Chem. Mater. 3(1), 31–48 (2025). https://doi.org/10.1039/d4im00066h
- M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13(12), 2203640 (2023). https://doi.org/10.1002/aenm.202203640
- Y. Lu, X. Zhang, Y. Wu, H. Cheng, Y. Lu, In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries. Ind. Chem. Mater. (Advance ) (2025). https://doi.org/10.1039/d4im00082j
- X. Su, X.-P. Xu, Z.-Q. Ji, J. Wu, F. Ma et al., Polyethylene oxide-based composite solid electrolytes for lithium batteries: current progress, low-temperature and high-voltage limitations, and prospects. Electrochem. Energy Rev. 7(1), 2 (2024). https://doi.org/10.1007/s41918-023-00204-7
- T. Wang, B. Chen, C. Liu, T. Li, X. Liu, Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte. Angew. Chem. Int. Ed. 63(16), e202400960 (2024). https://doi.org/10.1002/anie.202400960
- J. Huang, Z. Shen, S.J. Robertson, Y. Lin, J. Zhu et al., Fluorine grafted gel polymer electrolyte by in situ construction for high-voltage lithium metal batteries. Chem. Eng. J. 475, 145802 (2023). https://doi.org/10.1016/j.cej.2023.145802
- Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 (2023). https://doi.org/10.1016/j.mtener.2022.101239
- J. Fu, Z. Li, X. Zhou, Z. Li, X. Guo, Fluorinated solid electrolyte interphase derived from fluorinated polymer electrolyte to stabilize Li metal. Chemsuschem 16, e202300038 (2023). https://doi.org/10.1002/cssc.202300038
- Y. Ma, Q. Sun, Z. Wang, S. Wang, Y. Zhou et al., Improved interfacial chemistry and enhanced high voltage-resistance capability of an in situ polymerized electrolyte for LiNi0.8CO0.15Al0.05O2–Li batteries. J. Mater. Chem. A 9(6), 3597–3604 (2021). https://doi.org/10.1039/D0TA11170H
- S.P. Culver, A.G. Squires, N. Minafra, C.W.F. Armstrong, T. Krauskopf et al., Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12. J. Am. Chem. Soc. 142(50), 21210–21219 (2020). https://doi.org/10.1021/jacs.0c10735
- L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen et al., Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14(1), 2301 (2023). https://doi.org/10.1038/s41467-023-37997-6
- M. Ma, F. Shao, P. Wen, K. Chen, J. Li et al., Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6(12), 4255–4264 (2021). https://doi.org/10.1021/acsenergylett.1c02036
- L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
- Z. Chen, W. Zhao, Q. Liu, Y. Xu, Q. Wang et al., Janus quasi-solid electrolyte membranes with asymmetric porous structure for high-performance lithium-metal batteries. Nano-Micro Lett. 16(1), 114 (2024). https://doi.org/10.1007/s40820-024-01325-4
- H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15(1), 24 (2022). https://doi.org/10.1007/s40820-022-00987-2
- H. Hu, J. Li, Y. Wu, W. Fang, H. Zhang et al., Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes. J. Energy Chem. 99, 110–119 (2024). https://doi.org/10.1016/j.jechem.2024.07.027
- X. Xie, P. Zhang, X. Li, Z. Wang, X. Qin et al., Rational design of F-modified polyester electrolytes for sustainable all-solid-state lithium metal batteries. J. Am. Chem. Soc. 146(9), 5940–5951 (2024). https://doi.org/10.1021/jacs.3c12094
- H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10(21), 2000049 (2020). https://doi.org/10.1002/aenm.202000049
- M. Li, Z. Huang, Y. Liang, Z. Wu, H. Zhang et al., Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium–sulfur batteries. Adv. Funct. Mater. 35(3), 2413580 (2025). https://doi.org/10.1002/adfm.202413580
- Y. Su, X. Rong, A. Gao, Y. Liu, J. Li et al., Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 13(1), 4181 (2022). https://doi.org/10.1038/s41467-022-31792-5
- W. Zhao, P. Tian, T. Gao, W. Wang, C. Mu et al., Different-grain-sized boehmite nanops for stable all-solid-state lithium metal batteries. Nanoscale 16(23), 11163–11173 (2024). https://doi.org/10.1039/d4nr01025f
- Q. Sun, S. Wang, Y. Ma, D. Song, H. Zhang et al., Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 35(28), e2300998 (2023). https://doi.org/10.1002/adma.202300998
- W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
- J.P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz et al., Studies on LiFePO4 as cathode material using impedance spectroscopy. J. Power. Sour. 196(12), 5342–5348 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.121
- C. Tan, J. Yang, Q. Pan, Y. Li, Y. Li et al., Optimizing interphase structure to enhance electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode via anhydride additives. Chem. Eng. J. 410, 128422 (2021). https://doi.org/10.1016/j.cej.2021.128422
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- H. Lv, X. Chu, Y. Zhang, Q. Liu, F. Wu et al., Self-healing solid-state polymer electrolytes for high-safety and long-cycle lithium-ion batteries. Mater. Today 78, 181–208 (2024). https://doi.org/10.1016/j.mattod.2024.06.018
- Y. Wang, Z. Wu, F.M. Azad, Y. Zhu, L. Wang et al., Fluorination in advanced battery design. Nat. Rev. Mater. 9(2), 119–133 (2024). https://doi.org/10.1038/s41578-023-00623-4
- S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22(12), 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
- H. Sun, A. Celadon, C. Sg, K. Al-Haddad, S. Sun et al., Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy 3(3), 20230062 (2024). https://doi.org/10.1002/bte2.20230062
- Q. Wang, H. Xu, Z. Liu, S.-S. Chi, J. Chang et al., Ultrathin, mechanically robust quasi-solid composite electrolyte for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 16(17), 22482–22492 (2024). https://doi.org/10.1021/acsami.4c01426
- Y. Lin, Z. Yu, W. Yu, S.-L. Liao, E. Zhang et al., Impact of the fluorination degree of ether-based electrolyte solvents on Li-metal battery performance. J. Mater. Chem. A 12(5), 2986–2993 (2024). https://doi.org/10.1039/D3TA05535C
- P. Yang, Z. Wu, M. Li, C. Zhang, Y. Wang et al., Multifunctional nanocomposite polymer-integrated Ca-doped CeO2 electrolyte for robust and high-rate all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 64(6), e202417778 (2025). https://doi.org/10.1002/anie.202417778
- D. Zhang, Z. Liu, Y. Wu, S. Ji, Z. Yuan et al., In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 9(12), e2104277 (2022). https://doi.org/10.1002/advs.202104277
- B.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang et al., Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 4608940 (2019). https://doi.org/10.34133/2019/4608940
References
W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang et al., Bulk/interfacial structure design of Li-rich Mn-based cathodes for all-solid-state lithium batteries. J. Am. Chem. Soc. 146(41), 28190–28200 (2024). https://doi.org/10.1021/jacs.4c08115
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
F. Chen, X. Wang, M. Armand, M. Forsyth, Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21(10), 1175–1182 (2022). https://doi.org/10.1038/s41563-022-01319-w
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
C. Ma, F. Xu, T. Song, Dual-layered interfacial evolution of lithium metal anode: sei analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14(17), 20197–20207 (2022). https://doi.org/10.1021/acsami.2c00842
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
X. Zhang, Y. Zhang, S. Zhou, J. Dang, C. Wang et al., Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery. Nano Res. 17(6), 5159–5167 (2024). https://doi.org/10.1007/s12274-024-6439-2
H. Zhu, S. Li, L. Peng, W. Zhong, Q. Wu et al., Review of MOF-guided ion transport for lithium metal battery electrolytes. Nano Energy 125, 109571 (2024). https://doi.org/10.1016/j.nanoen.2024.109571
L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du et al., Li-Solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem. Energy Rev. 7, 12 (2024). https://doi.org/10.1007/s41918-024-00212-1
J. Hwang, K. Matsumoto, C.-Y. Chen, R. Hagiwara, Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy Environ. Sci. 14(11), 5834–5863 (2021). https://doi.org/10.1039/d1ee02567h
Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energy Rev. 4(2), 169–193 (2021). https://doi.org/10.1007/s41918-020-00092-1
Z. Wang, Y. Hou, S. Li, Z. Xu, X. Zhu et al., Quasi-solid composite polymer electrolyte-based structural batteries with high ionic conductivity and excellent mechanical properties. Small Struct. 5(8), 2400050 (2024). https://doi.org/10.1002/sstr.202400050
P. Liang, S. Di, Y. Zhu, Z. Li, S. Wang et al., Realization of long-life proton battery by layer intercalatable electrolyte. Angew. Chem. Int. Ed. 63(38), e202409871 (2024). https://doi.org/10.1002/anie.202409871
A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16(1), 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
L. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang et al., A nano fiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 3(2), 100090 (2023). https://doi.org/10.1016/j.esci.2022.100090
J. Yang, X. Zhang, M. Hou, C. Ni, C. Chen et al., Research advances in interface engineering of solid-state lithium batteries. Carbon Neutral. 4(1), e188 (2025). https://doi.org/10.1002/cnl2.188
S. Di, H. Li, B. Zhai, X. Zhi, P. Niu et al., A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. 120(33), e2302375120 (2023). https://doi.org/10.1073/pnas.2302375120
D. Zhang, S. Li, Q. Xiong, Z. Huang, H. Hong et al., Interface challenges and research progress toward solid polymer electrolytes-based lithium metal batteries. MetalMat 1(1), e13 (2024). https://doi.org/10.1002/metm.13
T. Qin, H. Yang, Q. Li, X. Yu, H. Li, Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. Ind. Chem. Mater. 2(2), 191–225 (2024). https://doi.org/10.1039/D3IM00089C
M. Dong, K. Zhang, X. Wan, S. Wang, S. Fan et al., Stable two-dimensional nanoconfined ionic liquids with highly efficient ionic conductivity. Small 18(14), e2108026 (2022). https://doi.org/10.1002/smll.202108026
H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
T. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22791–22796 (2021). https://doi.org/10.1002/anie.202106237
A.R. Polu, H.-W. Rhee, Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrog. Energy 42(10), 7212–7219 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.160
X. Gong, J. Wang, L. Zhong, G. Qi, F. Liu et al., Recent advances on cellulose-based solid polymer electrolytes. Ind. Chem. Mater. 3(1), 31–48 (2025). https://doi.org/10.1039/d4im00066h
M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13(12), 2203640 (2023). https://doi.org/10.1002/aenm.202203640
Y. Lu, X. Zhang, Y. Wu, H. Cheng, Y. Lu, In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries. Ind. Chem. Mater. (Advance ) (2025). https://doi.org/10.1039/d4im00082j
X. Su, X.-P. Xu, Z.-Q. Ji, J. Wu, F. Ma et al., Polyethylene oxide-based composite solid electrolytes for lithium batteries: current progress, low-temperature and high-voltage limitations, and prospects. Electrochem. Energy Rev. 7(1), 2 (2024). https://doi.org/10.1007/s41918-023-00204-7
T. Wang, B. Chen, C. Liu, T. Li, X. Liu, Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte. Angew. Chem. Int. Ed. 63(16), e202400960 (2024). https://doi.org/10.1002/anie.202400960
J. Huang, Z. Shen, S.J. Robertson, Y. Lin, J. Zhu et al., Fluorine grafted gel polymer electrolyte by in situ construction for high-voltage lithium metal batteries. Chem. Eng. J. 475, 145802 (2023). https://doi.org/10.1016/j.cej.2023.145802
Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 (2023). https://doi.org/10.1016/j.mtener.2022.101239
J. Fu, Z. Li, X. Zhou, Z. Li, X. Guo, Fluorinated solid electrolyte interphase derived from fluorinated polymer electrolyte to stabilize Li metal. Chemsuschem 16, e202300038 (2023). https://doi.org/10.1002/cssc.202300038
Y. Ma, Q. Sun, Z. Wang, S. Wang, Y. Zhou et al., Improved interfacial chemistry and enhanced high voltage-resistance capability of an in situ polymerized electrolyte for LiNi0.8CO0.15Al0.05O2–Li batteries. J. Mater. Chem. A 9(6), 3597–3604 (2021). https://doi.org/10.1039/D0TA11170H
S.P. Culver, A.G. Squires, N. Minafra, C.W.F. Armstrong, T. Krauskopf et al., Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12. J. Am. Chem. Soc. 142(50), 21210–21219 (2020). https://doi.org/10.1021/jacs.0c10735
L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen et al., Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14(1), 2301 (2023). https://doi.org/10.1038/s41467-023-37997-6
M. Ma, F. Shao, P. Wen, K. Chen, J. Li et al., Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6(12), 4255–4264 (2021). https://doi.org/10.1021/acsenergylett.1c02036
L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
Z. Chen, W. Zhao, Q. Liu, Y. Xu, Q. Wang et al., Janus quasi-solid electrolyte membranes with asymmetric porous structure for high-performance lithium-metal batteries. Nano-Micro Lett. 16(1), 114 (2024). https://doi.org/10.1007/s40820-024-01325-4
H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15(1), 24 (2022). https://doi.org/10.1007/s40820-022-00987-2
H. Hu, J. Li, Y. Wu, W. Fang, H. Zhang et al., Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes. J. Energy Chem. 99, 110–119 (2024). https://doi.org/10.1016/j.jechem.2024.07.027
X. Xie, P. Zhang, X. Li, Z. Wang, X. Qin et al., Rational design of F-modified polyester electrolytes for sustainable all-solid-state lithium metal batteries. J. Am. Chem. Soc. 146(9), 5940–5951 (2024). https://doi.org/10.1021/jacs.3c12094
H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10(21), 2000049 (2020). https://doi.org/10.1002/aenm.202000049
M. Li, Z. Huang, Y. Liang, Z. Wu, H. Zhang et al., Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium–sulfur batteries. Adv. Funct. Mater. 35(3), 2413580 (2025). https://doi.org/10.1002/adfm.202413580
Y. Su, X. Rong, A. Gao, Y. Liu, J. Li et al., Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 13(1), 4181 (2022). https://doi.org/10.1038/s41467-022-31792-5
W. Zhao, P. Tian, T. Gao, W. Wang, C. Mu et al., Different-grain-sized boehmite nanops for stable all-solid-state lithium metal batteries. Nanoscale 16(23), 11163–11173 (2024). https://doi.org/10.1039/d4nr01025f
Q. Sun, S. Wang, Y. Ma, D. Song, H. Zhang et al., Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 35(28), e2300998 (2023). https://doi.org/10.1002/adma.202300998
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
J.P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz et al., Studies on LiFePO4 as cathode material using impedance spectroscopy. J. Power. Sour. 196(12), 5342–5348 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.121
C. Tan, J. Yang, Q. Pan, Y. Li, Y. Li et al., Optimizing interphase structure to enhance electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode via anhydride additives. Chem. Eng. J. 410, 128422 (2021). https://doi.org/10.1016/j.cej.2021.128422
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
H. Lv, X. Chu, Y. Zhang, Q. Liu, F. Wu et al., Self-healing solid-state polymer electrolytes for high-safety and long-cycle lithium-ion batteries. Mater. Today 78, 181–208 (2024). https://doi.org/10.1016/j.mattod.2024.06.018
Y. Wang, Z. Wu, F.M. Azad, Y. Zhu, L. Wang et al., Fluorination in advanced battery design. Nat. Rev. Mater. 9(2), 119–133 (2024). https://doi.org/10.1038/s41578-023-00623-4
S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22(12), 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
H. Sun, A. Celadon, C. Sg, K. Al-Haddad, S. Sun et al., Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy 3(3), 20230062 (2024). https://doi.org/10.1002/bte2.20230062
Q. Wang, H. Xu, Z. Liu, S.-S. Chi, J. Chang et al., Ultrathin, mechanically robust quasi-solid composite electrolyte for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 16(17), 22482–22492 (2024). https://doi.org/10.1021/acsami.4c01426
Y. Lin, Z. Yu, W. Yu, S.-L. Liao, E. Zhang et al., Impact of the fluorination degree of ether-based electrolyte solvents on Li-metal battery performance. J. Mater. Chem. A 12(5), 2986–2993 (2024). https://doi.org/10.1039/D3TA05535C
P. Yang, Z. Wu, M. Li, C. Zhang, Y. Wang et al., Multifunctional nanocomposite polymer-integrated Ca-doped CeO2 electrolyte for robust and high-rate all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 64(6), e202417778 (2025). https://doi.org/10.1002/anie.202417778
D. Zhang, Z. Liu, Y. Wu, S. Ji, Z. Yuan et al., In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 9(12), e2104277 (2022). https://doi.org/10.1002/advs.202104277
B.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang et al., Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 4608940 (2019). https://doi.org/10.34133/2019/4608940