Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
Corresponding Author: Xiaodong Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 16
Abstract
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots. Compared to active sensing devices, passive piezoelectric and triboelectric tactile sensors consume less power, but lack the capability to resolve static stimuli. Here, we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired, passive, and bio-friendly tactile sensors for resolving both static and dynamic stimuli. Specifically, to emulate the polarization process of natural sensory cells, conjugated polymers (including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), polyaniline, or polypyrrole) are controllably polarized into two opposite states to create artificial potential differences. The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized. Then, a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs. Compared with the currently existing tactile sensing devices, the developed tactile sensors feature distinct characteristics including fully organic composition, high sensitivity (up to 773 mV N−1), ultralow power consumption (nW), as well as superior bio-friendliness. As demonstrations, both single point tactile perception (surface texture perception and material property perception) and two-dimensional tactile recognitions (shape or profile perception) with high accuracy are successfully realized using self-defined machine learning algorithms. This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
Highlights:
1 Fully organic and passive tactile sensors are developed via mimicking the sensing behavior of natural sensory cells.
2 Controllable polarizability of conjugated polymers is adopted for the first time to construct passive tactile sensors.
3 Machine learning-assisted surface texture detection, material property recognition, as well as shape/profile perception are realized with the tactile sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, eaat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- L.E. Osborn, A. Dragomir, J.L. Betthauser, C.L. Hunt, H.H. Nguyen et al., Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018). https://doi.org/10.1126/scirobotics.aat3818
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019). https://doi.org/10.1002/adma.201904765
- S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, 2005902 (2021). https://doi.org/10.1002/adma.202005902
- H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
- Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun et al., The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 31, 1805630 (2019). https://doi.org/10.1002/adma.201805630
- L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
- Y. Zang, F. Zhang, D. Huang, X. Gao, C.-A. Di et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 6, 6269 (2015). https://doi.org/10.1038/ncomms7269
- X. Wu, J. Zhu, J.W. Evans, A.C. Arias, A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric–triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv. Mater. 32, 2005970 (2020). https://doi.org/10.1002/adma.202005970
- Y. Zhang, Q. Liu, W. Ren, Y. Song, H. Luo et al., Bioinspired tactile sensation based on synergistic microcrack-bristle structure design towards high mechanical sensitivity and direction-resolving capability. Research 6, 017 (2023). https://doi.org/10.34133/research.0172
- M. Khatib, O. Zohar, W. Saliba, H. Haick, A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv. Mater. 32, 2000246 (2020). https://doi.org/10.1002/adma.202000246
- H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
- B.W. An, S. Heo, S. Ji, F. Bien, J.-U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
- N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
- J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
- Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
- J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 10, 4405 (2019). https://doi.org/10.1038/s41467-019-12303-5
- K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831 (2019). https://doi.org/10.1002/adma.201902831
- Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12, 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
- T. Zhang, Y. Ding, C. Hu, M. Zhang, W. Zhu et al., Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human–machine interaction. Adv. Mater. 35, 2203786 (2022). https://doi.org/10.1002/adma.202203786
- Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
- X. Wu, M. Ahmed, Y. Khan, M.E. Payne, J. Zhu et al., A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. 6, eaba1062 (2020). https://doi.org/10.1126/sciadv.aba1062
- X. Wu, J. Zhu, J.W. Evans, C. Lu, A.C. Arias, A potentiometric electronic skin for thermosensation and mechanosensation. Adv. Funct. Mater. 31, 2010824 (2021). https://doi.org/10.1002/adfm.202010824
- Q. Zhang, D. Lei, N. Liu, Z. Liu, Z. Ren et al., A zinc-ion battery-type self-powered pressure sensor with long service life. Adv. Mater. 34, 2205369 (2022). https://doi.org/10.1002/adma.202205369
- J. Zhang, W. Ren, S. Chen, R. Wang, H. Luo et al., Facile construction of self-powered electronic textiles for comprehensive respiration analysis. Adv. Intell. Syst. 6, 2300558 (2024). https://doi.org/10.1002/aisy.202300558
- J. Zhang, H. Zhang, W. Ren, W. Gong, Y. Lu et al., Skin-triggered electrochemical touch sensation for self-powered human-machine interfacing. Sens Actuators. B-Chem. 406, 135443 (2024). https://doi.org/10.1016/j.snb.2024.135443
- R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009). https://doi.org/10.1038/nrn2621
- R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014). https://doi.org/10.1016/j.cell.2014.02.026
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
- V. Amoli, J.S. Kim, E. Jee, Y.S. Chung, S.Y. Kim et al., A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 10, 4019 (2019). https://doi.org/10.1038/s41467-019-11973-5
- A.V. Volkov, K. Wijeratne, E. Mitraka, U. Ail, D. Zhao et al., Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27, 1700329 (2017). https://doi.org/10.1002/adfm.201700329
- M. Berggren, G.G. Malliaras, How conducting polymer electrodes operate. Science 364, 233–234 (2019). https://doi.org/10.1126/science.aaw929
- G. Rebetez, O. Bardagot, J. Affolter, J. Réhault, N. Banerji, What drives the kinetics and doping level in the electrochemical reactions of PEDOT: PSS? Adv. Funct. Mater. 32, 2105821 (2022). https://doi.org/10.1002/adfm.202105821
- I. Zozoulenko, A. Singh, S.K. Singh, V. Gueskine, X. Crispin et al., Polarons, bipolarons, and absorption spectroscopy of pedot. ACS Appl. Polym. Mater. 1, 83–94 (2018). https://doi.org/10.1021/acsapm.8b00061
- B.D. Paulsen, R. Wu, C.J. Takacs, H.G. Steinrück, J. Strzalka et al., Time-resolved structural kinetics of an organic mixed ionic–electronic conductor. Adv. Mater. 32, 2003404 (2020). https://doi.org/10.1002/adma.202003404
- W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30, 1800917 (2018). https://doi.org/10.1002/adma.201800917
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- S.J. Zhang, H.Q. Yu, Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res. 38, 309–316 (2004). https://doi.org/10.1016/j.watres.2003.09.020
- S. Sreejith, L.M.I. Leo Joseph, S. Kollem, V.T. Vijumon, J. Ajayan, Biodegradable sensors: a comprehensive review. Measurement 219, 113261 (2023). https://doi.org/10.1016/j.measurement.2023.113261
- T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A.R.M. Foisal et al., Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016). https://doi.org/10.1039/C6TC02708C
References
Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, eaat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
L.E. Osborn, A. Dragomir, J.L. Betthauser, C.L. Hunt, H.H. Nguyen et al., Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018). https://doi.org/10.1126/scirobotics.aat3818
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019). https://doi.org/10.1002/adma.201904765
S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, 2005902 (2021). https://doi.org/10.1002/adma.202005902
H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun et al., The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 31, 1805630 (2019). https://doi.org/10.1002/adma.201805630
L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
Y. Zang, F. Zhang, D. Huang, X. Gao, C.-A. Di et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 6, 6269 (2015). https://doi.org/10.1038/ncomms7269
X. Wu, J. Zhu, J.W. Evans, A.C. Arias, A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric–triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv. Mater. 32, 2005970 (2020). https://doi.org/10.1002/adma.202005970
Y. Zhang, Q. Liu, W. Ren, Y. Song, H. Luo et al., Bioinspired tactile sensation based on synergistic microcrack-bristle structure design towards high mechanical sensitivity and direction-resolving capability. Research 6, 017 (2023). https://doi.org/10.34133/research.0172
M. Khatib, O. Zohar, W. Saliba, H. Haick, A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv. Mater. 32, 2000246 (2020). https://doi.org/10.1002/adma.202000246
H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
B.W. An, S. Heo, S. Ji, F. Bien, J.-U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 10, 4405 (2019). https://doi.org/10.1038/s41467-019-12303-5
K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831 (2019). https://doi.org/10.1002/adma.201902831
Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12, 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
T. Zhang, Y. Ding, C. Hu, M. Zhang, W. Zhu et al., Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human–machine interaction. Adv. Mater. 35, 2203786 (2022). https://doi.org/10.1002/adma.202203786
Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
X. Wu, M. Ahmed, Y. Khan, M.E. Payne, J. Zhu et al., A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. 6, eaba1062 (2020). https://doi.org/10.1126/sciadv.aba1062
X. Wu, J. Zhu, J.W. Evans, C. Lu, A.C. Arias, A potentiometric electronic skin for thermosensation and mechanosensation. Adv. Funct. Mater. 31, 2010824 (2021). https://doi.org/10.1002/adfm.202010824
Q. Zhang, D. Lei, N. Liu, Z. Liu, Z. Ren et al., A zinc-ion battery-type self-powered pressure sensor with long service life. Adv. Mater. 34, 2205369 (2022). https://doi.org/10.1002/adma.202205369
J. Zhang, W. Ren, S. Chen, R. Wang, H. Luo et al., Facile construction of self-powered electronic textiles for comprehensive respiration analysis. Adv. Intell. Syst. 6, 2300558 (2024). https://doi.org/10.1002/aisy.202300558
J. Zhang, H. Zhang, W. Ren, W. Gong, Y. Lu et al., Skin-triggered electrochemical touch sensation for self-powered human-machine interfacing. Sens Actuators. B-Chem. 406, 135443 (2024). https://doi.org/10.1016/j.snb.2024.135443
R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009). https://doi.org/10.1038/nrn2621
R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014). https://doi.org/10.1016/j.cell.2014.02.026
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
V. Amoli, J.S. Kim, E. Jee, Y.S. Chung, S.Y. Kim et al., A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 10, 4019 (2019). https://doi.org/10.1038/s41467-019-11973-5
A.V. Volkov, K. Wijeratne, E. Mitraka, U. Ail, D. Zhao et al., Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27, 1700329 (2017). https://doi.org/10.1002/adfm.201700329
M. Berggren, G.G. Malliaras, How conducting polymer electrodes operate. Science 364, 233–234 (2019). https://doi.org/10.1126/science.aaw929
G. Rebetez, O. Bardagot, J. Affolter, J. Réhault, N. Banerji, What drives the kinetics and doping level in the electrochemical reactions of PEDOT: PSS? Adv. Funct. Mater. 32, 2105821 (2022). https://doi.org/10.1002/adfm.202105821
I. Zozoulenko, A. Singh, S.K. Singh, V. Gueskine, X. Crispin et al., Polarons, bipolarons, and absorption spectroscopy of pedot. ACS Appl. Polym. Mater. 1, 83–94 (2018). https://doi.org/10.1021/acsapm.8b00061
B.D. Paulsen, R. Wu, C.J. Takacs, H.G. Steinrück, J. Strzalka et al., Time-resolved structural kinetics of an organic mixed ionic–electronic conductor. Adv. Mater. 32, 2003404 (2020). https://doi.org/10.1002/adma.202003404
W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30, 1800917 (2018). https://doi.org/10.1002/adma.201800917
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
S.J. Zhang, H.Q. Yu, Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res. 38, 309–316 (2004). https://doi.org/10.1016/j.watres.2003.09.020
S. Sreejith, L.M.I. Leo Joseph, S. Kollem, V.T. Vijumon, J. Ajayan, Biodegradable sensors: a comprehensive review. Measurement 219, 113261 (2023). https://doi.org/10.1016/j.measurement.2023.113261
T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A.R.M. Foisal et al., Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016). https://doi.org/10.1039/C6TC02708C