Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte with Dispersed Hydrophobic Chains for Solid-State Lithium–Oxygen Batteries
Corresponding Author: Dong‑Wan Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 31
Abstract
A critical challenge hindering the practical application of lithium–oxygen batteries (LOBs) is the inevitable problems associated with liquid electrolytes, such as evaporation and safety problems. Our study addresses these problems by proposing a modified polyrotaxane (mPR)-based solid polymer electrolyte (SPE) design that simultaneously mitigates solvent-related problems and improves conductivity. mPR-SPE exhibits high ion conductivity (2.8 × 10−3 S cm−1 at 25 °C) through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion. Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles. In situ Raman spectroscopy reveals the presence of an LiO2 intermediate alongside Li2O2 during oxygen reactions. Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture, as demonstrated by the air permeability tests. The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.
Highlights:
1 Strategic materials design of polyrotaxane-based electrolytes was suggested by aligning the ion conduction pathways and dispersing hydrophobic chains for solid-state Li–O2 batteries.
2 Owing to intentional design, solid-state Li–O2 battery resulted in stable potential over 300 cycles at 25 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Shu, J. Long, S.-X. Dou, J. Wang, Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li–O2 battery with superior safety under extreme conditions. Small 15, e1804701 (2019). https://doi.org/10.1002/smll.201804701
- P. Tan, M. Liu, Z. Shao, M. Ni, Recent advances in perovskite oxides as electrode materials for nonaqueous lithium–oxygen batteries. Adv. Energy Mater. 7, 1602674 (2017). https://doi.org/10.1002/aenm.201602674
- T. Liu, J.P. Vivek, E.W. Zhao, J. Lei, N. Garcia-Araez et al., Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 120, 6558–6625 (2020). https://doi.org/10.1021/acs.chemrev.9b00545
- C.H. Kim, M.-C. Sung, B. Hwang, D.-W. Kim, Cu3P nanoarrays derived from 7, 7, 8, 8-tetracyanoquinodimethane for high-rate electrocatalytic oxygen reactions of lithium-oxygen batteries. Int. J. Energy Res. 2024, 1756429 (2024). https://doi.org/10.1155/2024/1756429
- X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium–oxygen batteries. Nano-Micro Lett. 16, 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
- W.-J. Kwak, D. Rosy, C. Sharon, H.K. Xia et al., Lithium-oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- Z. Huang, J. Ren, W. Zhang, M. Xie, Y. Li et al., Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 30, e1803270 (2018). https://doi.org/10.1002/adma.201803270
- G.-H. Lee, M.-C. Sung, D.-W. Kim, Synergistic coupling of a self-defense redox mediator and anti-superoxide disproportionator in lithium-oxygen batteries for high stability. Chem. Eng. J. 453, 139878 (2023). https://doi.org/10.1016/j.cej.2022.139878
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- B. Kim, S.H. Yang, J.-H. Seo, Y.C. Kang, Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Adv. Funct. Mater. 34, 2310957 (2024). https://doi.org/10.1002/adfm.202310957
- K. Kimura, J. Motomatsu, Y. Tominaga, Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385–12391 (2016). https://doi.org/10.1021/acs.jpcc.6b03277
- J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng et al., Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater. 6, 12422 (2023). https://doi.org/10.1002/eem2.12422
- Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018). https://doi.org/10.1002/aenm.201701602
- W. Yu, C. Xue, B. Hu, B. Xu, L. Li et al., Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li–O2 batteries. Energy Storage Mater. 27, 244–251 (2020). https://doi.org/10.1016/j.ensm.2020.02.001
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- L.F. Hart, J.E. Hertzog, P.M. Rauscher, B.W. Rawe, M.M. Tranquilli et al., Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 6, 508–530 (2021). https://doi.org/10.1038/s41578-021-00278-z
- J. Seo, G.-H. Lee, J. Hur, M.-C. Sung, J.-H. Seo et al., Mechanically interlocked polymer electrolyte with built-In fast molecular shuttles for all-solid-state lithium batteries. Adv. Energy Mater. 11, 2170173 (2021). https://doi.org/10.1002/aenm.202170173
- M. Inutsuka, K. Inoue, Y. Hayashi, A. Inomata, Y. Sakai et al., Highly dielectric and flexible polyrotaxane elastomer by introduction of cyano groups. Polymer 59, 10–15 (2015). https://doi.org/10.1016/j.polymer.2014.12.055
- J. Seo, B. Kim, M.-S. Kim, J.-H. Seo, Optimization of anisotropic crystalline structure of molecular necklace-like polyrotaxane for tough piezoelectric elastomer. ACS Macro Lett. 10, 1371–1376 (2021). https://doi.org/10.1021/acsmacrolett.1c00567
- K. Kato, T. Mizusawa, H. Yokoyama, K. Ito, Effect of topological constraint and confined motions on the viscoelasticity of polyrotaxane glass with different interactions between rings. J. Phys. Chem. C 121, 1861–1869 (2017). https://doi.org/10.1021/acs.jpcc.6b11362
- Q. Lin, L. Li, M. Tang, S. Uenuma, J. Samanta et al., Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks. Chem 7, 2442–2459 (2021). https://doi.org/10.1016/j.chempr.2021.06.004
- J. Seo, J. Hur, M.-S. Kim, T.-G. Lee, S.J. Seo et al., All-organic piezoelectric elastomer formed through the optimal cross-linking of semi-crystalline polyrotaxanes. Chem. Eng. J. 426, 130792 (2021). https://doi.org/10.1016/j.cej.2021.130792
- R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J. Phys. Chem. Solids 68, 407–412 (2007). https://doi.org/10.1016/j.jpcs.2006.12.001
- Y. Deng, Q. Zhang, B.L. Feringa, H. Tian, D.-H. Qu, Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes. Angew. Chem. Int. Ed. 59, 5278–5283 (2020). https://doi.org/10.1002/anie.201913893
- B. Kim, M. Jang, S. Heo, M.-S. Kim, J.-H. Seo, Mechanically robust cellulose-based piezoelectric elastomer formed by slidable polyrotaxane cross-linker. ACS Macro Lett. 12, 1705–1710 (2023). https://doi.org/10.1021/acsmacrolett.3c00576
- L. Stolz, S. Röser, G. Homann, M. Winter, J. Kasnatscheew, Pragmatic approaches to correlate between the physicochemical properties of a linear poly(ethylene oxide)-based solid polymer electrolyte and the performance in a high-voltage Li-metal battery. J. Phys. Chem. C 125, 18089–18097 (2021). https://doi.org/10.1021/acs.jpcc.1c03614
- S. Chen, Y. Li, Y. Wang, Z. Li, C. Peng et al., Cross-linked single-ion solid polymer electrolytes with alternately distributed lithium sources and ion-conducting segments for lithium metal batteries. Macromolecules 54, 9135–9144 (2021). https://doi.org/10.1021/acs.macromol.1c01102
- Y. Wei, L. Hu, J. Yao, Z. Shao, X. Chen, Facile dissolution of zein using a common solvent dimethyl sulfoxide. Langmuir 35, 6640–6649 (2019). https://doi.org/10.1021/acs.langmuir.9b00670
- X. Zhang, J. Han, X. Niu, C. Xin, C. Xue et al., High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 3, 876–883 (2020). https://doi.org/10.1002/batt.202000081
- Z. Zhou, R. Zou, Z. Liu, P. Zhang, Deciphering the role of tetrahydrofuran residue in the poly(ethylene oxide)/LiTFSI hybrid used for secondary battery electrolyte. Giant 6, 100056 (2021). https://doi.org/10.1016/j.giant.2021.100056
- B. Yiming, Y. Han, Z. Han, X. Zhang, Y. Li et al., A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 33, e2006111 (2021). https://doi.org/10.1002/adma.202006111
- B. Kim, Y.J. Cho, D.-G. Kim, J.-H. Seo, Ion conducting elastomer designed from thiourea-based dynamic covalent bonds with reprocessing capability. Mater. Today Chem. 30, 101583 (2023). https://doi.org/10.1016/j.mtchem.2023.101583
- Y. Xiao, R. Xu, C. Yan, Y. Liang, J.-F. Ding et al., Waterproof lithium metal anode enabled by cross-linking encapsulation. Sci. Bull. 65, 909–916 (2020). https://doi.org/10.1016/j.scib.2020.02.022
- B.G. Kim, J.-S. Kim, J. Min, Y.-H. Lee, J.H. Choi et al., A moisture- and oxygen-impermeable separator for aprotic Li–O2 batteries. Adv. Funct. Mater. 26, 1747–1756 (2016). https://doi.org/10.1002/adfm.201504437
- R. Li, Y. Fan, C. Zhao, A. Hu, B. Zhou et al., Air-stable protective layers for lithium anode achieving safe lithium metal batteries. Small Methods 7, e2201177 (2023). https://doi.org/10.1002/smtd.202201177
- M. Xia, H. Fu, K. Lin, A.M. Rao, L. Cha et al., Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries. Energy Environ. Sci. 17, 1255–1265 (2024). https://doi.org/10.1039/D3EE03729K
- W. Lyu, X. Yu, Y. Lv, A.M. Rao, J. Zhou et al., Building stable solid-state potassium metal batteries. Adv. Mater. 36, e2305795 (2024). https://doi.org/10.1002/adma.202305795
- Y. Xia, Y.F. Liang, D. Xie, X.L. Wang, S.Z. Zhang et al., A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem. Eng. J. 358, 1047–1053 (2019). https://doi.org/10.1016/j.cej.2018.10.092
- H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35, e2301996 (2023). https://doi.org/10.1002/adma.202301996
- C. Piedrahita, V. Kusuma, H.B. Nulwala, T. Kyu, Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-co-thiosiloxane network. Solid State Ion. 322, 61–68 (2018). https://doi.org/10.1016/j.ssi.2018.05.006
- K. Yamada, S. Yuasa, R. Matsuoka, R. Sai, Y. Katayama et al., Improved ionic conductivity for amide-containing electrolytes by tuning intermolecular interaction: the effect of branched side-chains with cyanoethoxy groups. Phys. Chem. Chem. Phys. 23, 10070–10080 (2021). https://doi.org/10.1039/d1cp00852h
- Q. Qiu, Z.-Z. Pan, P. Yao, J. Yuan, C. Xia et al., A 98.2% energy efficiency Li–O2 battery using a LaNi−0.5Co0.5O3 perovskite cathode with extremely fast oxygen reduction and evolution kinetics. Chem. Eng. J. 452, 139608 (2023). https://doi.org/10.1016/j.cej.2022.139608
- X. Zou, Q. Lu, Y. Zhong, K. Liao, W. Zhou et al., Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small 14, e1801798 (2018). https://doi.org/10.1002/smll.201801798
- L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101
- Z. Rao, P. Lyu, P. Du, D. He, Y. Huo et al., Thermal safety and thermal management of batteries. Battery Energy 1, 210019 (2022). https://doi.org/10.1002/bte2.20210019
- S.G. Mohamed, Y.Q. Tsai, C.J. Chen, Y.T. Tsai, T.F. Hung et al., Ternary spinel MCo2O4 (M=Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium–O2 batteries. ACS Appl. Mater. Interfaces 7, 12038–12046 (2015). https://doi.org/10.1021/acsami.5b02180
- Y.-G. Wu, X.-B. Zhu, W.-H. Wan, Z.-N. Man, Y. Wang et al., Advanced engineering for cathode in lithium–oxygen batteries: flexible 3D hierarchical porous architecture design and its functional modification. Adv. Funct. Mater. 31, 2105664 (2021). https://doi.org/10.1002/adfm.202105664
- A. Kondori, M. Esmaeilirad, A.M. Harzandi, R. Amine, M.T. Saray et al., A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 379, 499–505 (2023). https://doi.org/10.1126/science.abq1347
- H. Gong, T. Wang, K. Chang, P. Li, L. Liu et al., Revealing the illumination effect on the discharge products in high-performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 4, 1169–1181 (2022). https://doi.org/10.1002/cey2.208
- Y. Rao, J. Yang, S. Chu, S. Guo, H. Zhou, Solid-state Li–air batteries: fundamentals, challenges, and strategies. SmartMat 4, e1205 (2023). https://doi.org/10.1002/smm2.1205
- L. Luo, B. Liu, S. Song, W. Xu, J.-G. Zhang et al., Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535–539 (2017). https://doi.org/10.1038/nnano.2017.27
- K.R. Yoon, J.-W. Jung, P.I.-D. Kim, Recent progress in 1D air electrode nanomaterials for enhancing the performance of nonaqueous lithium–oxygen batteries. ChemNanoMat 2, 616–634 (2016). https://doi.org/10.1002/cnma.201600137
- D. Zhai, H.H. Wang, K.C. Lau, J. Gao, P.C. Redfern et al., Raman evidence for late stage disproportionation in a Li–O2 battery. J. Phys. Chem. Lett. 5, 2705–2710 (2014). https://doi.org/10.1021/jz501323n
- J.F. Leal Silva, M.C. Policano, G.C. Tonon, C.G. Anchieta, G. Doubek et al., The potential of hydrophobic membranes in enabling the operation of lithium-air batteries with ambient air. Chem. Eng. J. Adv. 11, 100336 (2022). https://doi.org/10.1016/j.ceja.2022.100336
- M.-C. Sung, G.-H. Lee, D.-W. Kim, Kinetic insight into perovskite La0.8Sr0.2VO3 nanofibers as an efficient electrocatalytic cathode for high-ratehigh-rate Li-O2 batteries. InfoMat 3, 1295–1310 (2021). https://doi.org/10.1002/inf2.12243
References
C. Shu, J. Long, S.-X. Dou, J. Wang, Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li–O2 battery with superior safety under extreme conditions. Small 15, e1804701 (2019). https://doi.org/10.1002/smll.201804701
P. Tan, M. Liu, Z. Shao, M. Ni, Recent advances in perovskite oxides as electrode materials for nonaqueous lithium–oxygen batteries. Adv. Energy Mater. 7, 1602674 (2017). https://doi.org/10.1002/aenm.201602674
T. Liu, J.P. Vivek, E.W. Zhao, J. Lei, N. Garcia-Araez et al., Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 120, 6558–6625 (2020). https://doi.org/10.1021/acs.chemrev.9b00545
C.H. Kim, M.-C. Sung, B. Hwang, D.-W. Kim, Cu3P nanoarrays derived from 7, 7, 8, 8-tetracyanoquinodimethane for high-rate electrocatalytic oxygen reactions of lithium-oxygen batteries. Int. J. Energy Res. 2024, 1756429 (2024). https://doi.org/10.1155/2024/1756429
X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium–oxygen batteries. Nano-Micro Lett. 16, 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
W.-J. Kwak, D. Rosy, C. Sharon, H.K. Xia et al., Lithium-oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
Z. Huang, J. Ren, W. Zhang, M. Xie, Y. Li et al., Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 30, e1803270 (2018). https://doi.org/10.1002/adma.201803270
G.-H. Lee, M.-C. Sung, D.-W. Kim, Synergistic coupling of a self-defense redox mediator and anti-superoxide disproportionator in lithium-oxygen batteries for high stability. Chem. Eng. J. 453, 139878 (2023). https://doi.org/10.1016/j.cej.2022.139878
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
B. Kim, S.H. Yang, J.-H. Seo, Y.C. Kang, Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Adv. Funct. Mater. 34, 2310957 (2024). https://doi.org/10.1002/adfm.202310957
K. Kimura, J. Motomatsu, Y. Tominaga, Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385–12391 (2016). https://doi.org/10.1021/acs.jpcc.6b03277
J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng et al., Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater. 6, 12422 (2023). https://doi.org/10.1002/eem2.12422
Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018). https://doi.org/10.1002/aenm.201701602
W. Yu, C. Xue, B. Hu, B. Xu, L. Li et al., Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li–O2 batteries. Energy Storage Mater. 27, 244–251 (2020). https://doi.org/10.1016/j.ensm.2020.02.001
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
L.F. Hart, J.E. Hertzog, P.M. Rauscher, B.W. Rawe, M.M. Tranquilli et al., Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 6, 508–530 (2021). https://doi.org/10.1038/s41578-021-00278-z
J. Seo, G.-H. Lee, J. Hur, M.-C. Sung, J.-H. Seo et al., Mechanically interlocked polymer electrolyte with built-In fast molecular shuttles for all-solid-state lithium batteries. Adv. Energy Mater. 11, 2170173 (2021). https://doi.org/10.1002/aenm.202170173
M. Inutsuka, K. Inoue, Y. Hayashi, A. Inomata, Y. Sakai et al., Highly dielectric and flexible polyrotaxane elastomer by introduction of cyano groups. Polymer 59, 10–15 (2015). https://doi.org/10.1016/j.polymer.2014.12.055
J. Seo, B. Kim, M.-S. Kim, J.-H. Seo, Optimization of anisotropic crystalline structure of molecular necklace-like polyrotaxane for tough piezoelectric elastomer. ACS Macro Lett. 10, 1371–1376 (2021). https://doi.org/10.1021/acsmacrolett.1c00567
K. Kato, T. Mizusawa, H. Yokoyama, K. Ito, Effect of topological constraint and confined motions on the viscoelasticity of polyrotaxane glass with different interactions between rings. J. Phys. Chem. C 121, 1861–1869 (2017). https://doi.org/10.1021/acs.jpcc.6b11362
Q. Lin, L. Li, M. Tang, S. Uenuma, J. Samanta et al., Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks. Chem 7, 2442–2459 (2021). https://doi.org/10.1016/j.chempr.2021.06.004
J. Seo, J. Hur, M.-S. Kim, T.-G. Lee, S.J. Seo et al., All-organic piezoelectric elastomer formed through the optimal cross-linking of semi-crystalline polyrotaxanes. Chem. Eng. J. 426, 130792 (2021). https://doi.org/10.1016/j.cej.2021.130792
R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J. Phys. Chem. Solids 68, 407–412 (2007). https://doi.org/10.1016/j.jpcs.2006.12.001
Y. Deng, Q. Zhang, B.L. Feringa, H. Tian, D.-H. Qu, Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes. Angew. Chem. Int. Ed. 59, 5278–5283 (2020). https://doi.org/10.1002/anie.201913893
B. Kim, M. Jang, S. Heo, M.-S. Kim, J.-H. Seo, Mechanically robust cellulose-based piezoelectric elastomer formed by slidable polyrotaxane cross-linker. ACS Macro Lett. 12, 1705–1710 (2023). https://doi.org/10.1021/acsmacrolett.3c00576
L. Stolz, S. Röser, G. Homann, M. Winter, J. Kasnatscheew, Pragmatic approaches to correlate between the physicochemical properties of a linear poly(ethylene oxide)-based solid polymer electrolyte and the performance in a high-voltage Li-metal battery. J. Phys. Chem. C 125, 18089–18097 (2021). https://doi.org/10.1021/acs.jpcc.1c03614
S. Chen, Y. Li, Y. Wang, Z. Li, C. Peng et al., Cross-linked single-ion solid polymer electrolytes with alternately distributed lithium sources and ion-conducting segments for lithium metal batteries. Macromolecules 54, 9135–9144 (2021). https://doi.org/10.1021/acs.macromol.1c01102
Y. Wei, L. Hu, J. Yao, Z. Shao, X. Chen, Facile dissolution of zein using a common solvent dimethyl sulfoxide. Langmuir 35, 6640–6649 (2019). https://doi.org/10.1021/acs.langmuir.9b00670
X. Zhang, J. Han, X. Niu, C. Xin, C. Xue et al., High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 3, 876–883 (2020). https://doi.org/10.1002/batt.202000081
Z. Zhou, R. Zou, Z. Liu, P. Zhang, Deciphering the role of tetrahydrofuran residue in the poly(ethylene oxide)/LiTFSI hybrid used for secondary battery electrolyte. Giant 6, 100056 (2021). https://doi.org/10.1016/j.giant.2021.100056
B. Yiming, Y. Han, Z. Han, X. Zhang, Y. Li et al., A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 33, e2006111 (2021). https://doi.org/10.1002/adma.202006111
B. Kim, Y.J. Cho, D.-G. Kim, J.-H. Seo, Ion conducting elastomer designed from thiourea-based dynamic covalent bonds with reprocessing capability. Mater. Today Chem. 30, 101583 (2023). https://doi.org/10.1016/j.mtchem.2023.101583
Y. Xiao, R. Xu, C. Yan, Y. Liang, J.-F. Ding et al., Waterproof lithium metal anode enabled by cross-linking encapsulation. Sci. Bull. 65, 909–916 (2020). https://doi.org/10.1016/j.scib.2020.02.022
B.G. Kim, J.-S. Kim, J. Min, Y.-H. Lee, J.H. Choi et al., A moisture- and oxygen-impermeable separator for aprotic Li–O2 batteries. Adv. Funct. Mater. 26, 1747–1756 (2016). https://doi.org/10.1002/adfm.201504437
R. Li, Y. Fan, C. Zhao, A. Hu, B. Zhou et al., Air-stable protective layers for lithium anode achieving safe lithium metal batteries. Small Methods 7, e2201177 (2023). https://doi.org/10.1002/smtd.202201177
M. Xia, H. Fu, K. Lin, A.M. Rao, L. Cha et al., Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries. Energy Environ. Sci. 17, 1255–1265 (2024). https://doi.org/10.1039/D3EE03729K
W. Lyu, X. Yu, Y. Lv, A.M. Rao, J. Zhou et al., Building stable solid-state potassium metal batteries. Adv. Mater. 36, e2305795 (2024). https://doi.org/10.1002/adma.202305795
Y. Xia, Y.F. Liang, D. Xie, X.L. Wang, S.Z. Zhang et al., A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem. Eng. J. 358, 1047–1053 (2019). https://doi.org/10.1016/j.cej.2018.10.092
H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35, e2301996 (2023). https://doi.org/10.1002/adma.202301996
C. Piedrahita, V. Kusuma, H.B. Nulwala, T. Kyu, Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-co-thiosiloxane network. Solid State Ion. 322, 61–68 (2018). https://doi.org/10.1016/j.ssi.2018.05.006
K. Yamada, S. Yuasa, R. Matsuoka, R. Sai, Y. Katayama et al., Improved ionic conductivity for amide-containing electrolytes by tuning intermolecular interaction: the effect of branched side-chains with cyanoethoxy groups. Phys. Chem. Chem. Phys. 23, 10070–10080 (2021). https://doi.org/10.1039/d1cp00852h
Q. Qiu, Z.-Z. Pan, P. Yao, J. Yuan, C. Xia et al., A 98.2% energy efficiency Li–O2 battery using a LaNi−0.5Co0.5O3 perovskite cathode with extremely fast oxygen reduction and evolution kinetics. Chem. Eng. J. 452, 139608 (2023). https://doi.org/10.1016/j.cej.2022.139608
X. Zou, Q. Lu, Y. Zhong, K. Liao, W. Zhou et al., Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small 14, e1801798 (2018). https://doi.org/10.1002/smll.201801798
L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101
Z. Rao, P. Lyu, P. Du, D. He, Y. Huo et al., Thermal safety and thermal management of batteries. Battery Energy 1, 210019 (2022). https://doi.org/10.1002/bte2.20210019
S.G. Mohamed, Y.Q. Tsai, C.J. Chen, Y.T. Tsai, T.F. Hung et al., Ternary spinel MCo2O4 (M=Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium–O2 batteries. ACS Appl. Mater. Interfaces 7, 12038–12046 (2015). https://doi.org/10.1021/acsami.5b02180
Y.-G. Wu, X.-B. Zhu, W.-H. Wan, Z.-N. Man, Y. Wang et al., Advanced engineering for cathode in lithium–oxygen batteries: flexible 3D hierarchical porous architecture design and its functional modification. Adv. Funct. Mater. 31, 2105664 (2021). https://doi.org/10.1002/adfm.202105664
A. Kondori, M. Esmaeilirad, A.M. Harzandi, R. Amine, M.T. Saray et al., A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 379, 499–505 (2023). https://doi.org/10.1126/science.abq1347
H. Gong, T. Wang, K. Chang, P. Li, L. Liu et al., Revealing the illumination effect on the discharge products in high-performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 4, 1169–1181 (2022). https://doi.org/10.1002/cey2.208
Y. Rao, J. Yang, S. Chu, S. Guo, H. Zhou, Solid-state Li–air batteries: fundamentals, challenges, and strategies. SmartMat 4, e1205 (2023). https://doi.org/10.1002/smm2.1205
L. Luo, B. Liu, S. Song, W. Xu, J.-G. Zhang et al., Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535–539 (2017). https://doi.org/10.1038/nnano.2017.27
K.R. Yoon, J.-W. Jung, P.I.-D. Kim, Recent progress in 1D air electrode nanomaterials for enhancing the performance of nonaqueous lithium–oxygen batteries. ChemNanoMat 2, 616–634 (2016). https://doi.org/10.1002/cnma.201600137
D. Zhai, H.H. Wang, K.C. Lau, J. Gao, P.C. Redfern et al., Raman evidence for late stage disproportionation in a Li–O2 battery. J. Phys. Chem. Lett. 5, 2705–2710 (2014). https://doi.org/10.1021/jz501323n
J.F. Leal Silva, M.C. Policano, G.C. Tonon, C.G. Anchieta, G. Doubek et al., The potential of hydrophobic membranes in enabling the operation of lithium-air batteries with ambient air. Chem. Eng. J. Adv. 11, 100336 (2022). https://doi.org/10.1016/j.ceja.2022.100336
M.-C. Sung, G.-H. Lee, D.-W. Kim, Kinetic insight into perovskite La0.8Sr0.2VO3 nanofibers as an efficient electrocatalytic cathode for high-ratehigh-rate Li-O2 batteries. InfoMat 3, 1295–1310 (2021). https://doi.org/10.1002/inf2.12243